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SYMMETRIC DERIVATIVES DEFINED BY 
WEIGHTED SPHERICAL MEANS 

M. J. KOHN 

ABSTRACT. We consider, for functions of several variables, sym­
metric derivatives defined by taking weighted spherical averages. 
We apply these derivatives to establish theorems of Lebesgue type 
for multiple trigonometric series. 

1. Introduction. Let f(t) be a function defined in a neighborhood of 
t0 G R. We say / has a first symmetric derivative at t0 with value s [9, 
vol. I, p. 59] if 

(1.1) y (/Co + ') - /Co - ')} = * + o(t) 

as t —* 0. This definition has the following applications to formally in­
tegrated trigonometric series [9, vol. I, p. 322 and p. 324]. 

THEROEM A. Let T : S^L^ cn e
in0 be a trigonometric series with 

cn = 0(l/n). 1/ T converges at 0o to finite sum s then 

(1.2) f(0) = co0 + 2' -^ eine 

in 

has at 0O a first symmetric derivative with value s. 

THEOREM B. Suppose the coefficients of T : 2 cnein$ satisfy cn —» 0 as 
n —* oo. If T converges at 90 to finite sum s, then the function f(6) de­
fined by (1.2) has at 0O a first symmetric approximate derivative equal 
to s. That is, the limit in (1.1) exists as it tends to 0 through a set hav­
ing 0 as a point of density. 

A two dimensional version of (1.1) and of Theorems A and B appears 
in [5] and [6]. In two dimensions let us write x = (xv x^) = teie and 
n = (nv n2). Let 

(1.3) 0(0) = cos 0 + sin 6. 

Let L(x) be defined in a neighborhood of x0 E E2 and integrable over 
each circle \x — XQ\ = t, for t small. We say L(x) has at x0 a first gener­
alized symmetric derivative with value s if 
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1 f2*" 1 
(1.4) -= - J L(xo + te%°)Q(0) dO = —st + o(t) as f— 0. 

Observe that for C2 functions, s = (BL/BxJ -h (SL/Bxg). See Theorem l 
below for details. If the limit in (1.4) exists as t—* 0 through a set hav­
ing 0 as a point of density, we say L(x) has at x0 a first generalized 
symmetric approximate derivative at x0 with value s. 

Let 

(1.5) T: 2 cne™-* 
neZ2 

be a double trigonometric series. If ß ^ 0, we will say T is (BÄ, /?) 
summable at XQ to s if 

lim 2 c„e«". ( l _ ( J j l Y V = s . 
^ ^ |n|<Ä \ \ ti / / 

We will denote the Fourier series of a function L(x) by S[L]. 

THEOREM A'. Suppose the series (1.5) is (BR, ß) summable at x0 to fi­
nite sum s for some ß with 0 ^ ß < f. Suppose the coefficients of (1.5) 
satisfy 

2 l»l*k|2+ 2 m « ! + n2)-2 2|CJ2 < oo 

for some number a > 1. Then the series 

1 — ir 
2 T ( * i + *2)c„ *"••*+ 2 —:-*-e ' - x 

converges spherically a.e. on T2 to a function L(x) which has at XQ a 
first generalized symmetric derivative equal to s. 

THEOREM B'. Suppose the series (1.5) converges spherically at XQ to fi­
nite sum s. Suppose there are functions Lx(x) and L^x) such that 

2 c,e*»-* = S[L1] 

and 

nt + n2 

einx = S[L2]. 



SYMMETRIC DERIVATIVES 353 

Let 

H*) = y (*i + *s)Li(*) + L2(*)-

Then L(x) has at XQ a first generalized symmetric approximate derivative 
with value s. 

The purpose of this paper is to establish some p-dimensional analo­
gues of the above results. We begin in § 2 with a natural extension of 
the definition in (1.4) to p dimensions and analogues of Theorems A' 
and B\ We are able to show that, as the dimension p increases, the hy­
pothesis on the order of summability required in the analogue to Theo­
rem A' becomes weaker, (although the growth conditions on cn become 
stronger). 

In § 5 we consider definitions of "symmetric derivative" for functions 
L(x) defined for x E E^ p ì^ 2, based upon some weighted spherical 
means of L. We are able to establish different theorems of Lebesgue 
type for multiple trigonometric series by using different weights. 

2. In this section we extend the definition of (1.4) of p dimensions 
and give analogues of Theorems A' and B'. In p dimensions, p = 2, we 
write x = (xv • •, xp) and n = (nv • • •, np). We set n • x = 
n i*i + " * • + np*p a n d M = (* ' *)1 / 2- We let x' = x/|x| and 
2 = [x E Ep\ \x\ = 1}. We write ds(ri) to indicate the surface element 
in (p — l)-dimensional surface integrals. 

DEFINITION. Let 

(2.1) Q(x) = x1 + • • • + xp. 

Let L(x) be defined in a neighborhood of x0 E Ep. We will say L(x) has 
at x0 a first generalized symmetric derivative if L is integrable over 
each sphere \x — XQ\ = t, for t small, and if 

(2.2) 
S . v 

= 2p/2T((p + 2)/2) f + ° W 

a s f - * 0 . 
If the limit in (2.2) exists only as £ tends to 0 through a set having 0 

as a point of density, we will say L(x) has at x0 a first generalized sym­
metric approximate derivative equal to s. 
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THEOREM 1. Suppose that L{x) and all partial derivatives of L{x) of 
order ^ 2 exist and are continuous in a neighborhood of XQ E Ep. 
Then L(x) has at x0 a first generalized symmetric derivative with value 

= (^+- "+^-)l L(aro) 

THEOREM 2. Let 

(2.3) T: 2 cnein* 
neZp 

be a trigonometric series in p variables. Let ß be a non-negative number 
with ß < (p — l)/2. Suppose Tis summable (BR, ß) at a point XQ to fi­
nite sum s. Suppose, in addition, 

2 ic„i2(m + • • • + »g-a inr *+« 
ni+*"+np*:0 

(2.4) 
+ 2 KI2Np-1+c < °° 

Wl+-+np=0 

for some e > 0. Then the series 

(2.5) 

+ — & + ••• +xp) 2 ^e'»* 
P Wl+-+V=0 

converges spherically to a function L(x) which has at x0 a first general­
ized symmetric derivative equal to s. 

THEOREM 3. Suppose the series (2.3) converges spherically at x0 to fi­
nite sum s. Suppose there are functions Lx(x) and L2(x) such that 

^ -*C" einx = S[LJ 

and 

Let 

n^+'-'+n^o nt + • • • + n p 

2 cne*»* = S[L2]. 
ni+"'+np=° 

L(x) = L,(x) + -A-fo + •••+xp)L2(x). 
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Then L{x) has at XQ a first generalized symmetric approximate derivative 
with value s. 

3. Before we give the proofs of the theorems we obtain some pre­
liminary results. We derive some formulae with more generality than 
immediately needed in order to facilitate the proofs of later results. The 
author is indebted to Professor Richard Wheeden for a suggestion that 
has greatly simplified the computations. 

By a surface harmonic of degree v, S,,(TJ), we will mean the restriction 
to the unit sphere of a homogeneous harmonic polynomial of degree v. 
We will denote the Bessel's function of order v by /,,(*). 

LEMMA 1. Let S„(TJ) he a surface harmonic of degree v and let £ he a 
or in Ep. Then unit vector in Ep. Then 

(3.1) x 

&*T((p + 2)/2) S"® if"=1 

0 if v # 1. { 
LEMMA 2. Let Q(x) = â  + • • • + xp. For n E Zp, \n\ # 0, define 

ifn, ••• + n p * 0 

(3.2) gn(x)= 1 nt+ • • • + n, p 

—(x1 + ••• +xp) ein* if nx + • • • + np = 0. 

Then fort>0, 

(3.3) (2W)-^ Sve2 fc(l,)0(,)4(,) = | n ^i f f / 2 . 

PROOF. Suppose f(h) is defined and has v continuous derivatives for 
h G [ — 1,1]. Let i be a unit vector in £p. The Funk-Hecke Theorem [3, 
p. 181] says 

X e s ft'im) d,(-n) 
(3.4) 

= r(ftfH)/2) Sy(l) SlifWMi - h*p-3)/2dh, 

where F,(/i) is the Legendre polynomial of degree v in p dimensions, 

(3.5) ?,(/») = ( - 2 ) - ^ ( P ' ^ ^ 2 ) ( 1 - h T - ^ D ' i l - Ä2)'+*-3>/2. 
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Substituting (3.5) into the right side of (3.4) and integrating by parts v 
times we get 

(_1).>2-H-VP-l)/2 

*W T(v + (p- l)/2) 

(3-6) X i f(h)D"(l - h2)»+(p-3)/2 dh 

"(i T(v + )px 1>2 

X i f\h)(l - h2)*+<» - 3>/2 dh. 

To prove Lemma 1 we let f(h) = h. Clearly, if v # 1, the integral on 
the right of (3.6) vanishes. Thus 

X 6 S Z-vSv(V)ds(V) = 0 

if v # 1, 
If v = 1, then (3.6) becomes 

J„es € • V St (v) ds (TJ) 

(3.7) 

= s-(a r((P + i)/2) J: ,a-«^»"*. 
The integral on the right of (3.7) may be computed by reduction for­
mulae (using different formulae for the cases when p is even or odd). 
We get 

Thus, 

(2*)-"2Xe2 MSi<i>*(i>= r((p
2+2)/2) s ^ 

This completes the proof of Lemma 1. 
To prove Lemma 2 we again use (3.6). Here we fix n = (nv • • -, np) 

and fix t > 0. We let f(h) = exp(i\n\th) and set £ = n' = In^n. Then 
(3.6) becomes 
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J^e2 eintvSf(v)ds(ii) 

= Xes f(n'-v)Sf(v)ds(r,) 

o-c+i JJP-D/2 n 

=SÀn,) w^¥^W)^fP)m-h2y+<P~3ì/2dh 

J ^ ei|n|tÄ(l - 7»2)H-(P-3)/2<#, 

_ 2-"+1^-1>/2(i|n]t)'-
- ^ n ; I> + ( p - l ) / 2 ) 

x r(F+ (p - i)/2/),y+to_lv2(l"l^) 

7T-1/2(l/2|n|*)"+<p-2>/2 

by formula 7 from [1, p. 81]. Hence, 

(3.8) 

A ' (|n|^-2>/2 

We now complete the proof of Lemma 2. If nx + • • • -f np # 0, we 
apply (3.8) with v = 1, Ŝ *) = ß(x). 

(2w)-p/2J^g2 g^ßf t )^) 

= z i ß(„') <WI"I*) 
»i + • • • + »p (|n|*)ö>-2)/2 

- i 14 + • • • + n„ yp/2(|nlt) 
nx + • • • + np |n| (|n|^-2>/2 

= |n|-^T*-»«/p/a(|n|*). 

If na + • • • + % = 0 then 
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(2")-p/2 X « s.(*i)Ofo)*fo) 

= p-M2W)-p/2 Xe2 (% + ' • • + %)VB"" * fo) 

+ 2(2^)-p /2 Ces î»A«<"-" * ( 1 ) ) 

= p-\Ax + A2). 

To compute A1 we apply (3.8) with v = 0, s0(ij) = 1. 

(3.10) = (2w)-«>'2 J^ g 2 ^»^A( , ) 

= (|n|rö,-2)/2/(p_2)/2(l»l^ 

To compute A2 we use (3.8) with v — 2, S„(TJ) = 77^. 

_ nink ( -W^WM*) 
|n|2 (|n|t)<"-2)/2 

Recall that »ij + • • • + np = 0. Hence 
p 

0 = (iii + • • • + np)
2 = 2 "i2 + 2 ","* 

*=1 i5tfc 

= |n|2 + 2 «i «*• 

Thus, 2 ^ ^ ^ = -|n|2. 
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(3.11) 

A 2 = 2 (2W)-"/2 f ilVké~*id8(rì) 

= y nink (-1)/(P-t-2)/2(l"l*) 
£L \n\2 (|n|*)<"-2>'2 

= 4,+2>/2(l"l') . JrzR y n n 

(\n\t)W2 |n|2 à "'' k 

= /(P+2)/2(M*) 

(|n|*)<*-2>/2 

We now return to (3.9). 

( 2 W ) - P / 2 J ^ 2 g ^ ß ^ d s f t ) 

= p-1f(A1 + A2) 

_ „ - 1 , / /.n-2,/2(l"l̂ ) , /(p+WI"lf) \ 
V \ {\n\tf-W + (Inl*)0-2^2 / 

= |n|-*/2r<'-2>/2/J)/2(|n|t) 

by formula 56 from [l,p. 12]. This completes the proof of Lemma 2. 

Now suppose we have a numerical series 2 n G Z cn. We set 

\n\<B 

and for ß > 0, we set 

and say 2 cn is {BR, ß) summable to s if T{ß + l)R~ßS/ -+ s as 
R —• oo. It can be shown [2] that the series 2 cn is (2*K, ß) summable to 
finite sum s if and only if 

Ä-*oo |nl<Ä \ ix / 

Hence, if 2 cn is (BK, /J) summable to 0, then 

(3.12) S / = o(Rß) 

as R —» oo. 

file://{/n/tf-W
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LEMMA 3. Suppose the series ^nGZpcn is (BR, m + 1) summable to 0. 
Suppose, in addition, 

2 kl2K + • • • + »p)-
2|»r1+< 

(3.13) 

+ 2 ki2i«ri+<<°o 
Wi+-+np=0 

for some c > 0. Then 

(3.14) S / = 0(rm+1) 

for v — 0, 1, • -, m + 1. 

PROOF. Since l ^ + • • • + np\ < p\n\, 

2 k l 2 K + • • • + np)-
2|n|*-i+< 

^ fc 2 |cB | 2 |nr 3 + e . 

Thus, from (3.13), 

2 K|2 |n |p-3 + £ < oo. 

Applying Holder's inequality, 

2 K\= 2 (Kl |n|*-»+^}{|n|-*-8+«W} 
|n|<Ä |n|<Ä 

^ ( 2 k|2|nr3+< ) 1/2 ( 2 |n|-"+3- )1 / 2 

\ InKÄ / \ \n\<R / 

== (TR~P+3~C+P)1/2 

= o(R3/2) 

as K —• oo. Having established this, the proof of Lemma 3 is identical 
to the proof of Lemma 1 of [6]. 

4. Proof of Theorems 1,2, and 3. 

PROOF OF THEOREM 1. We use Taylor's Formula. Let 
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< - ( f » - r w ) ' 
We may assume, by normalizing, if necessary, that |£| = 1. 

p dF 
F(*o + tq) = F(xQ) + t 2 i?« - j - W 4=1 8x, 

<2 * 32F . 
+ 2! JL ™> 3^/*° + "»> 

for some r E (0, t). Then, 

(27T)-"2 ra*fo,+*ii)Ofo)*fo) 
= (2W)-"''2 f^FixJQWdsir,) 

(4.1) 
+ "J (2^)-p/2 

J" P y ^ 

*•* J i ^ l ^ * 0 * ^ ^ 
= 0 + t • (2r)-^» J[62 1, • Ê 0(1,) <fefr) + R(x0). 

Clearly R(x̂ ) = ^ ( l ) = o(t), as f — 0. Also, by Lemma 1, 

(2w)-p/2 J[62^.|ß(q)d5(l,) 

1 
2»/2r((p + 2)/2) •0(0 

(4-2) - 2"/2r((p + 2)/2) (*i + * ' ' + £p) 

1 / 3F . . 3F . , \ 

iTww\~^iXo)+'" + ^;{Xo)) 
Returning to (4.1), 
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(2W)-^2J^eS Fixo + tJWrìdsto) 

— S I \ 

- 2»/2T((p + 2)/2) f + °W ' 

where s = BF/Bxj (z0) + • • • + 9F/.9xp (x0). This proves Theorem 1. 
PROOF OF THEOREM 2. Having established Lemma 2, the proof of The 

orem 2 is very similar to the proof of the theorems in [6]. Write 
ß = m -h a where m is an integer and 0 ^ a < 1. We first prove The 
orem 2 in the special case a = 0. We may assume without loss of gen 
erality that x0 = 0, c0 = 0, s = (X 

Write SÄ = SÄ(0) = 2 |n(<Äcn. Then 

V = J ? Sudu, - - -, S/* = f* S.—id«. 

By (3.12), we may assume 

(4.3) S / > = o ( f n 

as ft —* oo. 
The condition (2.4) in the coefficients {cn} insures that the series de 

fining L(x) converges spherically a.e. on each sphere |x| = t [4, Theo 
rem 1]. Moreover, by Theorem 2 of [4], we may integrate this series b) 
term over each sphere |x| = t. Thus 

( 2 » ) ^ i a i ( * l ) f l ( l ) ^ ) 

= lim 2 (2*)-p/2 fes cjgJMQWMi,) 
A-.» |n|<r ^T/C .* 

= I»™ 2 cn 
JUW) 

* . • H.KB " |n|"2f*-2> /2 

by Lemma 2. We set 

(4.4) y(z) = zr»/2Jp/2(z). 

Then 

(2W)-"2 f s UtnMviMv) 
(4.5) 

We change the last sum to an integral and integrate by parts m times. 

= lim* 2 c„Y(|n|*). 
Ä-»oo |n|<ß 
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2 cny(\n\t) = SRy(Rt) - £ Su -±-y(ut)du 
\n\<R U du 

= sRy(Rt)-sRi -^y(Rt) 

(4.6) 

= SRy(Rt) - SJ ^y(Rt) 

+ . . . + ( _ i ) » s Ä » -^y(Rt) 

+ (-Dm+1 r s«m -STT^)^-
By repeatedly using formula (51) of [1, page 11] and the estimate / 

J„(z) = 0(z~1/2) as z —> oo, it is clear that 

(4.7) JL y(z) = o(z-<1/2>-<*>'2>) 

as z -* oo, for r = 0, 1, 2, • • •. Hence, with Lemma 3, 

V - I ; 7(Ä«) = 0(R-<1 / 2>-Ö' / 2))0(R'»+1) 

= o(l) 

for r = 0, 1, • • •, m, since m < (p — l)/2. Returning to (4.5), 

( 2 W ) - * / 2 f L(ft,)Q(î,) &(!,) = « lim 2 c„Y(|n|t) 
7 , 6 2 Ä->oo | n | < Ä 

= i-ir+i £ S S ^ y M du 
dum+1 

= 0 • t + f • A(t). 

To prove Theorem 2, we must show A(f) tends to 0 as t tends to 0. 

A(t) = ( - ! )»+» J0 S „ » | — i Y M d « 

+ (-1)m+1 £ s»mSvHd» 

d«n 

dwm+1 

=A1(t) + A2(t). 
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To estimate At(t) we use the fact that y(z) is an entire function, s< 
for \z\ < 1, \y<m+1\z)\ ^ C. 

J l/t rfm+l 
du 

du™*1 

= (-m)™*1 £ n o(um) t™*1 - Cdu 

= o(l). 

To estimate A2(t\ we use (4.7), obtaining 

AM = {-ir« f "t s.- ^ v M à 

= ( - l ) m + 1 J^ ( o(«m) tm+1O((M0)-(1/2)-(p/2))du 

— o(fn+(1/2>-<p/2>) P° u»>-(l/2)-(p/2) fa 

= 0(1). 

Note that we needed the hypothesis m < (p — l)/2 to compute the last 
integral. This completes the proof of Theorem 2 when /? = m is an in­
teger. 

We now prove Theorem 2 for the case ß = m + a, 0 < a < 1. We 
proceed as in the proof above, but at step (4.6) we integrate by parti 
once again. After showing that the integrated terms tend to zero, wc 
get 

(2")-p/2Xe2 HtnWrùMv) 
(4.8) 

= O • t + tA(t). 

If f(u) is a function defined for u > 0, and TJ is a positive number, we 
denote 

Ivf{z)= ~^f & (*-w)"-1/(«)<*"> 
the fractional integral of order i\ of / [7]. Then 

SM
m+1 = Im+1(SJ = ^-"/"^«(SJ = Z1""^/1*") 
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Then 

A(t) = (-ir JTS«+1 S v M d « dum+2 

( - ^ Jo Jo (u-z)-«Sr«dz-—y(ut)du 
r(l - a) J0 J0 v ' * du" 

=ìzw^aj s *r° {s: (u-Z)-«££2y(ut)du y 

= ]&{•£" + *̂< } 
= Ax(f) + A2(*). 

We use the estimates 

/- O f - - z j V + 1 iiz^l/t 

H(z,t,R)= { 
y. 0(te)-<p+»/2*m+1+a if z ^ l/fc 

The proofs are similar to proofs of corresponding estimates in [6] and 
are omitted. We refer the reader to that paper for details. 

/ _ i y » ri/t 
A*{t) = 1Ìm 171 „\ J« S™*" Hi-Z' *> Ä>d Z 

R-+0O 1 ^ 1 — OL) 

= £'* o{zm+a) o ( — - z ) V+1 
dz 

= o(l). 

= JÌT* o(zm+a) 0(2-*+1»/2) r+« -^-« / 2 dz 

— o(m+a-iv-lV2\ J 2,»»+a-0>+l)/2 fa 

= 0(1). 

The hypothesis ß = m + a<(p — l)/2 is needed here to make the last 
integral converge. This completes the proof of Theorem 2. 
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PROOF OF THEOREM 3. Having established Lemma 2, the proof of 
Theorem 3 is identical to the proof of Theorem 3 of [5] and is omitted. 

5. W e now investigate extensions of Definition 1 formed by replac­
ing the Q(ac) in equation (2.2) by an arbitrary surface harmonic. 

Let B(TJ) = S„(TJ)) be a surface harmonic of order v. Let L(x) be de­
fined in a neighborhood of x0 G Ep and integrable over each sphere 
\x — XQ\ = t for t small. We will say L(x) has at x0 a first ^-derivative 
with value s if 

(5.1) (2* ) - "* Sv^L(x0 + ftìOfo) <fafo) = 2 p / » r ( ( p ' + 2 ) / 2 ) ' + ° W 

as * ^ 0 . 
It is clear that if v ¥= 1, equation (5.1) does not have any value for 

us. For if v =£ 1 and L(z) is smooth enough, then s = 0 by Lemma 1. 
(However, it v ¥= I and r is an integer such that r = *> and r has the 
same parity as v, then we may define an r-th order ü-derivative for L(x) 
by expanding the left side of (5.1) into a Taylor's series o even or odd 
powers of t, depending upon the parity of v. It is reasonable to expect 
that p-dimensional analogues of the theorem in [9, volume II, page 66] 
will hold with this definition.) 

If v — 1, then 0(TJ) must be of the form a1
rq1 + • • • + apyp> In this 

case we are able to derive analogues to Theorems 1, 2 and 3. 
Let a = (av • • -, ap) be a fixed element of Ep with \a\ ¥= 0. For 

r] G 2 let 

(5-2) ^M = a^ + • • • + a A . 

We will say a function L(x) has a first ^ -der iva t ive equal to s if equa­
tion (5.1) holds with Q(TJD = QJif). 

THEOREM 1'. Suppose that L(x) and all partial derivatives of L(x) of 
order at most 2 exist and are continuous in a neighborhood of x0 G Ep. 
Then L(x) has at x0 a first Qa-derivative with value 

s= (flii^ + - - - + ö " ^ ) 1 ^ 
THEOREM 2'. Let 

(5.3) T: 2 cne*»'* 

be a trigonometric series in p variables. Let ß be a non-negative number 
with ß < (p — l ) /2 . Suppose T is summable (BR, ß) at a point x0 to a 
finite sum s. Suppose, in addition, 
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2 K l V x " ! + • • • + apnp)-*\n\p-1+i 

+ 2 K \2\n\p-1+< < oo 
aln1+-+apnp-0 

for some c > 0. Let 

LJx) = 2 — ein* 
a1n1+-+aJpp*o axnx + • • • + apnp 

+ |a|-2(ai*i + • ' ' + flpXp) 2 V i n " 
a^H— -+apnp=0 

Tften La(z) /ias af *0 a /irsf Qa-derivative with value s. 

THEOREM 3'. Suppose the series (5.3) converges spherically at x0 to fi-
nite sum s. Suppose there are functions Lx(x) and L2(x) such that 

2 ^ einx = S[LJ 
a1n1+-+apnp*o a1n1 + • • • 4- apnp 

and 

2 cne™*=S[L2]. 

Let La(x) = LJx) + |a|-2 (a^ + • • • + apxp)L2(x). Then LJx) has at x0 

a first üa-derivative with value s. 

REMARK. One "disadvantage" of Theorems 2 and 3 is that the hy­
pothesis requires a different standard of behavior for the terms cn of the 
series T which correspond to n situated on the hyperplane 
x1 -f * • • -f xp = 0. In the hypotheses of Theorems 2' and 3' we require 
a different standard of behavior for the terms cn when n is situated on 
the hyperplane atxt -f • • • + apxp = 0. Perhaps, in applications of The­
orems 2' or 3 ' to a specific series T, the hyperplane 
axxx -f • • • + apxp — 0 can be chosen to optimize this situation. 

6. The proof of Theorem 1' is identical to the proof of Theorem 1. 
To prove Theorems 2' and 3' we establish the following lemma. After 
the lemma is proved, the proofs of Theorem 2' and 3' are essentially 
identical to the proofs of Theorems 2 and 3 and are omitted. 

LEMMA 2'. Let a = (av • -, ap), \a\ ¥^ 0. Let QJx) — 
a\xi + * " ' + avxp- For n E Zp> lnl ^ °> define 
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— i etn'x 

if axnx + • • • + an ¥* 0 a i n i + ' * * 4- apnp 

&*,» = 1 1 , 

77ien /or t > 0, i f a i n i + • • • + «P
np = °-

(6.1) (2.)— X e 2 ga,n(^(,) & (n) = | n ^ f f t 2 • 

PROOF, (i) Suppose first a^ax + • • • + apnp ^ 0. Then using formula 
(3.8) with v = 1, 

= — -(27T)-^2 f ^ ^ a ^ c b ^ ) 
fl^! + ••• + apnp

 Ji*z 

= ~* . fl1n1 + - • • + Qpnp *JP/2(M*) 
*i"i 4- ' ' • 4- apnp \n\ (|n|£)<*-2>/2 

.P/2(|n|*) 
|n |P/2^p-2)/2 

(ii) Suppose now axnx + • • • + apnp = 0. This situation is more com­
plicated. Consider first the special case a = (av 0, • • •, 0), with ax ^ 0. 
Then (nv • • -, np) = (0, n2, • • -, np). We may assume n2 ¥= 0. 

(6.2) = (27T)-» /2 J ^ ^ ^ a ^ c f e f o ) 

We convert the last integral to hyperspherical coordinates (see [1, p. 
233], where p has a different meaning). 

Tjj = sin 01 sin 62 • • • sin 0p_2 sin <p, 

TJ2 = sin ̂  sin 02 • • • sin 0p_2 cos <py 

Tj3 = sin 0t sin 02 • • • sin 0p_3 cos 0p_2, 

T?4 = sin 0X sin 02 • • • sin 0p_4 cos 0p_3, 
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T?P_! = sin Otcos 02, 
y\p = cos ev 

ds (ri) = (sin ^ ) p - 2 • • • (sin 6v_2y dd1" dOp_2 d<p. 

Note that since nt = 0, when we write ein tji in hyperspherical 
coordinates we can "separate out" the term involving qp: 

_ gitn£>m6xsm62"sin0p_gcos<p . ^itf(6vrj^ 

Hence, 

J "IT Çit f2ir 

0 ' " J o Jo (sin<?i •••sinÖp_2sin<p)2 

(6.3) • (sin fl^"2 • • • sin Op_2d<p d01 • • • d0p_2 

= JT J o \ Jo*™2? 
gi*n2sin01sin02" sin0p_2cos<p ^ p > 

• sin20x • • • sin2ep_2e
me^^ 

• (sin exf-
2 • • • sin 0p_2 d ^ • • • dOp_2. 

We integrate the innermost integral by parts. 

0 (sin <p)(sin ß eitn*sinei~sinßP-*0Sv) d<p 

\ tfn2sin 0X • • • sm 0p_2 I ^ 

Returning to (6.3), 

1 Çv Cm Ç2m 
= ~ïfo~ J° " J o Jo SÌn0l' * * s i n#P-2 cOS<p 

• ein^(sin fl^"2 . . sin ep_2 d<pdB1" dOp_2 
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We can now apply equation (3.8), with v — 1, S„(TJ) = TJ2. 

in2 \n\ {\n\tf-W2 

|n|p/2<(p-2)/2 • 

This completes the proof of (ii) in the special case when a = (av 0, 
••• ,0) . 

We now prove (ii) for general a = (a19 • -, ap). 
By a rotation we choose a new orthonormal coordinate system {ev 

• • -, cp} for Ep so that et = |a| -1a. Let n = (nv • • -, np) have coordi­
nates (na*, • • -, np*) in this new coordinate system. Then 
0 = axnx + • • • + apnp = a • n = 1«^* -f 0 • n2* + • • • + 0 • np*. 
Hence nx* = 0. Thus, in our new coordinate system, a — (\a\, 0, 
0), and n = (0, n2*, • • -, np*), which reduces to the special case above. 
Thus the lemma is proved. 
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