THE QUADRATIC AND QUARTIC CHARACTER OF CERTAIN QUADRATIC UNITS. II

PHILIP A. LEONARD AND KENNETH S. WILLIAMS*

Let m be a square-free integer greater than 1, and let ϵ_m denote the fundamental unit of the real quadratic field $Q(\sqrt{m})$. If k is an integer not divisible by the odd prime p and the Legendre symbol (k/p) has the value 1, we define the symbol $(k/p)_4$ to be +1 or -1 according as k is or is not a fourth power modulo p. Now if (m/p) = +1 we can interpret ϵ_m as an integer modulo p and ask for the value of (ϵ_m/p) . Because of the ambiguity in the choice of \sqrt{m} taken modulo p we must make sure that (ϵ_m/p) is well defined. This is the case if ϵ_m has norm +1 (written $N(\epsilon_m) = 1$) or if $N(\epsilon_m) = -1$ and $p \equiv 1 \pmod{4}$. Whenever $(\epsilon_m/p) = 1$ we can ask for the value of $(\epsilon_m/p)_4$. This latter symbol is well defined if $N(\epsilon_m) = +1$ or if $N(\epsilon_m) = -1$ and $p \equiv 1 \pmod{8}$. The evaluations of these symbols are generally given in terms of representations of a power of p by certain positive-definite binary quadratic forms. This is convenient when considering applications to divisibility properties of recurrence sequences (see for example [14]).

An early result in this direction was proved by Barrucand and Cohn [1] who showed, using the arithmetic of $Q(\sqrt{-1}, \sqrt{2})$, that if $p \equiv 1 \pmod{8}$ is prime, so that $p = c^2 + 8d^2$, then

$$(\epsilon_2/p)=(-1)^d.$$

This gives a criterion for the splitting of p in the non-abelian number field $Q(\sqrt{-1}, \sqrt{2}, \sqrt{\epsilon_2})$.

Using similar methods, the present authors [17] have evaluated explicitly (ϵ_m/p) (when $N(\epsilon_m)=-1$) and $(\epsilon_m/p)_4$ (when $N(\epsilon_m)=+1$) for certain values of m, namely, those for which at least one of the imaginary bicyclic biquadratic fields

(1)
$$Q(\sqrt{m}, \sqrt{-m}), Q(\sqrt{-m}, \sqrt{-2m}), \text{ or } Q(\sqrt{-2m}, \sqrt{m}),$$

has class number one (21 fields in all, see [6]). In this paper we extend these results to an infinite class of values of m. Our results and conjectures arise from those of the above fields (1) which have class number not divisible by 4.

Received by the editors on June 13, 1977, and in revised form on September 2, 1977.

^{*}Research of both authors was supported by the National Research Council of Canada (Grant No. A-7233).

TABLE (part 1)

Notation: h = h(m, -m), k =largest odd divisor of h(m), l =largest odd divisor of h(-m), k =conjectured

Case	h	h(m)	h(- m)	$N(\epsilon_m)$	m	Characterization of m
1.1	1(mod 2)	1(mod 2)	2(mod 4)	- 1	q	$q \equiv 5 \pmod{8}$
1.2(i) 1.2(ii)	1(mod 2)	1(mod 2)	1(mod 2)	+ 1	q	$q \equiv 3 \pmod{8}$
1.2(iii)						$q \equiv 7 \pmod{8}$
1.3(i) 1.3(ii)	2(mod 4)	2(mod 4)	2(mod 4)	- 1	2q	$q \equiv 5 \pmod{8}$
1.4(i) 1.4(ii)	2(mod 4)	1(mod 2)	4(mod 8)	- 1	q	$q = c^2 + 8d^2 \equiv 1 \pmod{8}$ $(d \equiv 1 \pmod{2})$
1.5(i) 1.5(ii)	2(mod 4)	1(mod 2)	2(mod 4)	+ 1	2q	$q \equiv 3 \pmod{8}$
1.6(i)* 1.6(ii)* 1.6(iii)	2(mod 4)	1(mod 2)	4(mod 8)	+ 1	qq'	$q = 3 \pmod{8}, \ q' = 3 \pmod{4}$ $\left(\frac{q'}{q}\right) = +1$
1.7(i)* 1.7(ii)* 1.7(iii)* 1.7(iv)* 1.7(v)* 1.7(vi)*	2(mod 4)	2(mod 4)	2(mod 4)	+ 1	qq'	$q = 5 \pmod{8}, q' = 3 \pmod{8}$ $\left(\frac{q'}{q}\right) = -1$ $q = 5 \pmod{8}, q' = 7 \pmod{8}$ $\left(\frac{q'}{q}\right) = -1$

$\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = 1}{p^{k\ell} = x^2 + qy^2} \qquad \left(\frac{\xi_q}{p}\right) = (-1)^y$ $\frac{p^{k\ell} = x^2 + 16qy^2}{4p^{k\ell} = x^2 + 16qy^2} \qquad \left(\frac{\xi_q}{p}\right)_+ = (-1)^y$ $\frac{4p^{k\ell} = x^2 + 16qy^2}{(x = 1(\text{mod } 4))} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{4p^{k\ell} = x^2 + 16qy^2}{(x = 1(\text{mod } 4))} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{p^{k\ell} = x^2 + 8qy^2} \qquad \left(\frac{\xi_q}{p}\right)_+ = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 4qq'y^2} \qquad \frac{\xi_q}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = 4x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$ $\frac{(-\frac{1}{p}) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16qq'y^2} \qquad \frac{\xi_{qq}}{p} = (-1)^y$	Congruential Character of Prime p	Primitive Quadratic Partition of $p^{k\ell}$	CHARACTER OF FUNDAMENTAL UNIT
$\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = 1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p^{k'} = x^2 + 16qy^2}{p^2}\right) \left(\frac{\xi_q}{p}\right)_4 = \left(-1\right)^y}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q'}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q'}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p}{p}\right) = \left(\frac{q'}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p'}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p'}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{p'}{p}\right) = \left(\frac{q'}{p}\right) = -1}$ $\frac{p^{k'} = x^2 + 16q'y^2}{\left(\frac{q'}{p}\right)^4 = \left(-1\right)^y}$ $\frac{\left(\frac{q'}{p'}\right)}{\left(\frac{q'}{p'}\right)} = \left(\frac{q'}{p}\right) = 1$ $\frac{p^{k'} = x^2 + 16q'y^2}{\left(\frac{q'}{p'}\right)} = \left(-1\right)^y$ $\frac{\left(\frac{q'}{p'}\right)}{\left(\frac{q'}{p'}\right)} = \left(-1\right)^y$ $\frac{p^{k'} = x^2 + 16q'y^2}{\left(\frac{q'}{p'}\right)} = \left(-1\right)^y$ $\frac{\left(\frac{q'}{p'}\right)}{\left(\frac{q'}{p'}\right)} = \left(-1\right)^y$ $\frac{p^{k'} = x^2 + 16q'y^2}{\left(\frac{q'}{p'}\right)} = \left(-1\right)^y$			/ \
$ \frac{(x \equiv 1 \pmod{4})}{p^{k\ell} = x^2 + 16qy^2} \qquad \frac{(\frac{\epsilon_q}{p})}{p} = (-1)^y $ $ \frac{(-1)}{p} = (\frac{2}{p}) = (\frac{q}{p}) = 1 \qquad p^{k\ell} = x^2 + 8qy^2 \qquad (\frac{\epsilon_{2p}}{p}) = (-1)^y $ $ \frac{(-1)}{p} = (\frac{q}{p}) = 1 \qquad p^{k\ell} = 8x^2 + qy^2 \qquad (\frac{\epsilon_{2p}}{p}) = (-1)^{r+1} $ $ \frac{(-1)}{p} = (\frac{q}{p}) = 1 \qquad p^{k\ell} = x^2 + qy^2 \qquad (\frac{\epsilon_q}{p}) = +1 $ $ \frac{(-1)}{2p^{k\ell}} = x^2 + qy^2 \qquad (\frac{\epsilon_q}{p}) = -1 $ $ \frac{(-1)}{p} = (\frac{q}{p}) = (\frac{q}{p}) = 1 \qquad p^{k\ell} = x^2 + 8qy^2 \qquad (\frac{\epsilon_{2p}}{p}) = (-1)^y $ $ \frac{(-1)}{p} = (\frac{q}{p}) = (\frac{q'}{p}) = 1 \qquad p^{k\ell} = x^2 + 8qy^2 \qquad (\frac{\epsilon_{2p}}{p}) = -1 $ $ \frac{(-1)}{p} = (\frac{q}{p}) = (\frac{q'}{p}) = 1 \qquad p^{k\ell} = x^2 + 4qq'y^2 \qquad (\frac{\epsilon_{2p}}{p}) = (-1)^y $ $ \frac{(-1)}{p^{k\ell}} = 1, (\frac{q}{p}) = (\frac{q'}{p}) = -1 \qquad (\frac{\epsilon_{2p}}{p}) = (-1)^y $ $ \frac{(\frac{-1}{p})}{p^{k\ell}} = (-1)^y = (\frac{q'}{p}) = 1 \qquad p^{k\ell} = x^2 + 16qq'y^2 \qquad (\frac{\epsilon_{2p\ell}}{p}) = (-1)^y $ $ \frac{(-1)}{p} = (\frac{2}{p}) = (\frac{q'}{p}) = (\frac{q'}{p}) = 1 \qquad p^{k\ell} = x^2 + 16q'y^2 \qquad (\frac{\epsilon_{2p\ell}}{p}) = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = (-1)^y = (-1)^y = (-1)^y $ $ \frac{(-1)}{q^{k\ell}} = (-1)^y = ($		$p^{k\ell} = x^2 + 16qy^2$	$\left(\frac{\epsilon_q}{p}\right)_4 = (-1)^p$
$\frac{p^{k\ell} = x^2 + 16qy^2}{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = 1}{p^{k\ell} = x^2 + 8qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right) = (-1)^y}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}{p^{k\ell} = 8x^2 + qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right) = (-1)^y}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right) = (-1)^{x+1}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right) = -1$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{p^{k\ell} = x^2 + 8qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right) = -1$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p'}\right) = \left(-\frac{1}{p'}\right)$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p'}\right)^y = \left(-\frac{1}{p'}\right)^y = \left(-\frac{1}{p'}\right) = 1$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p'}\right)^y = \left$	$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$		$\left(\frac{\epsilon_q}{p}\right)_4 = \left(-1\right)^{\frac{s-1}{4} + \frac{p-1}{8}}$
$\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(-\frac{1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{p^{kt} = x^2 + 8qy^2}{\left(\frac{p}{p}\right) = (-1)^{r+1}}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{kt} = x^2 + qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = (-1)^{r+1}}{2p^{kt} = x^2 + qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = (-1)^{r+1}}{2p^{kt} = x^2 + qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = 1}{2p^{kt} = x^2 + qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = 1}{2p^{kt} = x^2 + 8qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = 1}{2p^{kt} = x^2 + 8qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = x^2 + 8qy^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = 4x^2 + 4qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = 4x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = \left(-\frac{1}{p}\right)}{2p^{kt} = 4x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = 4x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = 4x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = -1}{2p^{kt} = 4x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{2q}}{p}\right) = \left(-\frac{1}{p}\right)}{2p^{kt} = \left(-\frac{1}{p}\right)}$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{kt} = qx^2 + 16q'y^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{2p^{kt} = \left(-\frac{1}{p}\right)^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = \left(-\frac{1}{p}\right)^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = x^2 + qq'y^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{q}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right) = \left(-\frac{1}{p}\right)}{4p^{kt} = q^2}$ $\frac{\left(\frac{\epsilon_{qq'}}{p}\right)}{4p^{kt} = q^2}$ $\left($, , ,		$\left(\frac{\epsilon_q}{n}\right) = (-1)^y$
$\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \left(\frac{\epsilon_q}{p}\right) = 1$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + qy^2} \qquad \left(\frac{\epsilon_q}{p}\right) = -1$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = x^2 + 8qy^2} \qquad \left(\frac{\epsilon_{2q}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{2p^{k\ell} = 4x^2 + qq'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = \left(-1\right)^y$ $\frac{\left(-\frac{1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{2p^{k\ell} = 4x^2 + qq'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = \left(-1\right)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16qq'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right)}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right)}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$ $\frac{\left(-\frac{1}{p}\right) = \left(\frac{q'}{p}\right)}{2p^{k\ell} = x^2 + 16q'y^2} \qquad \left(\frac{\epsilon_{qq}}{p}\right)_{4} = (-1)^y$	$\frac{1}{\left(\frac{-1}{n}\right)} = \left(\frac{2}{n}\right) = \left(\frac{q}{n}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2$	/ >
$\frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}$ $\frac{p^{k\ell} = x^2 + 4qq'y^2}{p^2} = \frac{\left(\frac{\epsilon_{qq}}{p}\right)}{\left(\frac{\epsilon_{qq}}{p}\right)} = \frac{(-1)^y}{p^2}$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}$ $\frac{p^{k\ell} = x^2 + 4qq'y^2}{p^2} = \frac{\left(\frac{\epsilon_{qq}}{p}\right)}{\left(\frac{\epsilon_{qq}}{p}\right)} = \frac{(-1)^y}{p^2}$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{q'}{p}\right) = 1}$ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{\epsilon_{qq}}{p}\right)} = \frac{(-1)^y}{p^2} = \frac{(-1)^y}{p^2}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\left(\frac{q'}{p}\right) = 1}$ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{\epsilon_{qq}}{p}\right)} = \frac{(-1)^y}{p^2} = \frac{(-1)^y}{q^2}$ $\frac{\left(\frac{\epsilon_{qq}}{p}\right)}{\left(x = 1(mod 4)\right)} = \frac{(-1)^y}{p^2} = \frac{(-1)^y}{q^2}$ $\frac{\left(\frac{\epsilon_{qq}}{p}\right)}{\left(x = 1(mod 4)\right)} = \frac{(-1)^y}{p^2} = \frac{(-1)^y}{q^2} = \frac{(-1)^y}{q^2}$	<u> </u>	$p^{k\ell} = 8x^2 + qy^2$	(P)
$\frac{2p^{kl} = x^2 + qy^2}{\left(\frac{p}{p}\right) = \left(\frac{q}{p}\right) = 1}$ $\frac{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1}{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}$ $\frac{p^{kl} = x^2 + 4qq'y^2}{p^{kl} = 4x^2 + qq'y^2} = \left(\frac{\epsilon_{qq'}}{p}\right)_{+} = (-1)^y$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1}$ $\frac{p^{kl} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = 1} = \frac{\left(\frac{q'}{p}\right)}{\left(\frac{q'}{p}\right)} = 1$ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{q'}{p}\right) = 1}$ $\frac{p^{kl} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right)^4} = \frac{\left(-1\right)^y}{\left(\frac{q'}{p}\right)^4} = \left$	$\left(-\frac{1}{2}\right) - \left(\frac{q}{2}\right) - 1$	$p^{k\ell} = x^2 + qy^2$	$\left(\frac{\epsilon_q}{p}\right) = +1$
$ \frac{\left(-1\right)}{\left(\frac{p}{p}\right)} = 1, \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = -1 $ $ \frac{\left(-1\right)}{p} = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{p^{k\ell} = x^2 + 4qq'y^2}{p^2} = \left(\frac{\epsilon_{qq}}{p}\right)_{-4} = (-1)^y $ $ \frac{\left(-1\right)}{p} = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1 $ $ \frac{\left(-1\right)}{p} = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{\left(-1\right)}{p} = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{\left(-1\right)}{p} = 1, \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{\left(-1\right)}{p} = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{p^{k\ell} = x^2 + 16qq'y^2}{p^2} = \left(\frac{\epsilon_{qq}}{p}\right)_{-4} = (-1)^y $ $ \frac{\left(-1\right)}{p} = \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = 1 $ $ \frac{p^{k\ell} = x^2 + 16qq'y^2}{p^2} = \left(\frac{\epsilon_{qq}}{p^2}\right)_{-4} = (-1)^y $ $ \frac{\left(\frac{\epsilon_{qq}}{p}\right)}{p^2} = \left(-1\right)^y $	· · · · · · · · · · · · · · · · · · ·	$2p^{k\ell} = x^2 + qy^2$	$\left(\frac{\epsilon_{\eta}}{p}\right) = -1$
$\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = (-1)^y}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = (-1)^y}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = \left(-\frac{2}{q'}\right)(-1)^{r+1}}{p^{r+1}} \qquad \frac{\left(-\frac{1}{p}\right) = 1}{\left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1} \qquad p^{k\ell} = x^2 + 16qq'y^2 \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = (-1)^y}{p^2} \qquad \frac{\left(-\frac{1}{p}\right)_+ = \left(\frac{q'}{p}\right)_+ = \left(\frac{q'}{p}\right)_+ = 1}{p^2} \qquad \frac{p^{k\ell} = x^2 + 16qq'y^2}{q^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = (-1)^y}{p^2} \qquad \frac{\left(-\frac{1}{p}\right)_+ = \left(\frac{q'}{p}\right)_+ = \left(\frac{q'}{p}\right)_+ = 1}{q^2} \qquad \frac{p^{k\ell} = x^2 + 16qq'y^2}{q^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_+ = (-1)^y}{q^2} $	<u> </u>	$p^{k\ell} = x^2 + 8qy^2$	()
$\frac{\left(-\frac{1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{p^{k\ell} = 4x^2 + qq'y^2} \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}} = \left(-\frac{2}{q'}\right)(-1)^{x+1}}$ $\frac{\left(-\frac{1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{p}{p}\right) = \left(\frac{q'}{p}\right) = 1} \qquad p^{k\ell} = x^2 + 16qq'y^2 \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(\frac{q}{p}\right)_{+}} = (-1)^y}{\left(\frac{p}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1} \qquad p^{k\ell} = qx^2 + 16q'y^2 \qquad \frac{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}} = (-1)^{y+1}}{\left(\frac{p}{p}\right) = \left(\frac{q'}{p}\right) = 1} \qquad \frac{p^{k\ell} = x^2 + 16qq'y^2 \qquad \left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(x = 1(mod\ 4)\right)} \qquad \frac{p^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(x = 1(mod\ 4)\right)} \qquad \frac{p^{k\ell} = qx^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq'}}{p}\right)_{+}}{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}} = (-1)^y}{\left(\frac{\epsilon_{qq'}}{p}\right)_{+}} = (-1)^y$	$\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = -1$		````
$\frac{p^{k\ell} = 4x^2 + qq'y^2}{\left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1} $ $\frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = -1} $ $\frac{p^{k\ell} = qx^2 + 16q'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16qq'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = x^2 + 16q'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $\frac{p^{k\ell} = qx^2 + 16q'y^2}{\left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = \left(\frac{q'}{p}\right) = 1} $	$\left(\frac{-1}{2}\right) - \left(\frac{q}{2}\right) - \left(\frac{q'}{2}\right) - 1$	$p^{k\ell} = x^2 + 4qq'y^2$	<u> </u>
$ \frac{\left(-1\right)}{p} = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1 \qquad p^{k\ell} = x^2 + 16qq'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{\left(-1\right)}{p} = 1, \left(\frac{2}{p}\right) = \left(\frac{q'}{p}\right) = -1 \qquad p^{k\ell} = qx^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^{y+1} \\ \frac{\left(-1\right)}{p} = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1 \qquad \frac{p^{k\ell} = x^2 + 16qq'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16qq'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + qq'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16qq'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y \\ \frac{q^{k\ell} = x^2 + 16q'y^2 \qquad \left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^$		$p^{k\ell} = 4x^2 + qq'y^2$	() (9)
$ \frac{\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1}{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1} $ $ \frac{p^{k\ell} = x^2 + 16q'y^2}{4p^{k\ell} = x^2 + 16q'y^2} = \frac{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y}{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y} $ $ \frac{q^{k\ell} = x^2 + 16q'y^2}{4p^{k\ell} = x^2 + qq'y^2} = \frac{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y}{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y} $ $ \frac{p^{k\ell} = qx^2 + 16q'y^2}{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y} = \frac{p^{k\ell} = qx^2 + 16q'y^2}{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y} $	<u> </u>		$\left(\frac{\epsilon_{qq'}}{p}\right) = -1$
$\frac{\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1}{\frac{4p^{k\ell} = x^2 + 16qq'y^2}{4p^{k\ell} = x^2 + qq'y^2}} \frac{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y}{\left(x \equiv 1(mod\ 4)\right)}$ $\frac{\left(\frac{-1}{p}\right)_4 = (-1)^y}{\left(x \equiv 1(mod\ 4)\right)}$ $\frac{\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^y}{\left(x \equiv 1(mod\ 4)\right)}$			$\left(\frac{\epsilon_{qq'}}{p}\right)_4 = (-1)^y$
$ \frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q}{p}\right) = 1}{4p^{k\ell} = x^2 + qq'y^2} \frac{\left(\frac{p}{q}\right)^4 = \left(-1\right)^{\frac{\ell-1}{4} + \frac{p-1}{8}}}{\left(x = 1(mod\ 4)\right)} $ $ \frac{\left(\frac{-1}{p}\right) = \left(\frac{q}{p}\right)^4 = \left(-1\right)^{\frac{\ell-1}{4} + \frac{p-1}{8}}}{\left(\frac{q}{p}\right)^4 = \left(-1\right)^{\frac{\ell-1}{4} + \frac{p-1}{8}}} $	$\left(\frac{-1}{p}\right) = 1, \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1$	$p^{k\ell} = qx^2 + 16q'y^2$	7
$\frac{(x \equiv 1 \pmod{4})}{(x \equiv 1 \pmod{4})} = \frac{qq}{q} = (-1)^{-4} = 8$ $\frac{(-1)}{(-1)} = \frac{q}{q} = \frac{q}{q} = (-1)^{-4} = 8$ $\frac{(-1)}{(-1)} = \frac{q}{q} = \frac{q}{q} = (-1)^{-4} = 8$	$\left(\frac{-1}{2}\right) = \left(\frac{2}{2}\right) = \left(\frac{q}{2}\right) = \left(\frac{q'}{2}\right) = 1$		<u> </u>
	\ p / \ \ p / \ \ p / \ \ p / \ \	$(x \equiv 1 (mod \ 4))$	/ >
$(v) / (v) / (v) / (v) / (4v)^{k\ell} = av^2 + a'v^2 + (e^{-\lambda}) - \frac{v-1}{2} + \frac{v+3}{2}$	$\left(\frac{-1}{-1}\right) = 1, \left(\frac{2}{-}\right) = \left(\frac{q}{-}\right) = \left(\frac{q'}{-}\right) = -1$		
$(y \equiv 1 \pmod{4}) \qquad \left(\frac{c_{nq'}}{p}\right)_4 = (-1)^{\frac{-4}{4} + \frac{-8}{8}}$	\ p / \ \ p / \ \ p / \ \ p / \ \ p / \ \ \ p / \ \ \ p / \ \ \ \	$\begin{aligned} 4p^{\kappa t} &= qx^2 + q'y^2 \\ (y &\equiv 1 \pmod{4}) \end{aligned}$	$\left(\frac{\epsilon_{qq}}{p}\right)_4 = (-1)^{\frac{y-1}{4} + \frac{y+3}{8}}$

TABLE (part 2)

Notation: $h=h(-m,-2m),\ k=$ largest odd divisor of h(-m), $\ell=$ largest odd divisor of $h(-2m),\ ^*=$ conjectured Note: m and 2m give rise to the same field.

Case	h	h(- m)	h(-2m)	$N(\epsilon_m)$	m	Characterization of m
2.1(i) 2.1(ii)	1(mod 2)	1(mod 2)	2(mod 4)	- 1	q	$q = 3 \pmod{8}$
2.2	2(mod 4)	2(mod 4)	2(mod 4)	- 1	q	$q \equiv 5 \pmod{8}$
2.3(i)* 2.3(ii)*	2(mod 4)	1(mod 2)	4(mod 8)	- 1	q	$q \equiv 7 \pmod{16}$

TABLE (part 3)

NOTATION: h = h(-2m, m), k = largest odd divisor of h(m), l = largest odd divisor of h(-2m), * = conjectured

	, –	largest oc	id divisor ($n_{(-}$	2m,	= conjectured
Case	h	h(-2m)	h(m)	$N(\epsilon_m)$	m	Characterization of m
3.1	1(mod 2)	2(mod 4)	1(mod 2)	- 1	q	$q \equiv 5 \pmod{8}$
3.2(i) 3.2(ii)	1(mod 2)	1(mod 2)	1(mod 2)	+ 1	2q	$q \equiv 3 \pmod{8}$
3.2(iii)						$q \equiv 7 \pmod{8}$
3.3	2(mod 4)	2(mod 4)	2(mod 4)	- 1	2q	$q \equiv 5 \pmod{8}$
3.4(i)	2(mod 4)	4(mod 8)	1(mod 2)	- 1	q	$q = r^2 - 8s^2 \equiv 1 \pmod{8}$
3.4(ii)						$(r > 0, r \equiv 5, 7 \pmod{8})$
3.5	2(mod 4)	2(mod 4)	1(mod 2)	+ 1	q	$q \equiv 3 \pmod{8}$
3.6(i)* 3.6(ii)	2(mod 4)	4(mod 8)	1(mod 2)	+ 1	qq'	$q \equiv 3(\text{mod } 8), q' \equiv 7(\text{mod } 8)$ $\left(\frac{q'}{q}\right) = +1$
3.7(i)* 3.7(ii)*	2(mod 4)	2(mod 4)	2(mod 4)		2qq'	$q = 5(\text{mod } 8), q = 3(\text{mod } 8)$ $\left(\frac{q'}{q}\right) = -1$ $q = 5(\text{mod } 8) \ q' = 7(\text{mod } 8)$
3.7(iii)*						$\left(\frac{q'}{q}\right) = -1$

Congruental Character of Prime <i>p</i>	Primitive Quadratic Partition of $p^{k\ell}$	Character of Fundamental Unit
$\left(\frac{-1}{n}\right) = \left(\frac{2}{n}\right) = \left(\frac{q}{n}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2 p^{k\ell} = a^2 + 16qb^2$	$\left(\frac{\epsilon_2}{p}\right) = (-1)^{y+b+\frac{p-1}{8}}$
$\binom{p}{p} - \binom{p}{p} - \binom{p}{p} = 1$	$\frac{p^{k\ell} = a^2 + 16qb^2}{p^{k\ell} = x^2 + 8qy^2}$ $\frac{4p^{k\ell} = x^2 + qb^2}{(a \equiv 1 \pmod{4})}$	$\left \left(\frac{\epsilon_2}{p} \right) \right = (-1)^{p + \frac{a-1}{4}}$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2$ $= a^2 + qb^2$	$\left(\frac{\epsilon_2}{p}\right) = (-1)^{\nu+b}$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2$ $= a^2 + 16qb^2$	$\left(\frac{\epsilon_2}{p}\right) = \left(\frac{2}{p}\right)_4 (-1)^b$
$\left(\frac{1}{p}\right) = \left(\frac{1}{p}\right) = \left(\frac{1}{p}\right) = 1$	$p^{k\ell} = 2x^2 + qy^2$ $= a^2 + 16qb^2$	$\left(\frac{\epsilon_2}{p}\right) = \left(\frac{2}{p}\right)_4 (-1)^{b+1}$

Congruental Character	PRIMITIVE QUADRATIC	CHARACTER OF
of Prime p	Partition of pkf	FUNDAMENTAL UNIT
$ \left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1 $	$p^{k\ell} = x^2 + 8qy^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_q}{p}\right) = (-1)^{y+d}$
	$p^{k\ell} = x^2 + 16qy^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_{2q}}{p}\right)_4 = (-1)^{\mathbf{y}+d+\frac{p-1}{8}}$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$ \begin{aligned} 4p^{k\ell} &= x^2 + qy^2 \\ (x &= 1 \pmod{4}) \\ p^{k\ell} &= c^2 + 8d^2 \end{aligned} $	$\left(\frac{\epsilon_{2a}}{p}\right)_4 = (-1)^{\frac{r-1}{4} + d}$
	$p^{k\ell} = x^2 + 16qy^2$	$\left(\frac{\epsilon_{2q}}{p}\right)_4 = (-1)^{\nu + \frac{p-1}{8}}$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$p^{k\ell} = x^2 + qy^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_{2q}}{p}\right) = (-1)^{y+d}$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_q}{p}\right) = (-1)^{\nu+d}$
$\left(\frac{1}{p}\right) - \left(\frac{1}{p}\right) - \left(\frac{1}{p}\right) = 1$	$p^{k\ell} = 2x^2 + qy^2$	$\left \frac{\epsilon_q}{p} \right = (-1)^{r+d+D}$
	$= c^2 + 8d^2$	(where $q = C^2 + 8D^2$)
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = 1$	$p^{k\ell} = x^2 + 8qy^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_q}{p}\right)_4 = (-1)^{y+d+\frac{p-1}{8}}$
$\frac{\left(-1\right)}{\left(\frac{p}{p}\right)} = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1$	$p^{k\ell} = x^2 + 8qq'y^2$ $= c^2 + 8d^2$	$\left(\frac{\epsilon_{qq'}}{p}\right)_4 = \left(\frac{\epsilon_{2q'}}{p}\right)_4 (-1)^{y+d}$
$ \left(\frac{-1}{p}\right) = 1, \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = -1 $		$\left(\frac{\epsilon_{qq'}}{p}\right) = -1$
	$p^{k\ell} = x^2 + 16qq'y^2$	$\left(\frac{\epsilon_{2\eta\eta'}}{p}\right)_4 = \left(\frac{\epsilon_{2\eta}}{p}\right)\left(\frac{\epsilon_{\eta'}}{p}\right)_4 (-1)^y$
$\left(\frac{-1}{p}\right) = \left(\frac{2}{p}\right) = \left(\frac{q}{p}\right) = \left(\frac{q'}{p}\right) = 1$	$p^{k\ell} = x^2 + 16qq'y^2$	$\left(\frac{\epsilon_{2qq'}}{p}\right)_4 = \left(\frac{\epsilon_{2q'}}{p}\right)_4 \left(\frac{2}{p}\right)_4 (-1)^y$
	$4p^{k\ell} = x^2 + qq'y^2$ $(x \equiv 1 \pmod{4})$	$\left(\frac{\epsilon_{2\eta\eta'}}{p}\right)_4 = \left(\frac{\epsilon_{2\eta'}}{p}\right)_4 \left(\frac{2}{p}\right)_4 (-1)^{\frac{x-1}{4} + \frac{p-1}{8}}$

We begin by characterizing such fields (excluding the field $Q(\sqrt{-1}, \sqrt{2})$). Our starting point is a formula of Hergoltz [13]; if $K \neq Q(\sqrt{-1}, \sqrt{2})$ is an imaginary bicyclic biquadratic field with class number H, k_1 , k_2 , k_3 its three quadratic subfields with k_3 real (k_i having class number h_i), then

$$H=rac{h_1h_2h_3}{\lambda_0}$$
 ,

where for θ and ϵ fundamental units of K and k_3 respectively we have $N_{K/k_3}(\theta) = \epsilon^{\lambda_0}$. Then, using various divisibility results on class numbers of quadratic fields [1], [3], [4], [5], [7], [8], [10], [11], [12], together with certain elementary properties of the fundamental unit ϵ_m [8], [18], we obtain (after some calculation) the first six columns of the table, where h(m) denotes the class number of $Q(\sqrt{m})$ and h(m, n) the class number of $Q(\sqrt{m})$, \sqrt{n} .

We have been able to obtain results on either the quadratic character or the quartic character of ϵ_m in all of the cases listed in the table, except those marked with an asterisk, where we have only conjectures (see final three columns of table). We emphasize that all quadratic partitions indicated in the table are primitive ones, that is, the values of the variables are coprime, and the q and q' denote odd distinct primes.

We illustrate the ideas involved by treating case 1.3 (ii). In this case $q \equiv 5 \pmod 8$ is prime and p is a prime satisfying (-1/p) = 1, (2/p) = (q/p) = -1. Then in $Q(\sqrt{2q}, \sqrt{-2q})$ we have the prime ideal factorizations (p) = PP'PP'PP' and $(2) = Q^4$, where (2) = PP'PP'PP' are distinct conjugate prime ideals and $(2) = Q^4$, where (2) = PP'PP'PP' are distinct conjugate prime ideals and $(2) = Q^4$, where $(2) = Q^4$ and $(2) = Q^4$ with respect to $(2) = Q^4$ with respect to $(2) = Q^4$ and $(2) = Q^4$ has class number $(2) = Q^4$ where $(2) = Q^4$ is principal with respect to $(2) = Q^4$ and $(2) = Q^4$ has class number $(2) = Q^4$ where $(2) = Q^4$ is principal or $(2) = Q^4$ are odd, there is a unique ideal class $(2) = Q^4$ is principal while $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal, either $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal, either $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principal or $(2) = Q^4$ is principal. As $(2) = Q^4$ is principal or $(2) = Q^4$ is principa

$$\alpha = A + \frac{B}{2}\sqrt{2q} + C\sqrt{-1} + \frac{D}{2}\sqrt{-2q},$$

where A, B, C, D are rational integers with $B \equiv D \pmod{2}$. Then we have

$$\alpha \bar{\alpha} = \{ (A^2 + C^2) + \frac{q}{2} (B^2 + D^2) \} + (AB + CD) \sqrt{2q}$$

and

$$\alpha \bar{\alpha}' = \{(A^2 + C^2) - \frac{q}{2}(B^2 + D^2)\} + (AD - BC)\sqrt{-2q}$$

so that

$$p^{k\ell} = 8x^2 + qy^2 = 2u^2 - qv^2$$

with

$$x = \frac{1}{4} (A^2 + C^2 - \frac{q}{2}(B^2 + D^2)), \ y = AD - BC,$$
 $u = \frac{1}{2} (A^2 + C^2 + \frac{q}{2}(B^2 + D^2)) > 0, \ v = AB + CD.$

Note that the possibility $-p^{k\ell} = 2u^2 - qv^2$ cannot occur as $\alpha\alpha'\overline{\alpha}\alpha' > 0$. Moreover (x, y) = (u, v) = 1, for if (x, y) > 1 ((u, v) > 1) can be treated similarly we have p|x, p|y, so that $p|4x + y\sqrt{-2q} = \alpha\overline{\alpha}'$ giving $(p) \mid (\alpha)(\overline{\alpha}')$, $PP'\overline{PP'} \mid Q^2P^{k\ell}\overline{P}^{k\ell}$, that is $P' \mid P$ or \overline{P}' , since P' is a prime ideal coprime with Q, contradicting that P, P', \overline{P} , \overline{P}' are distinct.

Next from $p^{k\ell} = 2u^2 - qv^2$ (u > 0) we have $\sqrt{2q} \equiv 2u/v \pmod{p}$ so that

$$\left(\frac{\epsilon_{2q}}{p}\right) = \left(\frac{T + U\sqrt{2q}}{p}\right) = \left(\frac{T + U2u/v}{p}\right)$$
$$= \left(\frac{v}{p}\right)\left(\frac{Tv + 2Uu}{p}\right).$$

Choosing, without loss of generality, v > 0, we have $(v/p) = (p/v) = (p^{k\ell}/v) = (2u^2/v) = (2/v)$, as $p \equiv 1 \pmod{4}$ and $k\ell$ odd.

Next we have

$$\left(\begin{array}{c} \frac{Tv + 2Uu}{p} \end{array}\right) = \left(\begin{array}{c} \frac{p}{Tv + 2Uu} \end{array}\right) = \left(\begin{array}{c} \frac{p^{k\ell}}{Tv + 2Uu} \end{array}\right)$$

$$= \left(\begin{array}{c} \frac{2u^2 - qv^2}{Tv + 2Uu} \end{array}\right)$$

$$= \left(\begin{array}{c} -2\\ Tv + 2Uu \end{array}\right) \left(\begin{array}{c} \frac{2qv^2 - 4u^2}{Tv + 2Uu} \right)$$

$$= \left(\begin{array}{c} -2\\ Tv + 2Uu \end{array}\right),$$

as $(2qv^2-4u^2)/r=1$ for each prime factor r of Tv+2Uu. Hence we have

$$\left(\begin{array}{c} \frac{\epsilon_{2q}}{p} \end{array}\right) = \left(\frac{2}{v}\right) \left(\begin{array}{c} -2 \\ \overline{Tv + 2Uu} \end{array}\right).$$

Now as $T \equiv \pm 3 \pmod{8}$, $U \equiv 1 \pmod{4}$, we have

$$\left(\begin{array}{c} \frac{\epsilon_{2q}}{p} \end{array}\right) \ = \ \left(\frac{2}{v}\right) \ \left(\frac{-2}{3v+2u}\right) \ = \ \left(\frac{2}{v}\right) \left(\begin{array}{c} \frac{-2}{v+6u} \end{array}\right) \ .$$

Consideration of cases gives

$$\left(\begin{array}{c} \frac{\epsilon_{2q}}{p} \end{array}\right) = - \left(\begin{array}{c} -1 \\ u \end{array}\right).$$

Next as A and C are of opposite parity (since v is odd) we have

$$u + 2x = A^2 + C^2 \equiv 1 \pmod{4}$$

and so

$$\left(\begin{array}{c} -1 \\ u \end{array}\right) = (-1)^x$$

giving

$$\left(\begin{array}{c} \frac{\epsilon_{2q}}{p} \end{array}\right) = (-1)^{x+1}.$$

Some special cases of our results are due originally to Brandler [2] and Lehmer [15], [16]. For example case 1.4 was proved by Brandler for q=17 and by Lehmer [15] for q=17, 73, 97 and 193, see also Parry [19], while case 3.4 can be thought of as giving an explicit form of some results ([15], Theorems 2 and 3) of Lehmer.

We note that by combining cases 1.1, 1.3 and 2.2 we obtain, for primes $q \equiv 5 \pmod{8}$ the relation $(\epsilon_{2q}/p) = (\epsilon_{2}/p)(\epsilon_{q}/p)$, which is a special case of a remark of Barrucand (noted in [15]) on a result of Rédei ([20], equation (30)), as well as a special case of a theorem of Furuta [9]. (See also a related paper of Williams [22]). Combining cases 1.2 and 3.2 we obtain the following analogous result relating the biquadratic characters of ϵ_{q} and ϵ_{2q} in case $q \equiv 3 \pmod{4}$.

THEOREM 1. Suppose q is a prime with $q \equiv 3 \pmod{4}$. Let p be a prime such that (-1/p) = (2/p) = (q/p) = 1. Then we have

$$\left(\begin{array}{c} \frac{\epsilon_{2q}}{p} \end{array}\right)_4 \, = \, \left\{ \begin{array}{c} \left(\frac{2}{p}\right)_4 \, \left(\frac{\epsilon_q}{p}\right)_4 \, , & \text{ if } q \equiv 3 \, (\text{mod } 8), \\ \\ \left(\frac{-1}{p}\right)_8 \, \left(\frac{\epsilon_q}{p}\right)_4, & \text{ if } q \equiv 7 \, (\text{mod } 8). \end{array} \right.$$

For primes $q \equiv 5 \pmod 8$, we may use the relationship $(\epsilon_{2q}/p) = (\epsilon_2/p)(\epsilon_q/p)$ in conjunction with cases 1.1, 2.2, and 3.3 to establish another relationship, a direct proof of which would seem to require the arithmetic of the octic extension $Q(\sqrt{q}, \sqrt{-1}, \sqrt{2})$.

Theorem 2. Suppose q is a prime, $q \equiv 5 \pmod{8}$. Let p be a prime with (-1/p) = (2/p) = (q/p) = 1 so that

$$p^{k\ell} = x^2 + qy^2 = a^2 + 8qb^2 = c^2 + 8d^2,$$

with (x, y) = (a, b) = (c, d) = 1. Then we have

$$y + b + d \equiv 0 \pmod{2}.$$

The authors would like to thank Mr. Lee-Jeff Bell who did some computing in connection with the preparation of this paper.

REFERENCES

- 1. P. Barrucand and H. Cohn, Note on primes of type $x^2 + 32y^2$, class number, and residuacity, J. reine angew. Math. 238 (1969), 67–70.
- 2. J. A. Brandler, Residuacity properties of real quadratic units, J. Number Theory 5 (1973), 271–286.
- 3. E. Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413-419.
- 4. _____, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), 99-107.
- 5. ____Class number of complex quadratic fields, J. Number Theory 6 (1974), 185-191.
- 6. E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with class number 1, J. reine angew. Math. 266 (1974), 118-120.
- 7. _____, Class numbers of imaginary quadratic fields having exactly three discriminantal divisors, J. reine angew. Math. 260 (1973), 31-34.
- 8. H. Cohn, A second course in number theory, John Wiley and Sons, Inc., New York, 1962.
- 9. Y. Furuta, Norms of units of quadratic fields, J. Math. Soc. Japan 11 (1959), 139–145.
- 10. J. W. L. Glaisher, On the expressions for the number of classes of a negative determinant, Quart. J. Math. (Oxford) 34 (1903), 178-204.
- 11. H. Hasse, Über die Klassenzahl des Körpers $P(\sqrt{-2p})$ einer Primzahl $p \neq 2$, J. Number Theory 1 (1969), 231–234.

- 12. _____, Über die Teilbarkeit durch 2³ der Klassenzahl imaginärquadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. reine angew. Math. 241 (1970), 1-6.
 - 13. G. Herglotz, Über einen Dirichletschen Satz., Math. Zeit. 12 (1922), 255-261.
- 14. E. Lehmer, On the quadratic character of some quadratic surds, J. reine angew. Math. 250 (1971), 42-48.
 - 15. _____, On some special quartic reciprocity laws, Acta Arith. 21 (1972), 367-377.
- 16. _____, On the quartic character of quadratic units, J. reine angew. Math. 268/269 (1974), 294-301.
- 17. P. A. Leonard and K. S. Williams, The quadratic and quartic character of certain quadratic units. I, Pacific J. Math. 71 (1977), 101-106.
- 18. G. Pall, Discriminantal divisors of binary quadratic forms, J. Number Theory 1 (1969), 525-533.
 - 19. C. J. Parry, On a conjecture of Brandler, J. Number Theory 8 (1976), 492-495.
- **20.** L. Rédei, Über die Pellsche Gleichung $t^2-du^2=-1$, J. reine angew. Math. 173 (1935), 193–221.
 - 21. P. Ribenboim, Algebraic Numbers, John Wiley and Sons, Inc., New York, 1972.
- 22. H. C. Williams, The quadratic character of a certain quadratic surd, Utilitas Math. 5 (1974), 49–55.
- 23. K. S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519–526.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, AZ 85281 DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA K1S 5B6