DISTRIBUTIVE, MODULAR AND SEPARATING ELEMENTS IN LATTICES

P. R. JONES

Given the importance of distributive lattices as a class, it was a natural step to consider distributivity of elements in an arbitrary lattice L. For instance an element d is called distributive if $d \lor (x \land y) = (d \lor x) \land (d \lor y)$ for all $x, y \in L$, and separating if $d \lor x = d \lor y$ and $d \land x = d \land y$ to gether imply x = y. An important early result was that in a modular lattice any distributive (or dually distributive) element is in fact neutral, that is, distributive, dually distributive and separating. A deeper result is that the same is true in weakly modular lattices [3, §III. 2].

In this paper the above result is extended in other directions, notably in M-symmetric and " Θ - modular" lattice. To do this we introduce some notions which might be considered as "modularity" of elements in a fashion similar to that for "distributivity" above. For instance an element d of L is left [right] modular if d M a [a M d] for all $a \in L$, and weakly separating if $d \lor x = d \lor y$, $d \land x = d \land y$ and $x \le y$ together imply x = y. Such elements do indeed arise (in a nontrivial manner) in congruence lattices, for example.

The first main result proved is that in an *M*-symmetric lattice, any element which is both distributive and dually distributive is neutral. Given the lack of duality inherent in *M*-symmetry, this is perhaps the strongest result that might be expected. On the other hand it is shown that in an *M*-symmetric algebraic lattice satisfying DCC, any dually distributive element is neutral. Counterexamples show that these results cannot be extended.

In the final section the concept of " θ -modularity", introduced (in a rather special context) by Spitznagel [7], is considered and its relationship with the earlier concepts is demonstrated. Roughly speaking, given an equivalence θ on the lattice L, L is θ -modular if each of its elements weakly separates each θ -class. (Thus a modular lattice is θ -modular for any θ). The case in which we are most interested corresponds to the equivalence $\theta_d = \{(a, b) \in L \times L : a \lor d = b \lor d\}$, when d is an arbitrary element of L. Our main result here is that if d is distributive (so that θ_d is in fact a congruence on L) and if L is θ_d -modular, then d must be neutral.

In a sequel [5] these results will be used in a discussion of congruence

430 P.R. JONES

lattices (of semigroups). The relevent point is that if A is any (universal) algebra, with congruence lattice C(A), and if $\rho \in C(A)$, then ρ is neutral in C(A) if and only if the map

$$\tau \to (\tau \cap \rho, (\tau \vee \rho)/\rho)$$

is an isomorphism of C(A) upon a subdirect product of the principal ideal $(\rho]$ of C(A) and the lattice $C(A/\rho)$ of congruences on the quotient algebra A/ρ .

1. Definitions and elementary results. We adhere generally to the notation and terminology of Grätzer [3]. In the following, L is an arbitrary lattice. Recall that an element d of L is (i) distributive if $d \lor (x \land y) = (d \lor x) \land (d \lor y)$ for all $x, y \in L$; (ii) standard if d is distributive and separates L, in the sense that $d \land x = d \land y$ and $d \lor x = d \lor y$ together imply x = y; and (iii) neutral if d is distributive, dually distributive and separating.

(In fact standard and neutral elements are defined a little differently in [3]—the forms (ii) and (iii) just given are equivalent to the definitions in [3] by [3, Theorems III, 2.3. and III. 2.4]). We shall have occasion to use the following alternative characterization of standard elements.

RESULT 1.1. [3, Theorem III. 2.3]. An element d of L is standard if and only if $a \wedge (d \vee b) = (a \wedge d) \vee (a \wedge b)$ for all $a, b \in L$.

The modularity relation M on L is defined by aMb if $(x \lor a) \land b = x \lor (a \land b)$ for all $x \le b$ or, equivalently, if $(x \lor a) \land b = x$ for all $x \in [a \land b, b]$. A lattice L is M-symmetric if aMb implies bMa for all a, $b \in L$.

We call d left modular if dMa for all $a \in L$, and right modular if aMd for all $a \in L$. A useful observation [6, Lemma 1.2] is that left modularity is self-dual. The element d is weakly separating if $d \wedge x = d \wedge y$, $d \vee x = d \vee y$ and $x \leq y$ together imply x = y.

One of the elementary relationships between these concepts we will demonstrate below is that a weakly separating element is left modular. A ready source of such elements is then provided by the following result, whose proof is easily obtained by modifying the proof, by Jonsson, that a lattice with a "type two" representation (as in the next proposition, but for all $a, d \in L$) is modular. (See [3; Theorem IV. 4.8].)

PROPOSITION 1.2. Let L be a lattice and $d \in L$. Suppose L has a representation $\phi: L \to \operatorname{Part}(X)$ such that $(a \lor d) \phi = a \phi \circ d\phi \circ a \phi$ for all $a \in L$. Then d is weakly separating.

Here $\operatorname{Part}(X)$ is the partition lattice of the set X and the symbol \circ denotes composition: if α , $\beta \in \operatorname{Part}(X)$, then $(a, b) \in \alpha \circ \beta$ if $a \equiv c(\alpha)$ and

 $c \equiv b(\beta)$ for some $c \in X$. Clearly if A is an algebra and $\rho \in C(A)$ has the property that for all $\tau \in C(A)$, $\rho \lor \tau = \rho \circ \tau \circ \rho$, then ρ weakly separates C(A). We now demonstrate some elementary relationships among these concepts.

LEMMA 1.3. (i) Any weakly separating element is left modular.

- (ii) Any dually distributive element is right modular.
- (iii) Any distributive, left modular element is separating.
- PROOF. (i) Suppose d weakly separates L and let $a, b \in L$, $b \le a$. It is easily veriified that $b \lor (d \land a) \le (b \lor d) \land a$, that $d \land (b \lor (d \land a)) = d \land ((b \lor d) \land a)$ and that $d \lor (b \lor (d \land a)) \land d = d \lor ((b \lor d) \land a)$, so $b \lor (d \land a) = (b \lor d) \land a$ and dMa.
 - (ii) Immediate from the definition.
 - (iii) Suppose d is distributive and left modular, and that

$$d \wedge a = d \wedge b$$
, $d \vee a = d \vee b$ for some $a, b \in L$. Now $a \wedge b = (a \wedge b \vee (d \wedge a), \text{ (using } d \wedge a = d \wedge b),$
 $= ((a \wedge b) \vee d) \wedge a, \text{ (since } a \wedge b \leq a \text{ and } dMa),$
 $= ((a \vee d) \wedge (b \vee d)) \wedge a, \text{ (using distributivity)}$
 $= (a \vee d) \wedge a, \text{ (using } a \vee d = b \vee d)$
 $= a.$

Thus $a \leq b$, and similarly $b \leq a$, as required.

Noting again the self-duality of left modularity we obtain the following corollary.

COROLLARY 1.4. If d is distributive or dually distributive, the following are equivalent:

- (i) d is weakly separating,
- (ii) d is left modular, and
- (iii) d is separating.

2. Distributive elements and M-symmetry.

THEOREM 2.1. Let L be an M-symmetric lattice. Any dually distributive element separates L. Hence any element which is both distributive and dually distributive is neutral.

PROOF. If d is dually distributive, then by Lemma 1.3 (ii), d is right modular whence, by M-symmetry, left modular. The result now follows from Corollary 1.4.

EXAMPLE 2.2. It is interesting to note that the theorem fails in "semi-modular" lattices. (Again following [3], L is semimodular if a < b implies

432 P.R. JONES

 $a \lor c \lt b \lor c$ or $a \lor c = b \lor c$, for all $c \in L$ or, equivalently, if $x \gt x \land y$ implies $x \lor y \gt y$ for all x, y. Here \lt denotes the covering |relation in L). For example the lattice L_1 of Figure 1(a) (where the intervals [a, 1] and [0, d] are isomorphic dense bounded chains, b is the only other element and the meets and join are as shown) is easily verified to be semimodular, but the element d (as shown) is dually distributive yet not separating.

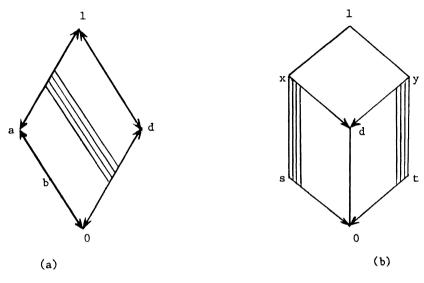


Figure 1

EXAMPLE 2.3. As remarked in the introduction, we cannot really expect such a strong result as "distributive implies neutral" in M-symmetric lattices in general. In fact the lattice L_2 of figure 1(b) shows that even "standard implies neutral" is not true. (See however the theorem below). In that diagram each interval (0, s], (0, t], (d, x] and (d, y] is isomorphic with the chain of natural numbers ordered by $1 > 2 > 3 \ldots$, the remaining meets and joins again being as shown. It is easily seen that L_2 is M-symmetric and that the element d (as shown) is standard. But d is not dually distributive, for $d \wedge (s \vee t) = d$ whilst $(d \wedge s) \vee (d \wedge t) = 0$.

The lattice L_2 satisfies ACC but not DCC. A similar example may be constructed satisfying DCC but not ACC. However, if the lattice is assumed to be algebraic we have the following result. (A lattice L is algebraic if it is complete and every element is a join of compact elements).

THEOREM 2.4. In an algebraic, M-symmetric lattice with DCC, any standard element is neutral.

PROOF. Let d be a standard element of L and suppose d is not dually distributive: thus there exist $x, y \in L$ such that

(1)
$$d \wedge (x \vee y) > (d \wedge x) \vee (d \wedge y) = b, \text{ say.}$$

Since d is separating it is left modular (by Lemma 1.3 (i)), whence, by M-symmetry, right modular. In particular xMd and yMd, and since $b \in [d \land x, d]$ and $[d \land y, d]$, we have

(2)
$$b = d \wedge (x \vee b) = d \wedge (y \vee b).$$

Thus

$$\begin{split} d \wedge \{(x \vee b) \vee (y \vee b)\} & \geq d \wedge (x \vee y) > b \\ & = \{d \wedge (x \vee b)\} \vee \{d \wedge (y \vee b)\}, \end{split}$$

so that in (1) we may assume, without loss of generality, that $x, y \ge b$. In fact since d > b already, the inequality (1) is valid for some x, y, d in [b), the principal dual ideal generated by b. Moreover the hypotheses of the theorem remain valid in [b) so we may assume from now on that b = 0. Thus for some x and y, $d \land (x \lor y) > 0$ whilst $d \land x = d \land y = 0$.

Using DCC we may choose z in L minimally with respect to the following property: there is an element p of L for which $d \wedge (z \vee p) > 0$ whilst $d \wedge z = d \wedge p = 0$; let p be such an element.

On the other hand by the maximum principle there is an element m in $[p, z \lor p]$ maximal such that $d \land m = 0$. (For if $\{u_i\}$ is a chain in $[p, z \lor p]$ with each $d \land u_i = 0$, then by join continuity (true in any algebraic lattice) $d \land (\bigvee u_i) = \bigvee (d \land u_i) = 0$). Note that $m < z \lor p$, for otherwise $d \land (z \land p) = 0$. Thus $z \not \leq m$.

We now show that z covers $z \wedge m$. Let $w \in [z \wedge m, z)$. From the minimality of z (and noting that $d \wedge w = d \wedge m = 0$) it follows that $d \wedge (w \vee m) = 0$. But $w \vee m \in [m, p \vee z]$, so from the maximality of m we deduce that $w \vee m = m$, so that $w = m \wedge z$. Hence $z > z \wedge m$.

From M-symmetry (which implies semimodularity) it is now immediate that $z \lor p \gt m$. But if we put $c = d \land (z \lor p)$, then $c \lor m \in [m, z \lor p] = [m, z \lor m]$; thus $c \lor m = m$ or $c \lor m = z \lor m$. As in equation (2), using mMd, $d \land m = 0$ and $c \le d$ we obtain $c = d \land (c \lor m)$. Thus if $c \lor m = m$, then $c = d \land m = 0$, a contradiction. Otherwise $d \lor m \ge c \lor m = z \lor m \ge z$, in which case

$$z = z \wedge (d \vee m) = (z \wedge d) \vee (z \wedge m)$$
 (using Result 1.1)
= $z \wedge m$, contradicting $z \nleq m$.

Hence d is dually distributive and neutral.

434 P.R. JONES

REMARK. In algebraic lattices satisfying DCC, M-symmetry and semi-modularity are equivalent [4].

COROLLARY 2.5. [1; Theorem 1.9]. In a semimodular lattice L without infinite chains, every standard element is neutral.

PROOF. By the above remark L is M-symmetric, and since L satisfies ACC, it is algebraic, so the hypotheses of theorem are satisfied.

3. Θ -modularity. In [7] Spitznagel introduced the following generalization of modularity: if Θ is an equivalence on the lattice L, call $L\Theta$ -modular if for any $a, b \in L$, $a \Theta b$, $a \leq b$ and $a \wedge x = b \wedge x$, $a \vee x = b \vee x$ together imply a = b. (In fact Spitznagel required Θ to be a congruence on L, and it is that situation which will occur most often, but we prefer the slightly more general definition), Note that if L is Θ -modular any sublattice of L which is contained in a single Θ -class is modular.

If $d \in L$, then the relation $\Theta_d = \{(a, b) \in L \times L : a \lor d = b \lor d\}$ is an equivalence on L. In fact from [3; Theorems III. 2.2, III. 2.5] it follows that d is distributive if and only if Θ_d is a congruence, (in which case Θ_d is the congruence generated by the principal ideal (d] of L). Our particular interest will be in Θ_d -modularity. We will also briefly consider Θ^d -modularity, where Θ^d is defined dually to Θ_d . We first establish some elementary relationships between Θ_d -modularity and the concepts of the previous sections. Throughout, L is an arbitrary lattice and $d \in L$.

LEMMA 3.1. If L is Θ_d -modular, then

- (i) the principal ideal (d] is modular,
- (ii) d is weakly separating, and
- (iii) d is left modular.

PROOF. (i) Clearly (d] is contained in a Θ_d -class.

- (ii) If $a \le b$, $a \wedge d = b \wedge d$ and $a \vee d = b \vee d$, then obviously $a \Theta_d b$, so a = b.
 - (iii) Immediate from Lemma 1.3.(i).

A partial converse is provided by the following lemma.

Lemma 3.2. If d is dually standard, (that is, dually distributive and separating) and if (d] is modular, then L is Θ_d -modular.

PROOF. Let $a, b \in L$, $a \le b$, with $a \Theta_d b$, that is, $a \lor d = b \lor d$. Suppose $a \land x = b \land x$ and $a \lor x = b \lor x$, for some $x \in L$. Since d is dually distributive, $(d \land a) \lor (d \land x) = d \land (a \lor x) = d \land (b \lor x) = (d \land b) \lor (d \land x)$. Moreover $(d \land a) \land (d \land x) = (d \land b) \land (d \land x)$, since $a \land x = b \land x$; but $d \land a \le d \land b$ and so modularity of (d] yields $d \land a = d \land b$. Since d separates $d \land a = b$, as required.

Combining these results with Corollary 1.4 yields the next corollary.

COROLLARY 3.3. Suppose d is dually distributive. Then the following are equivalent:

- (i) L is Θ_d -modular,
- (ii) d is (weakly) separating and (d] is modular, and
- (iii) d is left modular and (d] is modular.

In the *M*-symmetric case a simpler result holds, by applying Theorem 2.1.

COROLLARY 3.4. Suppose d is dually distributive. If L is M-symmetric, then L is Θ_d -modular if and only if (d] is modular.

Clearly the dual of this result would appear to require M^* -symmetry (the dual of M-symmetry) as a hypothesis. However a similar result can be obtained for Θ^d -modularity in an M-symmetric lattice by strengthening the hypotheses.

COROLLARY 3.5. Suppose d is both distributive and dually distributive. If L is M-symmetric, then L is Θ^d -modular if and only if [d] is modular.

PROOF. By Theorem 2.1, d is separating. The result now follows from the duals of Lemmas 3.1 and 3.2.

Our main result on Θ -modularity (which uses only Lemma 3.1 among the foregoing results) is that alluded to in the introduction. This theorem is a common abstraction and generalization of Proposition 3.13 of [7] and Theorem 3.7 of [2], each of which was set in a rather special situation. Our proof, in addition, represents a major simplification of the proofs of those two theorems.

THEOREM 3.6. If d is distributive and L is Θ_d -modular, then d is neutral.

PROOF. By Lemma 3.1, d is left modular whence, by Lemma 1.3(iii), separating. Rather than proving d is dually distributive directly we will use the dual of Result 1.1 to show d is dually standard. So let $a, b \in L$. Clearly $a \lor (d \land b) \le (a \lor d) \land (a \lor b)$. Further, $d \lor ((a \lor d) \land (a \lor b)) \le d \lor (a \lor d) = a \lor d = d \lor (a \lor (d \land b))$ so $d \lor (a \lor (d \land b)) = d \lor ((a \lor d) \land (a \lor b))$, that is, $a \lor (d \land b)\Theta_d(a \lor d) \land (a \lor b)$. Similarly $b \lor (a \lor (d \land b)) = b \lor ((a \lor d) \land (a \lor b))$. But

$$b \wedge (a \vee (d \wedge b)) \ge (b \wedge a) \vee (b \wedge (d \wedge b))$$

$$= (b \wedge a) \vee (b \wedge d)$$

$$= b \wedge (a \vee d), \text{ using Result 1.1 itself,}$$

$$\text{since } d \text{ is standard,}$$

$$= b \wedge ((a \vee d) \wedge (a \vee b)),$$

and since the reverse inequality is clearly satisfied, equality holds. From Θ_d -modularity, $a \lor (d \land b) = (a \lor d) \land (a \lor b)$ and the theorem follows from the dual of Result 1.1.

REFERENCES

- 1. C. Eberhart and W. Williams, Congruences on an orthodox semigroup via the minimum inverse semigroup congruence, Glasgow Math. J. 18 (1977), 181-192.
 - 2. ——, Semimodularity in lattices of congruences, J. Algebra 52 (1978), 75-87.
 - 3. G. Grätzer, General Lattice Theory, Birkhauser Verlag, Basel, 1978.
 - 4. P. R. Jones, Semimodularity in algebraic lattices, submitted.
 - 5. ——, Joins and meets of congruences on a regular semigroup.
 - 6. F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer, Berlin, 1970.
- 7. C. Spitznagel, *The lattice of congruences on a band of groups*, Glasgow Math. J. 14 (1973), 189-197.

DEPARTMENT OF MATHEMATICS, MARQUETTE UNIVERSITY, MILWAUKEE, WI 53233