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OSCILLATION AND ASYMPTOTIC BEHAVIOR IN 
CERTAIN DIFFERENTIAL EQUATIONS 

OF ODD ORDER 

W. E. TAYLOR, JR. 

Introduction. The purpose of this paper is to examine the relationship 
between oscillation and asymptotic behavior for solutions of the equations 

(1) j ( 2«+ 1 ) - p(t)y = 0 

and 

(1*) z<2»+i> +p(t)z = 0 

where p(t) is a positive continuous function defined on [0, oo). Equation 
(1*) is the adjoint equation of (1). 

It is well-known that (1) has a solution u = u(t) satisfying 

(2) U(t) > 0, U\t) > 0, . . ., H<2*>(f) > 0 

for all t on some half-line, [a, oo), a ^ 0. Such solutions are said to be 
strongly increasing on [a, oo). We let / denote the set of solutions of (1) 
which are eventually strongly increasing. The equation (1*) has a solution 
w satisfying 

(2*) w(t) > 0, w'(t) > 0, . . . , ( - l)*w<» (0 > 0, k = 0, 1, . . ., In, 

for all t on [0, oo). These solutions are termed strongly decreasing. 
Recall that a nontrivial solution y of (1) or (1*) is said to be oscillatory 

if sup{* ^ 0: y(t) = 0} = oo. Clearly this implies that y has infinitely 
many zeros on [0, oo). Whenever (1) has an oscillatory solution we say 
that (1) is oscillatory. We will show that (1) is oscillatory if and only if 
(1*) is oscillatory. A solution which is not oscillatory is called nonoscilla-
tory and due to the linearity of (1) and (1*), we assume without loss of 
generality that all nonoscillatory solutions are eventually positive. Hereafter 
the term "solution" shall be interpreted to mean "nontrivial solution" 
unless otherwise stated. 

For n = 1, (1) is oscillatory if and only if nonoscillatory solutions of 
(1) belong to /. When n > 1, this equivalence no longer holds. Lovelady, 
however, has established the following result in [6]. 
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THEOREM 1. If each nonoscillatory solution yof{\) belongs to I, then (1) 
has an oscillatory solution. Moreover, in this case (1) has 2n linearly inde­
pendent oscillatory solutions. 

In light of Theorem 1 and preceding remarks, a relevant question is : 
How does the asymptotic behavior of the nonoscillatory solutions of (1) 
affect the existence and number of (independent) oscillatory solutions? 
In this work we only consider the existence part of the question. Note 
that if u(t) is a nonoscillatory solution of (1) and u$ I, then u(t)u(2n)(t) 
< 0 for all t on some ray [b, oo). Furthermore, it has been established in 
[6] that (1) has a nonoscillatory solution u $ I only if p(t) is "small" in 
the sense that 

(3) f0O
/(2»-i) p(t)dt < oo. 

Even though (3) is a necessary condition for the existence of a nonoscil­
latory solution u $ I, it is not sufficient. 

EXAMPLE. The fifth order Euler differential equation 

(E) y™ - J^y = 0 

is oscillatory and has a nonoscillatory solution u$I when 0.259 ^30 < 
ß ^ 0.66^30, but for ß > 0.663^30 all nonoscillatory solutions are 
strongly increasing. 

To insure that (1) has at least two types of nonoscillatory solutions we 
have the following theorem. 

THEOREM 2. If the second order equation 

(4) z" + (2n
l_ iytu«-»p(t)z=0 

is nonoscillatory, then (1) has a nonoscillatory solution u $ I. 

PROOF. Suppose (4) is nonoscillatory and let z be a nonoscillatory solu­
tion of (4). Choose c > 0 such that z{f)z\t) ^ 0 on [c, oo). Note that 
z'(t) > 0 on [c, oo). Suppose c ^ t rg a, then 

z'(f) = z'(a) + (2n
 l_ iy ^-1p(s)z(s)ds 

^ Vn^ly. \y^PWs)ds. 

Consequently, 
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Using standard iteration techniques, we can construct a continuously 
differentiable function v from [c, oo) into [z, (c), oo) such that v(c) = z(c), 
v(0 ^ z(f), whenever c :g /, and such that 

(5) v'(0 = ^ p ^ i y r J / 5 - 02n-1P(s)v(s)dsi 

for ? g C. Clearly 2« - 1 differentiations of (5) yield 

/»oo 

v<2») — _ I p(s)v(s)ds 

and then (1). Thus v solves (1) on [c, oo) and satisfies V(*)V (2B)(0 < 0 on 
[c, oo). To complete the theorem we need only the remark that v can be 
extended to a solution of (1) on [0, oo) and this solution will satisfy the 
requirements of the theorem. 

Before continuing our investigation jof (1) we should note that inequality 
(3) has a long history. It has appeared in many papers concerning oscilla­
tion properties of differential equations, some of these include the works 
of Wong [9], Komkov [3] and Onose [7]. 

To facilitate our study of (1) we will utilize the following functional 

F[y(t)] = 2 2 (-1)'j><&-'> (t)y™ (t) + (-1)-b<*>(012-

When y(t) is a solution of (1), this functional is increasing. To see this note 
that F'[y(t)] = 2p(t)y\t). 

Main results. A solution y of (1) is called minimally increasing if y > 0, 
y > 0, y" < 0, . . . , ( - \)kyM < 0 on [a, oo) for some a ^ 0 and i = 2, 3, 
. . . , In. In this section we show that for n > 1, minimally increasing 
solutions can be "introduced" into the solution space of (1) without 
"forcing out" all of the oscillatory solutions, and moreover, these solu­
tions are the "first" nonoscillatory solutions different from those in / tha t 
can occur in the solution space. We shall denote the set of minimally 
increasing solutions by I(m). 

THEOREM 3. Suppose y e I(m). Then 

(a) lim^<*>(0 = 0, k = 2, 3, . . . ,2 / i 

and 
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(b) F[y(t)] < 0, for all t ^ 0. 

PROOF. Condition (a) is immediate. To prove (b), suppose that y is a 
minimally increasing solution of (1) with F[y(t)] > 0 on [b, oo) for some 
b ^ 0. Assume that b is so large that y, / , . . . , y(2w) do not change sign 
on [b, oo). For n odd, note that 

F[y] - yy{2n) + 2/'y2n"~3) + . . . + 2yin~2) y(n+2) + [y<»>]2 

= 2y'yi2n~2) + 2j ( 4 ) ^<2ii-4) + . . . + 2y<»-i> ^<«+i\ 

Since F[j(0] is increasing the left side of(N) is positive and bounded away 
from zero, while the right side of (N) tends to zero as t -> oo, a contradic­
tion. The case for n even is proved similarly. Thus F[j[0] < 0 on [0, oo). 

The following lemma is known. 

LEMMA. Ifu is solution of{\) such that «(c) ^ 0, u'{c) ^ 0, . . . , u(2n)(c) > 
0 then u(t) > 0, u\t) > 0, . . . , w(2w)(f) > Ofor all t > c. 

THEOREM 4.1fn > 1 and all nonsocillatory solutions of{\) belong either 
to I or I(m) then (1) is oscillatory. 

PROOF. Suppose z1 and z2 are independent solutions of (1) which have 
zeros of multiplicity In — 1 and 2n — 2 respectively at x = a, a ^ 0. 
For each integer r > a, let ur be a solution of (1) such that ur(f) = 0 and 
ur = clrzx + c2rz2, where c\r + c\r = 1. Since the sequences {clr} and 
{c2r} are bounded, we can assume without loss of generality that clr -> cx 

and c2r -> c2 as « -> oo. Let « = c ^ + c2z2. Then wr -> u uniformly on 
compact subsets of [0, oo) and since F[ur(t)] > 0 on (a, oo) for each r, it 
follows that F[u(t)] > 0 on (a, oo). 

Suppose that u(t) is nonoscillatory, then u{t) e I or u(t) e I(m). It follows 
from Theorem 3 that u(t) <£ I(m) since F[u(t)] > 0 on (a, oo). Thus u(t) 
is strongly increasing on some ray [c, oo), c ^ a. Since u(

r
k)(t) -• uk(t) for 

Â: = 0, 1, 2, . . . , 2n, there exists TV such that for r > N, u?\d) > 0, k = 0, 
1,2, . . . , 2n. Let r0 be an integer greater than d + N, then since w(^(d) > 
0, for k = 0, 1, 2, . . . , 2«, it follows from the preceding lemma that urQ is 
strongly increasing on (d, oo), but urQ(r0) = 0, a contradiction. Hence u 
must be oscillatory. 

We now show that the first type of nonoscillatory solution that can 
appear in the solution space of (1) other than the strongly increasing kind 
is the minimally increasing type. To prove this, however, the notion of 
oscillation type will be needed. We will say that (a, b) is a (k, 2n -H 1 — k) 
interval of oscillation provided there is a solution of (1) which is positive 
on (a, b) with zeros of order not less than k and 2n + 1 — k at a and b 
respectively. If for t ^ 0, there is an (i,j) interval of oscillation in [t, oo), 
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i + j = 2n 4- 1, we let rtJ(t) = min {è > /: [/, b] contains an (i, j) interval 
of oscillation}. The number r{j(t), when it exists, is called an oscillation 
nomber. if no such b exists, we write r,7(t) = oo and say that (1) is (i,j) 
disconjugate on [/, oo). It is known [4], that if r{j(t) < oo for some t, 
/ + 7 = 2/1 + 1, then j must be even. Recently Jones [2] has shown that 
oscillation types can be ordered. This is turn means that the oscillation 
numbers can be ordered. Using the results in [2], we conclude that 

rn(n+i) è r(w_2)(»+3) ^ S rU2n)> if n is odd, or 
(o) 

r^n+Dn è ',(W-i)(n+2) ^ è >*i(2*)> if» is even. 

Furthermore, it is known that if k is odd, /*(2»+i-*) = oo if and only if 
(1) has a nonoscillatory solution y such that y > 0, y1 > 0, . . .,y(k) > 0, 
y(k+i) < o on some ray [c, oo), see Elias [1]. Analogous results hold for 
(1*). Using these facts we establish our final three results. 

THEOREM 5. If r1(2n)(t)< oo for each t ^ 0, then all nonoscillatory solu­
tions of (I) belong to I. Furthermore, if (I) has a nonoscillatory solution 
y $ I, then (1) has a minimally increasing solution. 

PROOF. We prove only the latter part of the theorem. If y is minimally 
increasing, we are done. So suppose y $ I(m) and that none of y9 y' ..., 
y(2n) vanish on [c, oo). There are exactly (n — 1) other possible sign com­
binations with y > 0. Assume y > 0, . . . , y{i) > 0, y(i+l) < 0 for some 
1 < / < 2/f + 1, then / is odd and r{j = oo wherey = In + 1 — /. From 
(6) it follows that/Vy ^ r1(2lf), consequently we see that r± ^n) = °^ » which 
implies that (1) has a minimally increasing solution. 

Using (6) and (7) we also obtain some nonoscillation criteria involving 
asymptotic behavior of solutions. 

THEOREM 6. Equation (1) is nonoscillatory if and only if (I) has a non-
oscillatory solution satisfying y > 0, y' > 0, . . . , yin) > 0, j<w+i> < 0, ifn 
is odd, or y > 0, y > 0, ..., y(n+ì) > 0, y{n+2) < 0, ifn is even. 

Turning to the adjoint of (1) 

(1*) z(2»+1) + p(t)z = 0, 

we know that (1*) has a solution w satisfying w > 0, w' < 0, . . . , 
(— \)kw{k) < 0, k = 1, 2, . . . , In. Such solutions are called strongly de­
creasing. Let D denote the set of strongly decreasing solutions of (1*). 

Finally we denote the oscillation numbers associated with (1*) by /•*. 
It is known (see [4]) that rkm = r*k, m + k = In + 1. Consequently for 
(1*) we now have 
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™ r*{H+1) ^ r?n+3Kn_u ^ ^ r(*2w_1)2 ^ >?2„)i, if« is odd, or 
(6*) 

r%+i) è '(*-2)(n+3) ^ è r(*2n_2)3 ^ ' ( W if « is even. 
Our final theorem shows that there exists a strong connection between 

the results in [5] and [6]. In fact, because of the next theorem, most of 
the results that appeared in [5] are easy consequences of the work in [6]. 

THEOREM 7. 

(i) Equation (I) is nonoscillatory if and only //(l*) is nonoscillatory. 
(ii) All nonoscillatory solutions of (I) belong to I if and only if all non-

oscillatory solutions 0/(1*) belong to D. 
(iii) The first nonoscillatory solution Z that appears in the solution space 

of (I*) other than the strongly descr easing type must satisfy Z > 0, Z ' > 0, 
. . . , Z(2n) > 0 on some ray [b, oo). 

The proofs of (i), (ii), and (iii) follow immediately from Theorem 5, 
Theorem 6, (6), (6*) and (7). 
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