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DIFFERENTIAL EQUATIONS INVOLVING
CIRCULANT MATRICES

ALAN C. WILDE

1. Introduction. This paper develops a theory for the solution of ordi-
nary and partial differential equations whose structure involves the
algebra of circulants. Recent interest of circulants is evident in a book
by Davis [1]. This paper shows how the algebra of 2 x 2 circulants
relates to the study of the harmonic oscillator, the Cauchy-Riemann
equations, Laplace’s equation, the Lorentz transformation, and the wave
equation. It then uses n x n circulants to suggest natural generalizations
of these equations to higher dimensions.

2. The algebra of circulants. An n x n circulant is a matrix of the form

Xo X} Xg X3+t Xpg Xp1
Xn—1 Xo X1 Xz *** Xy 3 Xp2
X =
X2 X3 X4 X5 -+ X X1
_ X1 Xg X3 Xy o X, 1 Xo |
Note that X has arbitrary entries xg, xj, ..., x,_; in the top row and the

entries are moved over one place to the right in each succeeding row. Let
K denote the circulant with x; = 1 and x; = 0 for all j # 1. Then the
arbitrary circulant X equals }}7=} x,K*, and K» = I. [K® = I also.]

Define complex circulants Ey, E;, ..., E,_; by
n—1
) E, = (1/n) Z;)c—"iKi for0 < h<n-1,
7= i
where { = e/, Then {E,, E,, ..., E,;} is an idempotent basis for
complex circulants since _
.1) E}=E,forO<h<n-1;
(2.2) ELE; = 0if h # j; and
2.3) Ey+ Ey + --- + E,; = I (See Davis [1]).
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2 A.C. WILDE

One can easily express the basis {K9, K1, ..., K»1} in terms of the basis
{EO, cees En——l} by

n—=1
3) Kk = Z‘bghiEj for0 < h £n—1.
=

Important properties of circulants are that one can easily express the
eigenvalues of a circulant in terms of its entries and that all circulants
have the same eigenvectors.

The eigenvalues A, 4y, ..., 4,_; of a circulant }}2-} x,K* are given by

n—1
@) Ay = Z Chix;jfor 0 < h < n—1, (see Muir [2)), i.e.,
j_

A = Vx where V is the Vandermonde matrix:

1 1 I ... 1

4 ez g3 g1
2 T4 g ... g2eD
g3 z6 oo 3eD

P— e e

1 Cn—l CZ(»—I) C3 (n—1) C(n—l)2

It follows that the rows of V are the eigenvectors of X, with row 4 the
eigenvector for eigenvalue A4,. One can also invert (4) and express the
entries of X as linear combinations of its eigenvalues:

) X, = (1/n)'§§-w A for0 < h < n—l.
j——
Combining (1), (3), (4), and (5) yields

n—1 n—1
6 Kt = E,.
©) };)xh };011. h

There is a natural extension from entire functions on C to entire functions
on matrices defined as follows: if fis an entire function with Taylor series

725 a, X*, then f(A)is defined to be the matrix Y% a,4%. With circulant
matrices, one can avoid the use of infinite series; the following formula
holds:

@) f (:z;::l,.E,,) = ,;: Sf(A)E;, (see Davis, [1]).

In terms of the more direct basis {K*}, (7) becomes

n—1 n—1

@®) (B k) = B am B e S ke
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EXAMPLE FOR n = 2.

I= <(1) ?)and K = <(1) (1))

Thus K2 = I. In this case,

£o= (1 1o -1 1]

1711 17(E,

K|=[1 —1|E [
Also, if xg, x;, g, A1, € C such that

10 _ 1 1 X0

/2.1 11 =1 X1 y

then xoI + x;K = AEy + A E;. These formulas are developed and used
in Leisenring [3].

Then

3. First-order, linear systems involving circulants. One can easily solve
a system of first-order, linear differential equations when the matrix has
constant entries. In general, a system with variable entries in the matrix
is not so easily solved. However, if the matrix is an n x n circulant with
variable entries, the solution can be written explicitly.

We first investigate the case for 2 x 2 circulant matrices and solve the
system:

o =L 7315 )

First, note that this equation is equivalent to the following:

ARSI

Using the information of Section 2, we can rewrite this in the form %I +
yK = (fI + gK)(xI + yK). Changing to eigenvalues and idempotents,
one finds

(x + YEy + (x — Y)E;
= [(f + 8E + (f — Eill{x + Y)E; + (x — y)E4]
=(f+ &k + YEy + (f— &)(x — Y)E.

When we equate components, we derive first x + y = (f + g)(x + )),
which has as its solution x + y = cyeF+¢ where ¢, is a constant, F = f,
and G = g. The other equation is ¥ — y = (f — g)(x — y) which has
as its solution x — y = c¢,eF~¢ where ¢ is a constant. Thus we get
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x = (1/2)(coeF ¢ + c,eF6),

¥ = (1/2)(coeF*¢ — c,eF6).

eF+G eF—G
[ema] and [ - eF-G]
are linearly independent for all ¢, and so they are a fundamental solution

set for equation (9).
The same method can be employed to solve the system

. £ [f0 807 <], [40)

an HEHy A M

Equation (10) is the general solution of the homogeneous system (9), and
a particular solution of the system (11) is

(10)

The solution vectors

x = (/2 I:e(F+G) j (4 + v)e"F=0 dt + ¢F-6 j' (u — v)etF+e dt],
(12)
y = (1/2) |:e<p+c) j (u + V)e“F0 gt — ¢F-0 j (u — v)eF+® dt].

In an analogous manner, using the formulae in the previous section,
one can solve explicitly linear n x n differential systems whose matrix
is a circulant.

THEOREM 1. The system of equations

}" X | ‘_ xo | [ bo(t)
Xy =l x1 by(®)
(13) .= (:éo a,,(z)Kh> N
— xn—l _1 Xp—1 _| — bn—l(t) -

has as its general solution
—1
(14) x, = (1 /n)’}jochfeFf(c,- + jg,-e‘”idt)
=
for 0 £ h £ n—1 where { = e2@/n, and
—1
fr="50a;0<hsn-1);
7=0
n=1
g =20C0"b;0=h=n-1);
=0
F s =f,(0=j=<n-1);andcy, cy, ...,c, 1 are constants. The expression

(15) xi = (1n) B 0ee™ O < h S n=1)
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is the general solution of the homogeneous system, and
—1
(16) x, = (1/n) "ZA ChieFi jg,-e‘Ffdt
f=

(0 < h £ n—1) is a particular solution of the nonhomogeneous system.

4. The equation d"x/dt” — x = 0. As a special case of equation (13),
note that the companion matrix form of the equation x™» — x = 0 is

“x® T 70100 007 [x®
x@ 0010O0---0 x®
x@® 00010-..-0 x@

00000O0-.-1
| xm 1000 0--0_| x»b_

i.e., it contains the matrix K. Therefore, exp tK = Y323 (expst)K* is a
Wronskian of solution of the equation x — x = 0, where

n—1 +o0
= —hs ‘= htnj !
expy ¢ (l/n)g UMexp Ut ,2=:6‘ thtrif(h + nj)

for0 < h < n— 1. (See Rubel and Stolarsky [4].)

5. Generalization of the Lorenz transformation and of the wave equation.
In his study of the geometry of relativity, Leisenring [3] used the equation

an xp) 8] = sone oon o)

and showed that the matrix on the right is a Lorentz transformation,
i.e., it preserves the quadratic form

2 _ 32 = xy
x2 — y2 = det,:y x:'.
Indeed, in the physical Lorentz transformations
x =+ ut') /T=u2[c?, t = (t' + ux'[c?)] /T—uZ]c?

letu = ctanh ¢and ¢ = 1. Then, the equations become

I:x:l _ [ch ¢ sh g[;}l:x’:'

t sh¢ chgll?' ],

and it follows that x2 — 12 = x'2 — ¢’2, The latter fact can also be shown
using circulants. If
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HE 23k
Fa-[as a9(r ]

xt]_ ch ¢ Shg,/)] [x’ t’:'
det|:t .X]— det[sh¢ Ch¢ det X P
orx? — t2 = 1.(x'2 — t'2).
By the chain rule, it also follows that

[a/ax'] _ [ch ¢ sh ¢:I [a/ax],

o/ot’ sh ¢ ch¢]|0/ot

so the above circulant linear transformation also preserves the wave
operator

then

SO

22/ax% — 9%/312 = det [g;g;‘ g;g; ]

There are natural generalizations of these properties of 2-dimensional
relativity to n dimensions. If s, s5, ... , 5,_; € C, then by equation (8)

n—1 n—=1 n—1 n—1
(18) exp<2 s,,K"> =) [(l/n) 2 H exp(Z C’%,—)]K”;

h=1 =0 =0 7=1
and det exp (237=} 5,K*) = 1. So the linear transformation exp(X7=ls,K*)
preserves the nth order form

n—1 n—1 /n—1
det (;.Z x,,K"> =1] (Z C"ix,->
=0 =0 \j=0
(19) n—1
= I‘[ (xo + Thxy + Oxp 4 -+ - + C(n—l)hxx"_l).
h=0

By the above method, it also leaves invariant the linear partial differential
operator

n—=1 n—l/m-1
=170 0 0
20) =’g0<370+05?1+?"a—x2+

+ C(»—l)h P 0 ),

Xn—1

where the product denotes composition.
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6. Solutions of a homogeneous, partial differential equation. The method
of circulants which led to the formation of the partial differential equation

@1 Di(g z;hf(a/ax,-)ﬂ () = 0, where { = e2i/n,

also leads to solutions of this equation. This is a natural generaliza-
tion of the homogeneous wave equation, since for n = 2 (21) becomes
0%u/0x3 — 0%u/ox? = 0. Let zy, zy, ...,z,; be new variables given by
zy = (1/n) X7 Thix; (0 £ h £ n—1). [These formulas are like equa-
tion (5) in Section 2.] Then x, = X7} {%z; (0 £ h £ n—1); and, by
chain rule, 9/9z, = X723 (% (9/0x;) (0 = h < n—1). Thus equation (21)
takes the form ([]72=4(8/0z,))(u) = 0. Now let Fy, Fy, ..., F,_; be n C>
functions: C»~1 — Cand let

u(Zo, Z1y vy zn—l) = F()(zl, 225« Zn—l)

n—2

(22) + }’Z Fh(zo’ 215« » 3Zp—1>Zp+15 - - -’zn—l)
=1
+ Fn—1(209 Zyy ooy Zn_z)

i.e., for each &, F, is independent of z,. It is easy to verify that u given
by (22) is a solution of equation (21). It is a reasonable conjecture that
this method constructs all solutions, as it does for n = 2.

If in equation (22), the conditions

FO(an—b QAp—25 - - > El) = Fo(al’ Az, .- .y an—l)

and

Fh(d'(), Ap—2s Oy 3y -« v s d’l) = F,,_,,(ao, Apy -« a’,,_z) (1 = h <n-— 1)
hold for all complex numbers ay, a3, ..., @,_1, then u as a function of
Xg, X15 - - -5 X,—3 maps R7into R.

7. A generalization of the Cauchy-Riemann conditions. Recall that if the
Jacobian matrix of functions u(x, y) and v(x, y), namely

U, u
x y>’
v, v,

A B
—B A4
(the usual representation of C), that is , = v, and u, = —v,, then » and
v satisfy Laplace’s equation (92/0x2 + 92/9y2) (f) = 0. Note too that

det[ 0/ox a/ay}_ 02 0%
—0/oy 9/ox|— 9xZ T 9y’

An analogous property holds for 2 x 2 circulants. If the Jacobian

is of the form
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u, u,
Ve v,
is a 2 x 2 circulant, then u, = v, and u, = v,. If two C> functions u

and v satisfy these equations, then there exist two analytic functions f
and g such that # and v are of the form

u=1/2[fx + y) + glx — )
v=(1/2[f(x + y) — glx — )]

Also u and v satisfy the wave equation (92/0x2 — 92/9y?)(F) = 0. We
notice here too that

e fox Uor)_ B _ 0

0/dy dfox| ™ oxz 9y’
These facts can be generalized to C” using circulants.
If ug, uy, ..., u,_; are entire functions mapping C” into C, their Jaco-
bian is
" 0ug/oxg  Oup/Oxy - -+ Oug/Ox,

aul/axo au1/3x1 s aul/ax,,_l

— au»—l/axO aun—l/axl e aun—l/axn‘—l_

This matrix is a circulant if and only if

@ 0up/0xg = 0uy[0x; = -+ = Ouy_1/0X, 1
and
(i) 0up/0x), = 0uy[0xp 1y = -+ = Oty 4 1/0%, 1
= aun—h/axo = aun—h+1/axl = = aun—l/axh—-l

forl £h<n-1.

THEOREM 2. Let ugy, uy, ..., U,_1 be entire functions mapping C» into
C such that their Jacobian is a circulant. Then

(1) ug, wy, . .., u,_y satisfy the partial differential equation
n—1 /m—1 X a )jl
kj u) =0;
[}!;[0 (;0 C 3x 7 ( )

(2) there exist entire functions gy, 81, - . ., 84—1 mapping C into C such
that uy, uy, . . ., U, are of the form

u; = (1/n) g (g, (:2: cr xh>;
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() if 2(2) = go(z) and g(2) = g, A2) for 1 £ /< n—1, then uy, u,
.., U,_y all map R* into R.

ProoF oF (1). If the Jacobian of (uy, 4, ..., , ;) is a circulant, then
conditions (i) and (ii) hold. It then follows that

n—1 n—1
&, (0u;/ox,)K* = Ki (2;0 (8u0/ax,,)Kh)

for0 £ j<n—1.Let

1w = [T (5 &2 ) @ and
letz, = (1/n) X7z} {%ix; for 0 < h<n—1. Then x, = X1} {kz;

and 9/0z;, = X7 {4 (9/0x,) for 0 < h < n—1. Thus L = I'["‘1 (a/az,,)
Using the relationship between the entries and eigenvalues of a circulant
matrix as shown in §2,

1
% k=5 (G

0x; )E =nz_:liE"'

So
n—1 n—1
;'4;0 (0uj/ox;) K» = hZzlo (0u;/0z,)E),
for0 £ j < n—1. But
hz_:: (9u,/x;) K = Kinz_:;(auo/ax,,)K"
= h=
= (B v B) (g @uooz0E)
- g: Ch(Bug/023)Ey.
Since the E,’s form a basis, ou;/0z, = {*/(0uy/0z;) for0<h <n — 1 and
0<j<n-1
Now let v, = %3 {%u;for0 < k < n — 1. Then
—1
w0z, = (0/0z) (I Tu;) = 55 T @usfoz)
= 52 ¢ i uofazy) = 2:c<-k+h>f(auo/az,.).
j =

If k # h, then 9v,/0z, = [ X7} {F9 4] (0uo/02,) = O. Thus ([13=5 (9/0z,))
() = 0 = L(vy).
So,
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n—1

. n_l — 1
L) = ({5 Cy) = & THL@) = 0,
for 0 < k < n — 1. Since the matrix of coefficients of the L(u,)’s is non-
singular, L(yy) = L(u;) = --- = L(u,_;) = 0.

PRrOOF OF (2). In the proof of (1), we showed that 9v,/0z, = 0if k # h.
Thus there exists an entire function f, mapping C into C such that v, =
fzp). Therefore, u; = (1/n) 1255 L fi(z,) for 0 < j < n— 1. Now write
Uy, Uy, - . ., U, as entries of a circulant, i.e., take Y%=} u;K7. Then

n—1 3 n—1
jZO ul'Kj = f(‘)(ZO)EO + I;lf;;——k(zn—k) Ek

_ 1 n—1 E n=1 1 n—1 »
= (UM L %) By + L fui 11m F 5, B
Now let go(z) = fo((1/n)z) and g,(2) = f,_((1/n)z) for 1 < k < n—1. Then

Note also that
uy = (1m 5 g tm)
=0 =0
for 0 < j < n— 1. Since g, gy, ..., g,1 are entire functions mapping C
into C, part (2) follows.

PrOOF OF (3). The conditions imply that

U (Xgy X1y - - o5 Xp_1) = ULXgy X1y -+ -5 Xp_1)-

Now we discuss the concept of derivative of a function on n x n
circulants. To repeat what we said earlier, a complex function f(x + iy) =
u(x, y) + iv(x, y) has a derivative (i.e., is analytic) if the Cauchy-Riemann
conditions, u, = v, and u, = —v,, hold; and these conditions hold if
and only if the Jacobian matrix

[u, uyJ
Ve v,

is of the form of a matrix representation of C, i.e.,

A B
—B A
Similarly, a function on circulants has a derivative which is a function
on circulants if the Jacobian matrix of the original function is in the form

of a circulant.
If u = (uy, uy, ..., u,_y) is a function from C» into C», u can be ex-
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tended to a function i sending complex circulants into complex circulants
via

n=1 n=1
ﬁ(éo x,,K") = é)uh(XO, X1y -« e» x,,_l)K".

The difference quotient of & in the direction of the complex axis K* is

=
limﬁ[x°l+ oo+ O+ AXKE A - - - X, K] — (Xl + - - - + X, K7D,
Axp—0 Ax, Kb

[This definition is well-defined because since K* = I, I/K* = K" *] u can
be called differentiable if #’ is the same in the directions of all the axes I,
K, ..., K1, Then it follows that

n=1 n—h—1 n—1
i = Z (0uj/ox)K7 = Z) (Oujy4/0x)K7 + Z (0uj_p s n/0x,)K*
=0 J= j=n—h

for 0 < h < n— 1. Note that for all these quotients to be equal, conditions
(i) and (ii) hold. Also, @' is the transpose of the Jacobian matrix of u =
(ug, g, . ... u,_y) and it is a circulant. (The transpose of a circulant is a
circulant.)

Theorem 2 shows that u, u, ..., u, ; are entire functions: C* —» C
and satisfy conditions (i) and (ii) if and only if there exist entire functions
80 815 - - +» &u—1: C — C such that

u = (U 5 (3 vxi)

for 0 < j < n — 1. One can show that by changing basis,

n—1

a=E[amE ce (5o o
- ﬁzz:o 8 </Z=]o C”’x,) Ew

i.e., # is decomposed into a sum of entire functions on the idempotent
axes. Then too,

._.

(au,/axo)Kl

[(l/n) 5 emeln ) o

=% ai(5 o ) s

i.e., if @ satisfies hypothesis of Theorem 2, one can differentiate # by

II

||M’ T
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differentiating the above entire functions g, ..., g,-; on their respective
idempotent axes.
In particular, the function

exp@ x,,Kh> [(1 /n) ZJ gt exp(Z Q"’x,,)]Kf

is its own derivative.

Skew-circulants (defined in Davis [1]) also have these differentiation
properties. A skew-circulant has entries positioned like those of a cir-
culant except with minus signs below the main diagonal, i.e., forn = 3,

Xo X1 X2
— X X0 X1 |
—X; —X2 X0,

If v is the skew-circulant with x; = 1 and x; = O for j # 1, then v* =
—1I and the skew-circulant can be expressed in the form };7=} x,v%. This
algebra is isomorphic over C to regular circulants via the correspondence
v — aKwhere @ = em/n(q" = —1).

If the Jacobian matrix of u = (uy, wy, ..., u,_1) [Where wuy, uy, ...,
u, 1: C* —» C] is a skew-circulant matrix, then

(iii) Ouy[0xy = ouy/ox; = --- = U, _1/0x,
and
(@iv) Oup[0x), = 0uy[0xp1y = -+ = Oiyp1/0%, 1
= —0U, 4/0Xg = — 0ty _p11/0%1 = -+ - = — Oty _1/0X}1

forl<h=s<n-1
For n = 2, these are exactly the Cauchy-Riemann equations. Using a
method similar to the proof of Theorem 2, one can show the following

THEOREM 3. Let { = e2/" and o = e™/». Let ug, uy, . . ., u,_; be entire
Sfunctions: C* — C such that conditions (iii) and (iv) hold. Then there exist
entire functions gy, g1, - - .» &»—1: C = C such that uy, uy, ..., u, ; are
of the form

n—1 n—1
uy = ai(lim 35 Cg, (5 Catn)
7=l =
for0=j=<n-1

Since in the algebra of skew-circulants, E, = (1/n) 37} {4 a v/ for
0 <.h £ n — lisanidempotent basis,

n—l n—1
v = Ben(Se )
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Thus differentiation properties here are similar to those of circulants.
See Leisenring [3] for an application of this type of differentiation to
the geometry of the bicomplex plane C x C.
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