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ARENS REGULARITY OF CONJUGATE BANACH ALGEBRAS
WITH DENSE SOCLE

B.J. TOMIUK

ABSTRACT. Let 4 be a semi-simple Banach algebra which is
isometrically isomorphic to the conjugate space of a Banach space
V. Suppose that A is weakly completely continuous (w.c.c.). We
first show that Arens regularity of 4 can be obtained by imposing
certain conditions on V. If, moreover, 4 has dense socle, we show
that these conditions on ¥ can be obtained in turn by demanding
that the maximal modular left (right) ideals and minimal idempot-
ents of A have certain properties.

Introduction. Let 4 be a Banach algebra which is isometrically isomor-
phic to the conjugate space of a Banach space V. Identify V as a subspace
of A*. By a theorem of Dixmier [4], A** = 7(4) @ V*. (See notation in
§2.) Hence for A4 to be Arens regular the two Arens products must agree
on V+. For w.c.c. Banach algebras this is connected with the A-invariance
of V. We obtain conditions for ¥ to be A-invariant. Our conditions
involve the concept of an HB-subspace used by Hennefeld [8]. We apply
this concept also to the space ¥ and come up with the notion of a VHB-
subspace. The subspaces of 4 which we want to be VHB-subspaces are
the maximal modular left (right) ideals. Examples of Banach algebras
which have maximal modular left (right) ideals that are HB-subspaces or
VHB-subspaces are discussed in §3. In §4 we show a connection between
A-invariance of ¥ and VHB-subspaces and present several results on
Arens regularity of conjugate Banach algebras.

2. Preliminaries. Let 4 be a Banach algebra and let 4* and A** be
its first and second conjugate spaces. The two Arens products on A4 are
defined in stages as follows [1]. Let x, ye 4, fe A* and F, G € A**.
Define fo x € A* by (fo x)(y) = f(xy), Feofe A* by (Fo f)(x) = F(f° x),
FoGeA* by (FoG)(f) = F(Gof), xo'feA* by (xo' f)(y) = f(yx),
fo'Fe A* by (fo' F)(x) = F(x<'f), and Fo' G e A** by (F' G)(f) =
G(f' F). Then A** is a Banach algebra under the Arens products Fo G
and F o' G. Both of these products extend the original multiplication on
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A when A is canonically embedded in A**. A Banach algebra 4 is called
Arens regular if the two Arens products agree on A**.

Let 7 denote the canonical embedding of A4 into A**. We observe that
for all xe 4, Fe A**, g(x) o F = z(x) o' F and Fog(x) = Fo' z(x) [7,
Lemma 1.5, p. 116]. A subset V of A* is called A-invariant if foa and
ao' farein Vfor all ae A and fe V. Similarly V is A**-invariant if Fo f
and f o' Fare in V for all fe V and Fe A**. If A is isometrically isomor-
phic to the conjugate space of a Banach space V, we will identify 4 with
V* and say that A is a conjugate Banach algebra. Clearly we may then
also identify V as a subspace of 4*, and we will do so in what follows.

Let A be a Banach algebra. Then S, will denote the socle of 4 and E,
the set of all minimal idempotents in 4. By an ideal in 4 we will always
mean a two-sided ideal unless stated otherwise. For ae€ 4, let L, and R,
be, respectively, the left and right multiplication operators determined by
a. A is called weakly completely continuous (w.c.c.) if for every ae A, L,
and R, are weakly completely continuous operators on A. It follows
from the definitions of Arens products and [5, VI. 4.2, p. 482] that A is
w.c.c. if and only if z(A4) is an ideal of A** for either Arens product. Let
X be a Banach space and X* its conjugate space. If S is a subspace of X,
then S+ = {fe X*: f(s) = 0 for all se S}. If fe X*, then f|S will denote
the restriction of fto S.

All algebras and vector spaces considered here are over the complex
field. We follow the terminology of [10]. We gather together some useful
results in the following lemma.

LemMa 2.1. (1) Let A be a semi-simple Banach algebra with dense socle.
Then A is w.c.c. if and only if every minimal left (right) ideal of A is a
reflexive Banach space. In particular, a semisimple annihilator Banach
algebra is w.c.c. with dense socle.

(2) Let A be a semi-simple Banach algebra with dense socle. Then every
maximal modular left (right) ideal M is of the form

M=A(l—e)={x—xe:xe A} (M= (1—e)Ad={x—ex:xeA})
Jor some e € E,.

Proor. (1) This follows easily from [15, Theorem 6.2, p. 269]. If 4 is
a semi-simple annihilator algebra, then 4 has dense socle [2, Theorem 4,
p. 157] and each minimal left (right) ideal of A is reflexive [2, Theorem 13,
p. 161]. Hence A4 is w.c.c.

(2) This follows from [17, Lemma 3.3, p. 38] and the last paragraph of
[17, p. 41].

We observe that if e is a minimal idempotent in a Banach algebra 4,
the A(1 — e¢) ((1 — e)4) is a maximal modular left (right) ideal of 4
[10].
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3. HB-subspaces and VHB-subspaces.

DEFINITION. Let X be a Banach space. A closed subspace M of X is
called an HB-subspace if M+ has a complement M, in X* such that for
each fe X*, [ fll > lfel and |fll 2 [If.] whenever f = fy + f, with
f+« € M, and non-zero f, € M*. If, moreover, for a closed subspace V' < X*,
[« f. belong to ¥V whenever f e ¥, we will say that M is a VHB-subspace.

HB-subspaces enjoy the following properties [8].

LeMMA 3.1. If M is an HB-subspace of X, then every f € M* has a unique
norm preserving extension to X.

LEMMA 3.2. Let M be an HB-subspace. Then f€ M if and only if || fIM||
=[£Il
LeMMA 3.3. Let M be an HB-subspace. If M has a complement N such

that for x e X, |n|| < ||x|| whenever x = m + n with me M and ne N,
then for every fe X*, f,|N = 0.

PROOF. Let g = f,|M and let g, be the extension of g to X such that
g24(n) = Ofor all ne N. Then by Lemma 3.2

18e(X)| _ lgx(m) ~ |gx(m)| _
= S a S el = 1A

As |lgs || = lgll, we have | g, || = ||f« |l, and therefore by Lemma 3.1 we
have g, = f,.

In the following two theorems we will discuss examples of Banach
algebras which contain maximal modular left (right) ideals that are HB-
subspaces or VHB-subspaces.

THEOREM 3.4. In the Banach algebra cy every maximal closed ideal is an
HB-subspace.

Proor. First, ¢ is a commutative Banach algebra with the supremum
norm and (cg)* = 4 [16, p. 91]. Second, ¢, is a semi-simple annihilator
Banach algebra. Therefore if M is a maximal closed ideal, then M =
A(l — e), where e is a minimal idempotent [2, p. 155]. Clearly e =
{0, ..0, 1,0, ...} with one in some n-th place. Let fe /. Then f = foe +
(f — foe) and fo e vanishes on M. If f'is given by the sequence {a,} € 4
then f — foe is given by the sequence {b,}e s, where b, = a, for
k # nand b, = 0. Hence if fo e # 0, then

If = foel = 5 1ol < 3 lad = 1.

Thus | f — foel| < | f| whenever fo e # 0. We have M+ = {foe: feA*}
and if we put M, = {f — fo e: fe A*}, the proof is complete.
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THEOREM 3.5. Let A = m and V = 4. Then

(1) A is isometrically isomorphic to V*, and

(2) if e is a minimal idempotent in A, the maximal modular ideal M =
A(l — e) is a VHB-subspace.

Proor. We recall that A4 is a semi-simple commutative Banach algebra
under pointwise multiplication and supremum norm.

(1) This is well known. (See [16, p. 91].)

(@) Letll = {EQ), ..., E(n)} be a partition of H = {1, 2, ...} and
let fe A*. (See [16, p. 93].) For any set E c H, define u(E) = f(yg),
where yp is the characteristic function of E. It follows that | f| =
sup{ X reylu(E)|: [ is a partition of H}. We have f = foe + (f — foe)
and f - e vanishes on M. Suppose that fo e # 0. Then there exists a subset
E of H such that f(eyz) # 0. Since e = {0, .. 0, 1, 0, ...}, one in some
k-th place, we see that eyz"= e. Hence f(e) # 0. Therefore if Iy is a
partition that contains E, where yg, = e, then for any partition /] = /I,

ZE) = WE) < X |uE)

where V(E) = fleyg). Hence || f — foe| < | fll. We have M+ = {foe:
fe A*} and if we take M, = {f — foe: fe A*}, we obtain that M is
an HB-subspace. Moreover if fe V, then clearly foe and f — foe are
in V' so that M is also a VHB-subspace.

4. VHB-subspaces and Arens regularity.

LEMMA 4.1. Let A be a Banach algebra which is the conjugate space of
a Banach space V. Then the following statements are equivalent.

(1) V+tisan ideal of A** for either Arens product.

(2) Vis A-invariant.

(3) Vis A**-invariant.

PROOF. (1) <= (3). This is [9, Theorem 3.2, p. 658].

(3) = (2). Obvious.

(2) = (1). Suppose that V is 4-invariant. We have A** = 7z(4) @ V.
We show first that z(4) o V+ < V1L and V<o 7(4) = VL. Let xe 4 and
Fe Vi Thenforany feV < A* Fof = 0 since (Fof)(x) = F(fox)
and fox € V by hypothesis. But (z(x) e F)(f) = za(x)(Fof)=(Fof)(x) =0
so that z(x) o Fe V+. Hence 7(A4) o ¥+ = V+. Similarly V+ o' z(4) = V.
Now let F, Ge VL. Then for feV, (FoG)(f) = F(Gof) = 0 since
G of = 0. Therefore Fo G € V.. Similarly Fo' G € V*. Next let Fe A**
and G e V4, and write F = F; + F, with F; € n(A4), and F, € V1. Then
GoF = G°F1 + GOFgand F°G=F1°G + FZOG. ButGon, FZOG,
FioGand Go' Fyare all in V+. As Go F; = Go' F;, Go F; is also in
V+. Hence Fo G and G o F are in V+. Similarly G o' Fand Fo' G are in
VL. Thus V't is a closed ideal of 4** for either Arens product.
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LeEMMA 4.2. Let A be a Banach algebra which is the conjugate space of
a Banach space V. If e € E, is such that | L,| < 1 and the maximal modular
right ideal M = (1 — e) A is a VHB-subspace, then foe € V for allfe V.

PROOF. Let e € E4 be such that |L,| < 1and M = (1 —e)4isa VHB-
subspace. Let fe V. Then f = f, + f, with f, € M, } Vand non-zero
fLe Mt ) V. (See §3.) Since f, vanishes on M, we have f,(x — ex) = O or
f1(x) = (f.ce)(x) for all x € 4 so that f, = f ce. By the Pierce decompo-
sition, (1 — e)4A @ ed = A. Since |L,|| £ 1, by Lemma 3.3 we have
f«led = 0. Therefore (foe)(x) = flex) = fi(ex) = f,(x) for all xe 4,
i.e., foe = f,. Hence foe € V.

In the same way we can show that eo’fe V for all fe V whenever
IR, £ 1 and the maximal modular left ideal M = A(1 — ¢) is a VHB-
subspace.

THEOREM 4.3. Let A be a semi-simple w.c.c. Banach algebra with dense
socle which is the conjugate space of a Banach space V. Assume that every
maximal modular left (right) ideal M of A is a VHB-subspace and that for
everyee Ey, |L) < 1and |R,| = 1. Then V is A-invariant.

PRrROOF. Let R** be the radical of (4**, o). Since 4 is w.c.c., by [12,
Lemma 6.1, p. 11], R** = {G € 4**: 7(4)°G = (0)}. We claim that
V4 = R** By Lemmas 2.1 and 4.2, foe and eo’ fare in V for allee E,
and fe V. Henceif e € E, and F e V*, then n(e)-F € V* since (nw(e)F)(f)
= F(foe) = 0 for all fe V. As A is w.c.c., n(e)°F € n(4) and, as V*
w(A) = (0), it follows that z(e)oF = O for all e € E, and F e V.. But then
w(ae)oF = z(a)o(n(e)oF) = 0 for all ae 4, ee E, and Fe V.. Hence,
since every element in S, is of the form aye; + --- + a,e,, where ¢; € E,
and q;e A4, i =1, ...,n, we see that 7(S,)oV = (0) for all Fe V1. As
S 4 is dense in 4, we obtain z(A)oF = (0)for all Fe V+. Therefore V! c
R**_ To see that R** < V<, let G € R** and write G = G; + G, with
Gien(A) and Goe V4. As V! < R** G, e R**. Hence G; = G — Gy e
R**_ But n(4) N R** = (0) [6, Theorem 4.6, p. 130]. Therefore G, = 0
and so Ge V4, ie,R¥* « V+ Hence V' = R** and therefore V! is an
ideal of (4**, o).

Using again [12, Lemma 6.1, p. 11] for the algebra (4**, o) and the
fact that eo’f'e Vfor alle € E, and f € V, we can show that '+ = R}* =
{G € A**: Go'n(A4) = (0)}, the racial of (A4**, o). Thus V'* is an ideal of
(A**, o). Hence, by Lemma 4.1, V is A-invariant.

THEOREM 4.4. Let A be a semi-simple w.c.c. Banach algebra which is the

conjugate space of a Banach space V. If V is A-invariant, then A is Arens
regular.

PROOF. Suppose V is A-invariant. By Lemma 4.1, V'* is an ideal of A4**
for either Arens product. As A4 is w.c.c., ©(A4)is an ideal of 4** for either
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Arens product. Since z(4) | V*+ = (0), #n(A)VL = Vieoz(4) = (0).
Let F,G € ¥+ and let{a,} be a net in 4 such that z(a,) w*-converges to F.
Then 7(a,)-G w*-converges to FoG [7, Lemma 1.4, p. 116] and, as z(a,)°G
= 0, we get FoG = 0. Similarly by taking a net {bs} in 4 such that z(by)
w*-converges to G, we can show that Fo’ z(bg) w*-converges to Fo'G and
that Fo'G = 0. Now let F, G € A** and write F= F; + F, and G =
G, + G, with Fy, G € n(A) and F,, Gy € VL. Then FoG = FioG; + Fi°G,
+ FgoGl + onGg = FIOGI. Likewise Fo'G = FIOIGI. Since FloGl =
F1o'Gy, we get FoG = Do'G. Therefore A is Arens regular.

THEOREM 4.5. Let A be a semi-simple w.c.c. Banach algebra with dense
socle which is the conjugate space of a Banach space V. If every maximal
modular left (right) ideal of A is a VHB-subspace and for every e € E,,
|L,l < 1and|R,| <1, then A is Arens regular.

PrOOF. By Theorem 4.3. V'is A-invariant and therefore, by Theorem 4.4,
A is Arens regular.

We include two simple applications of Theorem 4.4.

COROLLARY 4.6. The algebra tc(H) of trace-class operators on a Hilbert
space H is Arens regular. More generally, if {H,} is a family of Hilbert
spaces, then the Ly-direct sum (33, tc(H),)), is Arens regular.

Proor. tc(H) and (2] ;tc(H))); are dual A*-algebras [14, Theorem 9.2,
p. 65] and therefore are w.c.c. (with dense socle) by Lemma 2.1. Consider
first 4 = tc(H). Let ¥ = LC(H), the algebra of all compact linear opera-
tors on H. Then by [11, Theorem 1, p. 46] A4 is isometrically isomorphic
to V*. Also by [11, Theorem 2, p. 47] A* is isometrically isomorphic to
L(H), the algebra of all continuous linear operators on H. It is easy to see
that V is A-invariant (in fact it is A**-invariant). Hence, by Theorem 4.4,
A is Arens regular.

Now let 4 = (X, tc(Hy)); and V = (X3;LC(H)))y, the B(c0)-sum of
LC(H;) [10, p. 106). Then A is isometrically isomerphic to V* [14, p.
64] and A* is isometrically isomorphic to the normed full direct sum of
L(H,). Clearly V is A-invariant. Hence by Theorem 4.4, A is Arens regular.

COROLLARY 4.7. As a Banach algebra under pointwise multiplication, /,
is Arens regular.

PROOF. « is a semi-simple annihilator Banach algebra and therefore
is w.c.c. by Lemma 2.1. Moreover, 4 = (cp)*. Since ¢y is «-invariant,
by Theorem 4.4, 4 is Arens regular. (See also [3, p. 863].)

We conclude with the following observations.

THEOREM 4.8. Let A be a semi-simple w.c.c. Banach algebra with dense
socle which is the conjugate space of a Banach space V. If V is A-invariant,
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then A*oA = {fea: fe A* ae€ A} and A’'A* = {ao'f: a€ A, fe A*}are
subsets of V.

PROOF. For e E let V, = {voe: ve V}. Since V is A-invariant, ¥, c V,
and sice V* = A4, we have (V,)* = e4d. By Lemma 2.1, V, is a reflexive
Banach space. It is easy to see that (e4)* may be identified with the
subspace A*oe = {foe: fe A*}. Also, for any a€ 4 and f e A*, foae =
(fea)oe € (eA)*. Since V** = (ed)* and V,is reflexive, we see that foae €
V,. Hence if ay, ...,a,€ 4 andey, ...,e,€ E,, then fo(aje; + -+ +
ae)eV, + - + V, = V. Thus fose V for all fe A* and s € §,. Let
a € A. Since S is dense in A, there is a sequence s, € S, such that s, —» a
asn — oo. Then for fe A*, fos,, — foa, and since V'is closed, it follows that
foae V. Hence A*-A — V. Similarly, using the subspace V, = {e-'v:
v € V'}, we can show that 4o'4* c V.

THEOREM 4.9. Let A be a semi-simple w.c.c. Banach algebra with dense
socle which is the conjugate space of a Banach space V. Suppose A contains
a bounded approximate identity. If V is A-invariant, then A is reflexive.

PrOOF. Suppose that V' is A-invariant. Then by Theorem 4.4, 4 is Arens
regular. By [3, Lemma 3.8, p. 855] A** contains an identity. Since A4 is
w.c.c. and Arens regular, by [13, Corollary 4. 3, p. 298] A** is semi-simple.
But A** = z(4) @ V* and V! is contained in the radical of A** (see the
proof of Theorem 4.3). Hence V'+ = (0) and 4A** = 7(A) so that A is
reflexive.
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