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NONLINEAR PERTURBATION OF A LINEAR SYSTEM OF 
DIFFERENTIAL EQUATIONS WITH A REGULAR 

SINGULAR POINT 
WYATT G. COOPER AND THOMAS G. HALLAM* 

ABSTRACT. The asymptotic behavior of the solutions of a non­
linear perturbation of a linear system of ordinary differential 
equations with a regular singular point is discussed. Properties 
of the solutions are considered both for large values of the 
independent variable and for values close to the singular point. 

1. Introduction. If A = A(t) is a continuous n X n matrix function 
defined on Z = (0, oo ) and the linear system of differential equations 

(1) dyldt = A(t)y 

has a regular singular point at t = 0, then an important problem for 
(1) is the determination of the asymptotic behavior of the solutions of 
(1) at each endpoint of I. Frequently mathematical models are per­
turbations of the linear equation (1) and are of the form 

(2) dxldt = A(t)x + f(t, x). 

In general, (2) is a nonlinear equation. A standard problem is to 
utilize knowledge about the solutions of (1) to investigate the behavior 
of the solutions of (2); this article makes a contribution in this direc­
tion. 

Our work is motivated by the research of S. Faedo [2], T. G. Hallam 
[3] and A. F. Izé [4]. The asymptotic results in [2] and [3] are de­
veloped for scalar linear differential equations. Those in [ 4] are valid 
for a linear nonhomogeneous system of differential equations. Our 
results, while being of the same character as Izé's, are extensions of his 
work to the nonlinear equation (2). We also allow more general hypo­
theses upon the linear unperturbed equation than is permitted in 
[4]. 

2. Preliminaries. In this section, preliminary notation and results 
are given. Many of the omitted details may be found in [4]. In 
equations (1) and (2), the symbols y and x denote n-vectors. The func­
tion / is continuous from / X Rn to Rn. We require, as is done in 
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[4], that A have the form 

(3) A(t) = (cfct-p«) 

where c{j and p{j are constants, i, j = 1,2, • • *, n. 
Employing (3), equations (1) and (2) can be written in the form 

(1 ') dyjdt = 2 Cijt-Pvyj, i = 1, 2, • • -, n; 

n 

(2') dxf/dt = X ci3l~Vi'h + /i(*> *i> *2> ' * *> *«), 

i = 1,2, • • -,n. 

The following lemmas are proved in [4]. The first lemma indicates 
how the well known Cauchy-Euler scalar differential equation may be 
extended to system form. 

LEMMA. 1. Let the powers p{j be of the form p{j = a, — a* + 1 
when Cij ^ 0, i9 j = 1, 2, • • -, n for some vector (a ls a2> * * "> <*J- A 
necessary and sufficient condition for the existence of a solution y(t) = 
(j/i(£), J/2(£)> ' ' %!/n(̂ )) o/ equation (1') such £/wz£ t/i(£) = a^ with 
a = (al5 a2, • • -, an) / 0 is tfia£ (a1? 02, • * -, a j te a solution of the 
indicial equation 

(4) det(C - r ) = 0 

where C = (cfy) and T = diag(a1? a2> ' * *> «J-

LEMMA 2. Le£ A = (ay) and B = (b^) be real or complex square 
matrices with B nonsingular. IfC= AB~l where C = (c^), then c^ = 
det C yde t B where C \j is the matrix obtained by the substitution 
of the ith row of A into thejth row ofB. 

Another lemma which we will use can be found in [3]. 

LEMMA 3. Let S > 0, tQ ̂  1, h(t) ^ O o n [to,00 ), and suppose that 
! \ h(t) dt < 00 . Then, l i m ^ " 0 J \ s8h(s) ds = 0. 

Assuming the hypotheses of Lemma 1, the change of variables 

(5) s= log*, t / i e - ^ = Zi 

transforms the system (1 ') into 

n 

(6) dZildt = (cu - ati)Zi + 2 cijzi> * = 1,2, • • -, n. 
J = I 
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The characteristic equation of the system (6) is 

(7) det((C - r ) - Ai) = 0. 

When the roots of (7), X£ = ßl + iyl are distinct and the only root 
with zero real part is identically zero, a fundamental matrix of solutions 
of equation (1) is 

Y(t) = fajV'+fiigtit)), i,j = 1,2, • • -,n, 

where gj(t) = cos^lnf) + i sin (y^lnf). 
We assume that Y(t) has been ordered in such a manner that 

ßj < 0 for l ^ j g m - 1, ßm = 0, and ßj > 0 for m + l g j ^ n. 
Define the projection matrices Px and P2 where Px has a one on the 
main diagonal in its first m columns and zeros elsewhere and P2 has 
ones on its main diagonal in its last n — m columns and zeros else­
where. 

Applying Lemma 2, we obtain 

m 

(8) Y(t)P1Y->(«) = (K-lfi8-«j S th s-haiigl(t)GjSL(S)), 
I = 1 

i,j = 1,2, • • -,n; 

(9) Y( t )P 2 Y-i (*)=(K-^«-« j J tßis-ßzan-gtWGvis)), 

i,j = 1,2, • • -,n; 

where Gi£(«) = (-iy+lFji(s)s-iy with F^(s) bounded on (0, oo ) and 

K s d e t Y W f e - « - ^ with a = 2 ï = i«*> 0 = 2ï=i0*> a n d T = 

3. Asymptotic Behavior of (2) as t —> oo . In the main result of this 
section, we require a constant B defined as follows. Let 

B y - sup | K - » | Ì |«ugt(t)C3i(*)| 

and B = sup i J = 1 2 . . . n B^. 

THEOREM 1. Le£ («i,«^, • • ' , cO foe a solution of (4) and satisfy 
Pij = otj, - a, + 1 /or et>ert/ c0- ^ 0, t , j = 1, 2, • • -, n. Suppose that 
the roots of (7) are distinct, and the root \m = 0. Let there exist con­
stants M > 0 and t0 § 1 swc/i that 

(10) f°° r«< | Ut, Mt**,Mt«*, • • •, Mf«.-)I d£ < M/2nB, 

i= 1,2, •••,»». 



250 W . G. COOPER AND T. G. HALLAM 

and assume that fi(t, r1? r2, * * ', rn) is nondecreasing in r, for each 
fixed (f, r1? r2, • • -, f>_i, r i + i , * • -, rn) G [t0, oo) X In~l,j= 1,2, • • -,n. 
77ien, corresponding to each solution y(t) = (yi(t), y2(*)» ' ' *> !/n(0) ° / 
(1') suc/i f W sup,>,0 |£~ai */*(*) | < M/2, £/*£re existe a solution x(t) = 
(xi(£), x2(£), * * -, *„(*)) of (2') suc/i £fta£ Xi(t) = yi(t) + ai(t)tai with 
limt^ooai(t) = a*, t = 1,2, • • -, n. 

PROOF. For the prescribed n-tuple (al5 a2, * ' '» «n)> we note that the 
space J3 of all continuous n-vector functions x = (xi9 x2, ' ', xn) with 
the property that there exist constants ^ = ki(x) such that \t~aiXi(t)\ ^ 
ki for all t G [£0, °° ) and all i = 1, 2, • • -, n is a Banach space with the 
norm of x £ ß given by ||x|| = ]£t

n=i sup,G[fo>0o) \t-a'.Xi(t)\. 
For p > 0, define !Bp = { z | z £ S , ||z|| = p}. S p is a closed convex 

subset of the Banach space !B. For x G i3M and y G SM/2> define the 
mapping T by 

Tx(t) = y(*)+ f Y(t)P1Y-1(*)/(*, *(*))& 

- | " Y(t)P8Y-1(*)/(*, x(*))d8. 

We employ the Schauder-Tychonoff fixed point theorem [1, p. 9] to 
show that T has a fixed point. 

Using the equations (8) and (9), the equalities tßis~ßi â l for 
s G [t0, t] and £ = 1, 2, - - -, m; tßi s~ßi g 1 for 5 G [*,<») and £ = 
m + 1, • • -,n; and the definition of B, we have 

|Tx,( t ) |^ \ylt)\ + B r t«i É MjS(*,*i(s),*2(*), • • - ,* n (*) ) |^ . 

Since x G S M , we have 

It-.TxMlalr-.yMI 

j = l f0 

g M/2 + M/2 = M; 

therefore, T maps ß M into itself. 
Next, we indicate how the continuity of T is established. Let x°, 

{xk}%=i belong to !BM and suppose that {xk} converges uniformly to 
x° on compact subintervals of I. Since each xk, k = 0 ,1 , • • -, belongs to 
2SM, condition (10) implies that J00 *-«< \f{t, xx

k{t),•••, xn
k(t))\ dt < 

00 ? k = 0, 1, • • -, hence, given any interval [t0, tx] and any e > 0, 
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there exists t2 = tx such that 

I"" t— \fj(s, *,«(*), • • -, xn°(s)) - fj(s, Xl
k(s), • • ; xn

k(s))\ ds < €l3nB. 
h 

The continuity o f / implies the existence of N with the property that 
whenever i ^ N 

f * S s-Qj USfc * i ° M . * • •> *»°(*)) - JS(«, * I * W , • • S *W*W)I * < €/3B. 

From the definition of T, we obtain |TXi°(f) - Tx{
k{t)\ < €t~ai for 

t S [t0, ti] and k^ N. This shows that T is continuous in the compact 
open topology. 

The functions in the image space T$BM are uniformly bounded iniS-
norm for each t G. [t0, a> ) since T!BM is a subset of HBM. They form an 
equicontinuous family on every finite subinterval of [t0,<*>) as the 
function z = Tx for x G: !BM satisfies the linear nonhomogeneous dif­
ferential equation z' = A(t)z + f(t,x(t)); and hence they have uni­
formly bounded derivatives on each finite subinterval of [t0, oo ). The 
compactness of T<BM now follows from Ascoli's Theorem. 

An application of the Schauder-Tyehonoff fixed point theorem yields 
a function x, x(t) = (xi(t\ • ' m,xn(t)), in iBM. This x satisfies the 
integral equations 

f t n m—1 

*° j = l £ - 1 

• augi(t)Gji(s)fAs> *i(*)> *2(s), ' - , *«(*)) ds 

• fj(s, XX(S)9 X2(s\ • • •,Xn(*))£fe 

" * j = l £ = m + l 

' Gji(s)fj(s> *i(s)> x2(s\ • -y xn(s)) (h, 

and is a solution of (2 '). In (11), we have used the hypothesis km = 0 
and, hence, gm = 1. 

Since/3£ < 0,£ = 1,2, • • -, m — 1, and the integral 

*i(t) 

(11) 
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(12) J truffa x^s), • • •,xn(«))ds 

converges for each j = 1, 2, • • -, n, Lemma 3 implies 

n m—1 rt n m — i 

lim K-i S S ^ Ä - ^ ^ g ^ O G ^ W 
*->« J f° j=i z=i 

-s-ajfj(s, xx(s), x2(s), • • -, xn(s)) ds = 0. 

For s GE [£, oo ), £0£ ^ $/*£, £ = m + 1, • • •, n, and the convergence of 
the integral in (12) yields 

-fj(s, Xi(«), x2(«), • • *, xn(s)) ds = 0. 

The convergence of the integral (12) also implies the existence of the 
limit 

rt n 

lim K-1 X ^imGjm(s)s-ajfi(s, x^s), x2(s\ • • -, xn(s)) ds = A*. 

Combining these results, we obtain lim^oo^~ai [**(£) — !/*(£)] = A,-. 

REMARK. The above result improves Theorem 2 of [4] in that we 
allow the real parts ß{ of the characteristic roots \{ to be positive. 

4. Asymptotic Behavior of (2) as t—> 0+ . In this section, we con­
sider the behavior of the solutions of the perturbed equation (2) near 
the singular point t = 0. 

The following analogue of Lemma 3 for the case t = 0 is used in our 
arguments. The proof is similar to that of Lemma 3, see [3]. 

LEMMA 4. Let 8 > 0, 0 < t0 ^ 1, h(t) ^OfortE. (0, t0], and sup­
pose that /o° h(t) dt < oo . Then, lim^0+ tô î!°s-%(s) ds = 0. 

With Y(t) having the same form as above, we decompose the solu­
tion space by employing the projections QY and Ç2? where Qx has ones 
on the main diagonal in its first m — 1 columns with zeros elsewhere, 
and Q2 has ones on the main diagonal in its last n — m + 1 columns 
and zeros elsewhere. 

Define B0 = supij=12...nB°ij where 

B%= sup I K - M S Kgi(t)Çii(s)\-
s,tE(0,to] 1=1 
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THEOREM 2. Let («!,<*£, • • - , a j be a solution of (4) and satisfy 
Pij = a* — 0£ + 1 for every c^ / 0, i,j = 1,2, • • -, n. Suppose that 
the roots A, = ßj + iŷ  of (7) are distinct and that the root km = 0. Le£ 
ffore exist constants M > 0 and £0> 0 < fo = 1> swc/i tfiaf 

f° *~ai IJï(*, M K AfW, • • -, Mt01-)] dt < M/2nB0, 

and assume that fi(t,rl9r2, • • -,rn) is nondecreasing in r$ for each 
fixed (t, rl9 r2, • • -, #>_!, r i + i , • • -, rn) E (0, *0] X I11"1, j = 1, 2, • • -, n. 
Then, corresponding to each solution y(t) = (yi(t)9y2(t)9 • * '>yn{t))of 
(1 ') suc/i fftaf sup tG(o,t0] l*"a4J/t(*)| < M/2, öftere existe a solution x(t) = 
(xl(t)9x2(t)9 • • %acn(f)) of (2') SMC/I tfwrt Xj(t) = y^t) + a^*)*«' witfi 
lim,_>0+ afa) = ai9 i = 1,2, • • -, n. 

PROOF. The proof is the dual of that of Theorem 1 for the interval 
(0, t0]. We consider the mapping T0 on the space !BM° = {z : z GE 
C[(0,«o],fl»],sup ,E<O.*0] \t-°'Zi(t)\^M9 i = 1,2, • • - ,n} defined by 

T0x(t) = y(f) + £ YWftY-W/ï«, *(*)) cfc 

- \t
t°Y(t)Q2Y^(s)f(s9x{s))d8. 

The Schauder-Tychonoff fixed point theorem can be used to show 
that T0 has a fixed point x in !BM°. This fixed point is a solution of 
(2') with the desired asymptotic behavior. The equation that cor­
responds to (11) is 

f t n m—1 
£ S t (°i+ßl) S-('"fßx) 

0 i = l Ä = l 

* OitgiWGjdsìfjis, x^s), x2(s), • • •, xn(s)) <& 

- K-i []° i t«<s-«jaimGjm(x) 
(13) ' i = 1 

•J§($, X^S), X2(S)9 • • -,xn(s))efe 

* j = ì i =m+l 

• Q*(*)JS(*>*IW>*2(*)> • • -,*«(*))<&. 
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The second group of terms on the right side of (13) can be readily 
shown to approach zero as t —» 0+ . The last group of terms approaches 
zeros as t —> 0 + by virtue of Lemma 4. The remaining expression has 
a limit as£—» 0+ . 

REMARK. Our discussions were directed to polynomial-like asymp­
totic solutions of (2). The more general case where the characteristic 
roots of (1) need not be distinct can be treated by our techniques; 
however, in this setting, the computations and notations become al­
most unmanageable. The reference [2] discusses a general case for 
a scalar linear differential equation. 
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