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COMMUTATORS, ANTI-COMMUTATORS AND 
EULERIAN CALCULUS 

PHILIP FEINSILVER 

ABSTRACT. Consider operators obeying the commutation rule 
Cy = 1 + qyC generalizing the rule Dx = 1 + xD, D denoting 
d/dx. The case q — 1 corresponds to boson creation-annihilation 
operators, q — — 1 to fermion operators. We derive Leibniz' rule 
for general q. We find that the canonical representation of C such 
that CI = 0 is given by the Eulerian derivative. The basics of 
Eulerian calculus are discussed and an indication of a discrete 
Hamiltonian theory analogous to the Heisenberg representation 
in quantum mechanics is given. 

Introduction. In quantum theory one encounters creation and annihila­
tion operators of two basic types: "boson" operators a, b such that ab -
ba = 1 and "fermion" operators A, B such that AB + BA = 1. It is fairly 
easy to check, as will be seen later, that a standard representation of the 
pair (a, b) is a = d/dx, b = x acting on a space of functions/(x). Our ap­
proach is to find a general explicit formula for calculating commutators of 
the form [h(a), g(b)] for fairly general h and g, e.g., any two polynomials. 
This is a generalization of Leibniz' rule for differentiating a product of 
functions. In finding a general Leibniz rule and, hence, an operator cal­
culus for fermion operators it is natural to consider the general case of 
operators a, ß such that aß = 1 + qßa where q is a fixed parameter, 
q = 1 for bosons, q = — 1 for fermions. Then the operator calculus turns 
out to be the "^-calculus" or, following G.C. Rota, "Eulerian" calculus. 
This calculus arises quite naturally in the study of elliptic functions and 
generalized hypergeometric functions. This paper provides another natural 
setting for the Eulerian calculus. 

We first review the approach for the boson or Heisenberg case and then 
proceed to the general, Eulerian, case. We conclude with an Eulerian, 
discrete, analog of Hamiltonian theory corresponding to the Heisenberg 
representation in quantum mechanics. 

I. Preliminary discussion. The main result of this paper is Leibniz' rule 
for the functional calculus of the "Eulerian derivative" 
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§qf(x) = Ax)-Aqx) 
qJK J x - qx 

which reduces tof'(x) for q -> 1. Our approach indicates very clearly the 
role of the "separation parameter" q. It is essentially the variable \q\ ^ 1 
that provides a homotopy from the commutator rule "Coy = 1 + j C " 
to the anti-commutator "C o y = 1 — yC\ i.e., C o y = 1 + #jC, where 
C is an operator on functions of y and y is a multiplication operator, the o 
indicating composition. When q = 1 one recovers ordinary calculus 
("boson operators"); when q = - 1 we obtain the functional calculus for 
anti-commuting operators ("fermion" operators). So the q provides a link 
between these basic cases. 

NOTATION, X, y are the basic variables, i.e., operators act on functions 
of these variables. 

o denotes operator composition, e.g., B °f(x) ; B applied to/(x) we denote 
by Bf(x), i.e., Bf(x) = B o/(*)l. 

D—a linear operator such that D o x = 1 + xD. 
C—a linear operator such that C o y = \ + qyC. 
da—differentiation with respect to (any variable) a. 
dq—"Eulerian differentiation" with respect to y\ öqf(y) = (f(y) — 

f(qy))/(y - qy) 
Dq—Eulerian differentiation with respect to C. 
We set p = 1 - q, qn = (1 - q«)/p, Q = q~\ Qn = (1 - ß»)/(l - ß) . 

tfj = Ulqj. Note that 

©? = qJlQn-kl QkU t n e Gaussian binomial coefficient. 
The standard notation for n ^ J O — aclj) is (a> ^)»-
In this notation qn\ = p~n(q\ q)n. 
J denotes J over R unless otherwise indicated. 
Other notations will be explained as they arise. 

IL Heisenberg operators. We illustrate our approach by establishing the 
basic results for the operators D o x = 1 + xD. The canonical realization 
of these operators is of course multiplication by x and Df{x) = D o /(*)1 
= (d/dx)f(x), where 1 is a function (a "vacuum function") such that JDI 
= 0. For an explicit functional calculus it is convenient to restrict to func­
tions of the following types : 

(a) polynomials 
(b) functions analytic in a neighborhood of, say, 0 e C. 
(c) functions in y, Schwartz space, 

= {fife C°°(R), /t \xmf^(x)\ = 0, Vm, n ^ 0} 
1*1-0 
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or in 9>* = {tempered distributions}. 
The reason is that these can all be derived from exponentials. Specifically, 
if we can define eaB on some domain, then we have: 

For (a) a polynomial or (b) power series p(x), p(B) = p(djda) e08^. 
For (c)f(x) eSfor S?*,f(x) = \eiaxf{a)da, where we normalize by/ (a) 

= (1/2*:) ]e-<«*f(x)dx. 
Then f(B) = ]eiaBf(a)da. 

We can also compute inverses, when the following integrals exist, via 

JO A JO 

Thus we have the following Lemma. 
LEMMA 1. From eaB we can compute f(B) for f in any of the classes (a), 

(è), (e) above (and also [formal] inverses). 

We now proceed with three fundamental theorems. (See pages 3-6 of [11]). 

GENERALIZED LEIBNIZ LEMMA (GLM). 

g(D)of(x) = t / ( " ) ( x y (D) = e^»f(x)g(D) = f(x + dD)g(D). 
o "-

PROOF. 

1. D»oX = xDn + nDn~\ n > 0. 
n = 1 : By definition [D, x] = 1. 
n = m + 1 : Multiply Dw o * = xDm + mDm~l on the left by Z>. 

2. Multiply Dn o x = xDn + /tDM_1 by tn\n\ and sum to yield etD o x = 
xetD + te'D = (x + f )e">. Induction immediately yields e^ojcw = (x + 0M 

etD and so e'** o esx = esxestetD. 
3. Therefore 

oo 

e'# o es* = 2 J (1/^0 snesxtnetD = edxdDesxetD 

o 

and Lemma 1 completes the proof. 

COROLLARY 1. [g(D\ x] = g\D). [DJ(x)] = / ' (*)• 
COROLLARY 2. Leibniz' Rule. 

^f(x)g(x) = (D^of(x))g(x) 

= 2 ^/(*}(*) %»*(*) = S®/ (Ä) (*te°-»(*). 

EXPONENTIAL LEMMA (EL). 

e*Df(x) = / ( x + 0 , g{D)<** = g(s>5*. 
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REMARK. If V and £ are operator functions of, say, (x, D) and [V, f] 
= 1, VI = 0, we would write explicitly etvf(Ç)l = / ( £ + t)\. 

PROOF. In the proof of GLM we have etD o esx = esxestew. Apply this to 
the function 1 to get etDesx = esxest since Dì = 0. Apply Lemma 1 to first 
etDesx = esix+t)9 then to etDesx = etsesx to complete the proof. 

COROLLARY. g(D)l = g(0) (set 5 = 0). 

DUALITY LEMMA. 

gW(x)=f(da)eaxg(a)\a=0. 

PROOF. Apply Lemma 1, noting that 

ewf(x) = f(x + 0 =f(da)e°^\0 = f(da)e°xe*°\Q. 

GLM allows one to express any product so that the derivatives are al­
ways on the right; EL shows that D is the infinitesimal generator for the 
translation group; and the Duality Lemma illustrates the duality D «-+ x 
inherent in the rule D o x = 1 + xD. 

We will proceed to find the results corresponding to GLM for the com­
mutation rules C o y = 1 + qyC and C o y = h + qyC. There are some 
results roughly analogous to EL but we will note that there are difficulties. 

III. Commutator: anti-commutator homotopy. We now assume the rela­
tion C o y = 1 + qyC. 

PROPOSITION 1. Cnoy = q"yCn + qnC
n~\ 

PROOF. For n = 1, this is by definition. For n = m + 1, 

CCm o y = qmCyCm + qmCm 

= qm(\ + qyC)C™ + qmCm 

= qm+lyÇm+l + qm+1C
m 

as required. We now observe that DqC
n = qnC

n~x. Thus, Cn o y = qnyCn 

-h DqC
n, Let's assume a rule of the form 

C*oym = J ] pn(m9 k)ykD™~kCn. 

Then 

Cn o ^m+i = 2] pn(m, k)ykD^'kCny 

= S p«(™> k)[yk+lq»-™+*D™-kCn + ^ D y - ^ C » ] . 

We see that 

pn(m + 1, *) = />>*, fc - \)qn-m+k-i + ^ ( ^ fc). 

Since /?M(0, 0) = 1, /?M(0, fc) = 0, k > 0, we have, for ^ 0 , 



and 

Thus 

where 
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pjm + ! , * + ! ) - Pn(m, k + 1) = pn(m, k)q»->»+k 

pn(m, k + 1) = S qn+k-jPn(h k). 

pjm, k) = qnk+i+2+ "•+(*-»gn(m9 k) = qnk+(®gjm, k) 

m-\ 
gjrn, k + 1) = 2 q-*gH(j, k). 

o 
PROPOSITION 2. LetIQ(m) = 1. Ik+i(m) = 2/S)1 J'AC/X /ö>* * ^ 0» wiïA 

7*(m) = Ofor k > m. Then 

m—l m—1 
(1) I l (1 + v*0 = ( - v ; s)m = S y*//«), 

y=o o 

(2) « m ) - » ) , * ® . 

PROOF: 

1. Put £ w = HIT1 vÄ4(m). Then 

£ w - £m_x = £ v*(/,(m) - IJm - 1)) 

= £ vV-iViCm - 1) = v ^ - 1 ^ - ! , 

i.e., Em = (1 + wm-1)2?m_i. And we have initially i ^ = 1. 
2. We check that 

satisfies 7A(m) — IJm — 1) = sm~lIk-Jm — 1). We have, the dot indicat­
ing 5- to the power (f) as a common factor, 

j w . smsm-l " ' ' ^mHH-l __ sm-l ' ' ' sm-k+lsm-k = Jà)sm-k(m-l\ 

(k~l\ 
= ^ - 1 / 2 \ r l ) s 

accordingly. 

REMARK. 2 follows from 1 and the "^-binomial theorem." See Theorems 
2.1 and 3.3 of [3], These results are quite classical; references are given in 
[3, pp. 30, 51]. Also see [7]. 

Thus gn{m, k) = IJm) with s = Q. Consequently 
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gjjn, k) = ß ® ( r ) 0 = Q^qW+V'Xiïç, 

using Qm\ = QK2Jqm\. And so 

pH(m, k) = q»k+k2-™\f)q. 

And we have finally 

GENERAL LEIBNIZ RULE (GLR). 

2
(nk-m-nft T) \k 

k qk
]> 

PROOF. Replacing k -> m — k, 

Qn 0 ytn — V 1 qnk+k2-mk Qm- ykj)tn-k(jn 

Qm—k'Qk' 

— V" qmn—nk+k2—mk *• fik ym£)k(Jn 

REMARKS. We observe that this agrees with GLM for q -> 1. However, 
for q ^ 1, we cannot in general find a rule for g(C) ° f(y) because the 
powers are linked via q. We do have 

COROLLARY 1. g(C) o y = yg(qC) + Dqg{C). 

COROLLARY 2. Cof(y) = f(qy)C + öqf(y). 

COROLLARY 3. 

C»of(y) = 2 -Kàk
qf{yq»-k)Dk

qC« = 2 (?W(W-*)C-* 
k Hk- k 

Anti-commutators. In case q = — 1 we have C ° y + yC = 1. GLR 
states that 

C»oym= ( l)m*2 ((- 1)""W"W g- l / )- l ) ' r C « , 

The Eulerian derivative satisfies 

8-jv) - ™ -£-» = £&. 
where/*(j) = odd part of/. 

It follows immediately that SLX = 0. Furthermore, we have 

PROPOSITION 3. For C oy + yC = 1, 

(1) An even power of y or C commutes with all functions of either variable. 
(2) For m, n odd, Cn ° ym = - ymCn 4- ym~l Cn~l. 
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PROOF. Cnoy™ = (-\y*»[y*Cn + (-\)m+n-1ö_1y
mD_1C

n}. 
(1) For morn even, the 2nd term = 0. 
(2) For m, n odd, we have -ymCn + y™-lCn~l. 

LEIBNIZ' RULE FOR ANTI-COMMUTATORS. 

g(Qof(y) = f(y)g(C) - 2/*O0**(C) + £&- ^ R 

PROOF: From Corollary 1 to GLR, g(C) o y = yg(-C) + g*(C)/Q 
while even powers of y commute with g{C). Thus, 

g(C) o y2k = y2kg(C) and 

g(C) o ^2*+i = ^2*+ig(-C) + >>2*g*(C)/C. 

Denote b y / " 0 ) the even part of y,fe(y) = / O ) - f*(y). 
Then 

« ( O / W = p{y)g{C) + f*(y)g(- C) + J ^ ^ p - , 

which yields the result. 

We thus have "complete solutions" for q2 = 1. A similar approach 
would work for q any integer root of unity. 

q-commuting operators. We consider now a homotopy from the non-
commuting to the commuting case. Assume, then, C o y = h + qyC. Ob­
serve that then C ° Y = 1 + qYC, where Y = yhr1. By GLR, then, 

C»o ym = cn° Ymhm = hmqmn 2] (lAfo!)(g*~m~* öqDq)
kYmCn 

= <r* L ( i / ^ i X ^ - ^ W V * ^ 

C o / W = Co /(A 7) =AqhY)C + H / ï A î 0 = A ^ ) C + A^/fr). 

g(C) o j = yg(qC) + AZ)9g(C). 

In the limit A -» 0 we get that Cn o / » = ^«j^C*, g(C) ° ^ = J ^ C ) , 
C °f(y) = f(<jy)C- These are, of course, easy to check directly. 

BINOMIAL THEOREM FOR ^-OPERATORS. If ab = qba, then 

{a + *)» = 2 Gy>*fl»-*. 

PROOF. We can write a + b = (I + a ò - 1 ^ = b{\ + qab~l). Similarly, 

(a + *)* = b»(-ab-^ q)n = *» 2 CW^"1)**® 

by Prop. 2. By induction on k it follows that bn(ab~l)k = bn~kakQK2j and 
hence the result. 
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In a quantum field theory with operators C;, yj such that Cj o y k — 
djk — ykCj and Dh Xj such that [Dj, xk] = öJk we have, e.g., for a func­
tional calculus, 

Cj°f(yk)=f(-yk)Ch j*k, 

Cjofiyj) =f(-yJ)Cj +f*(y,)lyj, 

Djof(Xk)=f(xk)Dj, j*k, 

Dj°Axj)=Axj)Dj+ff(xj)9 

and similarly for functions/(>>!, y2, ...)> g(Ci> C2, . . . ) , . . . . 

IV. Eulerian calculus. To recover ordinary calculus from the operators 
D, x we apply operator equations to a particular "vacuum" function 1 e 
ker D. Similarly, Eulerian calculus results by applying the operator cal­
culus for C and y to a function 1 e ker C. 

PROPOSITION 4. The canonical representation of Eulerian calculus is given 
by: multiplication by y and Cf(y) = dqf(y). 

PROOF. Apply C o f(y) = f(y)C + ôqf(y) to 1. 

REMARK. For example, applying Corollary 3 to g(y)l yields Hahn's 
#-Leibniz rule for functions ([14], (2.5)): 

dn
q(f(x)g(x)) = 2 {%ök

qAxqn-k)ö^g{x\ 
k 

In the following, unless noted otherwise, we assume CI = 0. 

PROPOSITION 5.1fq= - 1 , then C2 = 0. 

PROOF. C2 = 0 is the same as d-x = 0. 

REMARK. If we interpret C as an "annihilation" operator and 1 as a 
vacuum state, so that C\ = 0, then Prop. 5 is essentially the Pauli exclu­
sion principle, namely that no state could have more than one electron 
(or fermion), i.e., C2 = 0. In this case, yn would correspond to yn*9 n2 = 
congruence class of« mod 2. 

Exponential functions. The "exponentials" for Eulerian calculus are well 
known. We discuss them now. We look for eigenfunctions E(ay) satisfying 

dqE(ay) = aE(ay) analogous to Deax = aeax. 

PROPOSITION 6. For \q\ < 1, 

CO CO yj 

(i) E(y) = n (i - pyq*)~l = (py, «zte1 = E -fr-
00 f_ vV 

(2) e(y) = £(>»)-! = (py; q)m = £ ^ - . 
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(3) öqe(y) = -e{qy). 

PROOF. Note that £o°y/# / ! satisfies dqE(y) = E(y), since 5qyi = qjy>-~1. 
(1) First we find by Prop. 2 that 

(py;q)m = i:(-ym)qq™pk 

0 

noting that 

(m\ _ (qm~k+1\ q)k > (a. a\-i 

we thus should have 

0 tf*' 0 5dT*' 

This is easily checked since for |#| < 1, the infinite product converges 
absolutely and is bounded uniformly for y in any compact subset of C, 
e.g., for \y\ < K9 by eRK, R = |/?|/(1 — \q\); while the right-hand sides are 
holomorphic in y, being polynomials. 

2. Now consider the equation dqE(y) = E(y), with £(0) = 1. That is, 
E(y) — E(qy) = pyE(y) or £(#>>) = (1 — py)E(y). Assuming E(y) is con­
tinuous, in fact it will then be holomorphic, at 0 we have 

oo 

1 = E(0) = A E(q»y) = ft (1 - pyqf)E{y), 

i.e., £(>>) = (/?j; q)^. E(y) and the expansion Effy'/qjl both satisfy d ^ O ) 
= E(y), E(0) = 1, and are holomorphic around 0. Number 1 now follows 
from the fact that dqF(y) = F(y), F(Q) = 0, F continuous at 0, has the 
unique solution F = 0 by the same argument as above. 

3. It is easy to check that öqe(y) = — e(qy) directly. We will check using 
the commutation rule C ° f(y) =f(qy)C + dqf(y): e(y)E(y) = 1 implies 
0 = Ce(y)E(y) = e(qy)E(y) + E(y)dqe(y). 

REMARKS. 

(1) It is immediate from (1) that ôqE(ay) = aE(ay) as desired. Also, we 
have 5qe(ay) = —ae(qay). 
(2) E(y) does not have any apparent group properties for q ^ 1, e.g., 

Eia + W)-*(*)-i = fi(l + ! _ % % % ) • 

The following transformation is interesting in this context. Put ^4y = 
— pq'a, Bj = — /?#'£. Choose r y = ^4y + By = tanh a:y tanh /3y and £/y 

= AJBJ = tanh a y + tanh ft. So, e.g., ^ = (1/2X7) + (Tf - 4£/y)i'Z), 
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Bj = (1/2X7V - (Tj - 4f/y)i/2), tanh ay = (l/2)(£/y + ( t / | - 4 ^ ) ^ ) , 
tanh ßy = (l/2)(C/y - (*7f - 4ry)1/2). That is, interchange sums and pro­
ducts. Then 

E(a + b)= IT/ (1 + ry)-i = Fly (1 + tanh a y tanh ßj)~\ 

E(a + b)E(a)-iE(b)-i = IT/ (1 + tanh (ay + /3y)), 

e(aMè) = FUI + tanh a, tanh /3y)(l + tanh (ay + /3y)). 

These follow directly from the expressions in terms of a and b. 

Integration. Let's consider the solution to the simplest type of Eulerian 
differential equation ôqf(y) = g(y). Thus/(j) is the Eulerian integral of g. 
This is easy to solve as follows : 

/GO - Aqy) = pyg(y\ 

Aqy) - Aq2y) = pqyg(y), 

f(qJy) - Aqj+ly) = pqJyg(qJy\ 

We thus have the following result. 

PROPOSITION 7. Let f be continuous at 0 and\q\ < 1. Then if 5qf(y) = 

«GO, 
oo 

Ay) = A0) + py Z qjgigJy). 
y=o 

One could develop integration theory and study discrete differential equa­
tions in this context. We will, however, conclude with a discrete version of 
Hamiltonian flows. 

Hamiltonian formalism. We first review the Heisenberg case. We are 
given an operator H(x, D), for convenience assumed to be analytic with 
an expansion such that all Z>'s are on the right—this can be adjusted by 
GLM. We then consider the operator flow x(t) = etHxe~tH, z(t) = 
etHze~tH, where we use "z" for the momentum variable, z = z(0) = D. 
Then it is easy to see by GLM that: 

(1) x(t) = [H, x(t)] = I*- WO, z(t)), x(0) = x, 

(2) z(t) = [H9 z(t)] = - ™L WO, z(0), z(0) = z, 

(3) [z(t), x(t)] = [z, x] = 1. 

This is essentially the Heisenberg formulation of quantum mechanics. We 
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will present an "Eulerian" version which is a discretized analog. Assume 
we have H(y9 C) and consider y(t) = E(tH)ye(tH). Denoting Eulerian 
differentiation with respect to t by xq we have, using Corollary 2 to GLR, 

zqy(t) = E(qtH)yzqe(tH) + Hy(t) 

= Hy(t) - E(qtH)ye(qtH)H 

= Hy(t) - y(qt)H. 

We thus have 

PROPOSITION 8. Given H(y, C) a "q-Hamiltonian" denote Eulerian dif­
ferentiation with respect to t by zq. Then 
(1 )X0 = E(tH)ye(tH) satisfies 

Tqy(t) = Hy(t) - y(qt)H 

= DqH(y(t), C(0) + y(t)H(y(t), qC(t)) - y(qt)H(y, C). 

(2) C(t) = E(tH)Ce(tH) satisfies 

TqC(t) = HC(t) - C(qt)H 

= -QöQH(y(t), C(0) + C(f)H(Qy(t\ C(t)) - C(qt)H(y, C). 

(3) C(t)oy(t)= 1 +«<OC(f) . 

(4) H(y(t)9 C(t)) = # 0 , C) (conservation of energy). 

PROOF. From above, 

zqy(t) = Hy(t) - y(qt)H 
= y(t)H(y(t\ qC(t)) - X ? 0 # + DqH(y(t)X(t))\ 

Dq denoting Eulerian derivative with respect to C(t), using Corollary 1 
to GLR. Similarly, 

zqC(t) = HC(t) - C(qt)H. 

From Cf(y) = f(qy)C + öqf(y) we have, replacing/^) by F(Qy), 

F(y)C = CF(ßj,) - ôqf(y), 

and 

Number 3 follows directly from jEO êOO = 1. 

Notice that H(y9 qC) may not commute with H(y, C), e.g., 

(y + C) o O + qC) = j>2 + 1 + 2 ^ C + ?C2 
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while 

(y + qC) o (y + C) = j2 + ? + fa2 + i ) 7 c + qC*. 

A thorough investigation of this "mechanics" should prove quite 
fascinating. 

Concluding remarks. Much work has been done on ^-difference equa­
tions [9] [14] [15], combinatorial and number theoretical applications of 
^-theory [2] [3] [4] [12] [17] and systems of orthogonal and related poly­
nomials satisfying ^-difference relations [1] [4] [8]. For original work by 
Ramanujan, LJ . Rogers and the English school we refer to [7] [16] [18] 
[20]. Some of the most important recent work deals with discovering 
precise relationships between classical orthogonal polynomials and special 
functions and their ^-analogs [7] [8] [17]. The operator methods have ap­
peared in the physics literature [5] [6] ; the algebra treated above generalizes 
the Heisenberg algebra used in [11] to study the classical polynomials. 

Finally, note that limits besides q -> 1, for example, q -> — 1 and q -• 0 
have been considered and found to yield important results in various con­
texts [6] [8]. 
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