
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 3, Number 4, Fall 1973 

STRONGLY RIGID RELATIONS 
I. ROSENBERG 

ABSTRACT. Vopenka, Pultr and Hedrlin proved in 1965 that 
on any set A there exists a binary rigid relation p, i.e. a relation 
such that the identity transformation is the single homomor-
phism (compatible mapping) of p into p. We prove the 
existence of a strongly rigid binary relation on any set with at 
least three elements. It is a relation such that all homo-
morphisms of pn into p are projections for all n = 1, 2, •••. 
We characterize all strongly rigid relations on a set with two 
elements. Our result can be also stated as follows: There 
exists a binary (if \A\ > 2) or ternary (if \A\ = 2) relation 
P on A such that the trivial universal algebra (A; <f> > is equiva­
lent to ( A; A, ) where Ap is the set of all operations on A 
preserving p. 

1. Let A and I be sets such that \A\ > 1, \I\ > 0. Let A1 be the set 
of all mappings from / to A. Any subset p of A1 will be called an I-
relation or \l\-ary relation on A. If |/| = k < Ko we will identify A1 

with Ak and, in particular, for |/ | = 1, 2, 3 any /-relation is simply a 
unary, binary or ternary relation on A. Let p; be /-relations on A$ 
(i = 1, 2). A mapping f \ AY —* A2 is a homomorphism of pY into 
p2 (or pxp2 compatible mapping [13] ) if g £ p t implies / ° g £ p 2 . 
A homomorphism / : A —» A of p into p is called an endomorphism. 
A relation p is rigid [ 13] if the identity transformation is the single 
endomorphism of p. The existence of a binary rigid relation on any 
set is proved in [ 13]. 

Given an /-relation p on A and 0 < n < Ko we define the /-relation 
p n on An as follows: / £ p n if there exist fi £ p (i = 1, • • -, n) such 
that fx = (/LX, • • -yfnx) for all x £ I . For 1 ^g i ^§ n < K0 define the 
projections [4] (called sometimes selective or trivial operations) 
e{

n : An —» A by £;"%! • • • xn = x{ for all x1? • • -, xn G A. Finally se t / = 
{ e , » | l ^ i ^ n < K0}. 

DEFINITION. Let p fo# an l-relation on A. 77i£ se£ of all homo-
morphisms of p n into p (1 = n < Ko) will be denoted by Ap. The 
relation p w;iZZ £>£ called a strongly rigid relation if Ap — J. 

The sets Â  were introduced in [3] for |/ | ^ \A\ < Ko and used in 
[1], [2], [14] and [ 7 ] - [ 1 2 ] . Obviously / G \ if and only if 
p is a subalgebra of (A7, {/}). A relation p is strongly rigid if and 
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632 I . ROSENBERG 

only if for any n = 1, 2, • • •, any homomorphism f of pn into p 
is a projection, i.e. / = ^ n for a suitable 1 ^ i ^ n. If p is strongly 
rigid, then for n = 1 any homomorphism f : p ^> p is the identity 
and p is rigid. The converse is not true; and, in particular, the rigid 
relation of [ 13] is not strongly rigid. 

EXAMPLE. Let p be a rigid binary relation with a minimal element 
0 and a maximal element 1 (i.e. (a,0) G p and (l, a) G p for no a G A). 
Then pis not strongly rigid. 

Indeed it is sufficient to define f : A2 —» A as follows: Let ^Dl = 1 
and /x1x2 = x1 for all (xl9 x2) G A2 \{(0,1)}. If < x , ' , x / ' ) E p 
(i = 1,2), then x 2 ' ^ 1 and xx" / 0 so that (fxl'x2

,,fxl"x2") = 
(*! ' ,* / ' ) G p. Hence / G Â  and this shows that p is not strongly 
rigid. 

Universal algebra provides a motivation for the study of strongly 
rigid relations. 

Let A = (A;F) be a universal algebra [4]. It is proved in [12] 
that there exist a set I and an /-relation p on A such that A — (A; Ap). 
The relational degree of A is the least cardinality of such a set /. In 
this paper we will in fact prove that the relational degree of (A; 0 ) 
is 2 if |A| > 2 and 3 if |A| = 2. 

In §2, using Post's results, we characterize all strongly rigid relations 
on a set with two elements. In §§3 — 4 using the rigid relation from [ 13] 
we prove the existence of a strongly rigid relation on any set with at 
least three elements. The problem to characterize all strongly rigid 
relations on a set with more than two elements remains open. It 
seems that this problem is more difficult than the following opposite 
problem which was solved in [11]: Characterize all relations 
pon I such that Ap is the set of all operations on A. 

2. Let A be a set with two elements which for convenience will be 
denoted by 0 and 1. The operations on A are simply Boolean functions. 
We will need the following operations: 

(1) The zero operations (constants) 0 and 1. 
(2) The unary operation ~] (negation) defined by " 1 0 = 1 and 

1 1 = 0. 
(3) The binary operation V (disjunction or alternative) defined by 

0 V 0 = OandO V 1 = 1 V 0 = 1 V 1 = 1. 
(4) The binary operation A (conjunction) defined by 0 A 0 = 

l A 0 = 0 A l = 0 a n d l A l = l. 
(5) The binary operation 4- (the sum mod 2) defined by 0 4- 0 = 

1 4 - 1 = 0 and 0 + 1 = 1 + 0 = 1 . 
(6) The ternary operation / defined by lxxx2x3 = xl + x2 + x3 for 

any xl9 x2, x3 G A. 
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(7) The ternary operation maj (majority function) defined by 
maj xxx2x3 = (*! A x2) V (xx A x3) V (x2 A x3) for all xx, x2, x3 £ A. 
Further let 0/ and 1/ be the mappings I —> {0} and I -» {1}, respec­
tively. 

If fl9 - • -, / n E A7 and g : An —• A then h= gfx • - -fnis the element 
of A7 defined by hi = g(/it) • * • (fj) for each i £ /. Now we can 
state 

THEOREM 1. An I-relation p on {0,1} is strongly rigid if and only 
if 0X (£ p, 1/ (£ p and tfiere exwf j î £ p ( i = l , • • •, 11) sucft that ~]fi 
$P> / 2 V / a $ P > / 4 A / 5 $ p , /e + / 7 + / 8 $ P «nd maj/fi/xc/n 
f P-

PROOF. Necessity follows from the fact that none of 0 ,1 , ""I, V, A, Z, 
maj belongs to Ap if p is strongly rigid. 

Sufficiency. Assume that A^D J. It is proved in [6] that \ then 
contains at least one of R8, RQ, jf̂ , S2, P2, L4, and D2. But these sets 
contain functions 0, 1, "1 , V, A, / and maj so that at least one of the 
conditions of the theorem is not met. A direct check shows: 

COROLLARY 1. There is no strongly rigid binary relation on {0,1}. 

Let Vi3 = {<a1? a2;a3) £ A3 | ax + a2 + a3 = i} (i = 1, 2). A more 
detailed analysis using permutations of places and transition to dual 
relations, can be used to show 

COROLLARY 2. The ternary strongly rigid relations on {0,1} have the 
form V U Â (X C V2

3) or V2
3 U H (/AC V^). 

Let s(n) be the number of strongly rigid n-ary relations on {0,1}. 
We know that s(2) = 0, s(3) = 14. We will not investigate s(n) here 
and we will give only the following crude lower bound. 

COROLLARY 3. For every n, S(n) ^ 2 2 " - 7 . 

PROOF. If p has the property (1) <0, • • -, 0,1> £ p, (0, • • -, 0,1,0> £ 
p, (0, • • - , 0 , 1 , 0 , 0 ) £ p and (2) (0, - - - , 0 ) $ p , <0, • • - , 0 , 1 , 1 , 1 ) 
(£p, (1, • • - ,1,0) ^ p , and (1, • • -,1) (£p, then it can be easily 
checked that p satisfies the conditions of the proposition. Obviously 
we may include in p any of the remaining 2n — 7 n-tuples. 

3. The example given in §1 shows that a strongly rigid relation 
cannot have a minimal and a maximal element. Since the rigid rela­
tion given in [13] has both elements we will correct the situation 
by adjoining two elements and extending the relation so that the new 
relation does not possess maximal or minimal elements. 

Let D be a nonempty set with a rigid binary relation C Assume 
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that (D; Z ) has no closed paths of length 2 or 3, i.e. for no x, y, and z 
in D we have x Z f / Z x o r x Z j / Z z Z x . In order to get a strongly 
rigid relation we will add to D two elements, which for convenience 
will be denoted by 0 and 1. Let B = {0,1} and let B (1 D = 0. 
On the set A = B U D define a binary relation -< as follows: 

(1) s e t 0 < d < 1 for all d G D , 
(2) s e t 0 < K 0 , and 
(3) for any x, y E D set x < y if and only if x Z y. 
Thus -< is an extension of IZ with 0 below and 1 above all elements 

of D and a full edge between 0 and 1. We will prove that under 
certain restrictions -< is a strongly rigid relation. Let / : An —» A be 
a homomorphism of -*< n into -<. First we will prove that there exists 
l S p ^ n such that xv E B implies/x^ • • • xn = xp and xp E D implies 
fxl • - - xn E D. We will need the following lemmas. 

LEMMA 1. The relation < is rigid. 

PROOF. Let h : A —» A be an endomorphism of -< . From the defini­
tion we get hO -< hi < hO and hO <hd< hi for all d G D. Since Z 
has no cycles of length 2 we get hO = 0, hi = 1 and hd G D. Since -< 
agrees with Z on D we see that h restricted to D is an endomorphism 
of Z , so that hd = d for any d ED. 

Elements of An will be denoted by x = (xl7 • • \xn) and for a G A 
the element {a, • • -, a) G An will be denoted by â. 

LEMMA 2. W# foaue / â = a for any a EL A. 

PROOF. Let ha = fa for any a EL A. It is easily verified that h is 
an endomorphism of ^ and therefore by Lemma 1 the identity. 

For any x E Bn set l x = ( ~lxl7 • • -, ~lxn). A function h : Bn —> B 
will be called a Boolean function. We will say that h is self dual if 
~1 fox = ft "I x for any x G Bn. 

Let g be the restriction of/ to Bn. 

LEMMA 3. The function g is a Boolean self dual function. 

PROOF. Let x G Bn. Then ~ìx E Bn and x < ~lx •< x (here and in the 
sequel we will write -< instead of <Cn whenever possible). Hence 
ß -< f ~~\ x *< ß and from the definition of *< we can conclude 
{fx/fl x}= Band 1 ß = f 1 x. 

If x,y E Bn and x* ^ t/j for all i = 1, 2, • • -, n (i.e. (xi? t/J G 
{(0,0), (0,1), (1,1)}) we will write x = y. Boolean function is 
monotonie if x â y implies ß ^ fy. 

LEMMA 4. The function g is monotonie. 
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PROOF. Let x,y E Bn, x= y and suppose fx = 1, fy= 0. Let 
Zi= 1 Xi if Xi = y{ and z{ED if {xiy y{) = (0, 1). Then clearly 
x -< z -< y which leads to the contradiction 1 -< fz -< 0. 

Let Vi = {x G Bn I xx + • • • + xn = i} (i = 0, • • -, n). 

LEMMA 5. There exists z E Vn_1 such thatgz = 0. 

PROOF. The function g being self-dual is not constant. Using this 
and monotonicity of G it is not difficult to prove that there exists 
0 ä= i < n, x EV{, y E V i+1, x ^ y such that fx = 0 and fy — I 
(see e.g. [5] ). Then there exists 1 ä= p ^ n such that xp = 0, yp = 1 
and xm = t/m for all 1 = m = n, m ^ p. Choose d E D and set (1) 
up = d, vp = 1, and u;p = 0, (2) wm = 1, um = 0, u;m = d if xm = 0, 
and (3) um = 0, um = d, wm = 1 if xm = 1. It is easy to check 
x <ü <y. This gives 0 < fü< 1 so that fü E D. Direct check 
shows that ü < v < w < ü so that fu< fv -< / t£ •< / # . We have 
no closed path of length 3 in D and therefore fv = 1 and /u? = 0. 
Let zp = 0 and zm = 1 for all l â m ^ n , m ^ p. Then z E Vn_ì 

and v -< 5. Hence 1 = fv-< fz and from 5 G Vn_! C Bn we con­
clude fz E B and /S = 0. 

LEMMA 6. There exists l â p = n swc/i £/ia£ g = £p
n. 

PROOF. By Lemma 5 there exists z E Vn_x with gz = 0. If zp = 0 
then for any y E Bn with t/p = 0 we get t/ = £ and applying Lemma 
4 we obtain gy ^= gz = 0, i.e. gt/ = 0. For any t E Bn with £p = 1, 
this and self-duality of g yields Igt = g~\i = 0. Thus we get the 
required result. 

LEMMA 7. Ifxp E B then fx = xp. 

PROOF. Let x G An and xp G B. For each i = 1, • • -, n set y{ = ^ = 
Ixi if Xi E B and j/i = 0, z{ = 1 if x* G D. Immediate check shows 
y < x < z so that fy^<fx< fz. Since y,zEB, applying Lemma 
6 we get fy — yP= ~lxp and fz = zp= Hxp. Thus ~~lxp -< /x 
•< ~lxp and this implies fx E B and /x = xp. 

LEMMA 8. If xp E D then fx E D. 

PROOF. Let x G An and xp G D. For each i = 1, • • -, n set (1) t/* = 
0, Zi = 1 if Xi G D and (2) y* = ^ = ~\x{ if x* G B. Then y -< x < z so 
that fy*<fö fz. Since xp E D we have yp — 0 and zp = 1. 
Applying Lemma 7 we get / y = yp = 0 and / 5 = 2P = 1. Thus 
0 -< fx < 1 and this yields fxED. 



636 I.ROSENBERG 

4. For strong rigidity we will make further assumptions on Z . 
The first type will be used for finite sets D. 

We say that a binary relation <] on S is a spanning forest if given 
any u, v G D there exists at most one finite sequence t/0> ' ' '» y m m 

D such that u = y0, v — ym and j / f <] yi+l or j / i + 1 <] j ^ for each 
i = 0, 1, • • -, m — 1, and {x G D \x <\d or d < x} ^ 0 for each 
dGD. 

THEOREM 2. L#£ IZ be a rigid relation on D. Let <\be a spanning 
forest which is a subrelation of the relation IZ such that the identity 
transformation is the only homomorphism of < into Z . 

Then the relation < on D U {0,1} defined in §3 is strongly rigid. 

PROOF. Let f be a homomorphism from -< n into -<. Since we can 
permute the variables, using Lemmas 7 and 8 we can assume without 
loss of generality that (1) fx = xx for all x G An, xx G B and (2) 
/ x G D for all x G An, xl G D. Fix x G An with xx G D. Let G be 
the connected component of the graph (D; <] ) containing xx and let 
t Œ. G. We will define </>£ G An in the following way: (1) Let <f>xl = x. 
(2) Let t/o> ' * % î/m D e the unique finite sequence in D such that jq = 
?/o> * = ^m and y{ <\ yi+l or j / i + 1 < j/i for every i = 0, • • -, m - 1. 
Assume that ü = </>t/m_i has been already defined. We set zl = ym 

and for i = 2, • • -, n we set (1) z{ = ~1 wf if Mf G B, (2) ^ = 1 if u{ G D 
and j /m_i <] ?̂ and (3) z, = 0 if ^ G D and £ <J j / m _i . This defines a 
mapping </> : G —» An. Let hx = f<f>x for x £ G and hx = x for 
x G D\G. Hence /i is a mapping from D into A. We claim that h 
maps D into D. This is obvious for any x G D\G. Let x G G and 
ü = <f)X. We can see from the definition that ux G D so that by Lemma 
8 we get hx = fü G D. Since <1 is a subrelation of IZ, it is easy to 
verify from the definition of <f> that for u, v G G, w <] Ü implies 
<fm <<l>v. Hence /i is a homomorphism of <] into -< . By assumption 
h is the identity transformation. In particular, fx = / c ^ = hxY = 
Xy and this completes the proof. 

COROLLARY 4. A strongly rigid binary relation exists on any finite 
set with at least 3 elements. 

PROOF. Let D = {d0, • • -, dk} and let d, Z (i, if and only if i < k 
and j = i + 1. It is sufficient to set <] equal to Z and verify all 
assumptions of the Theorem 2. 

For infinite sets we will have the following sufficient condition. 

THEOREM 3. Let Z be a rigid relation on D. Suppose that there 
exists EC. Dsatisfying 
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(1) To any x G E there exist ai9 • * -,a4 G D and y G D such that 

x C c j I I - - - \Z a4lZ y, 

and 

zC fox C - - • n.b4Cy =>z = x 

for any z, bi9 • • -, b4 G D. 
(2) Zf t/x G D \ £ , j/2 ^ D> and for any e G E 

e C j/x => e E y2, yY\Z e=>y2[l e, 

then y Y — y2. 
Then the relation < onD U {0,1} defined in §3 is strongly rigid. 

PROOF. Let x G An and let x : G E. By assumption there exist 
ai> ' ' '> a4> y in D such that xL CI ax CI • • • C a4 C j / . Fix an element 
d £ D and define f <•> G An (i = 1, • • -, 4) as follows: Let t^ = a{. 
For j = 2, • • -, n set (1) */> = 1/2[1 - (-1)*] if x, G D U {0}, and 
(2) t/D = 0, */2) = d, f/3) = 1, and */*> = 0 if x, = 1. It is easy to 
check that x< f(1> < - - < t<4> < y. Hence fi < ft^ -< < 
ft{4) -< /y . Since by Lemma 2 we have fy = t/, the assumption 
yields the required equality fi = xv 

Let x Çz An and let xx G D\E. Let J/i = xx and y2 = /x. Assume 
e EL E and e CI t/i. Let tx = e and for i = 2, • • -, n set (1) t{ = 0 if 
Xf G D and (2) £{ = lx̂  if Xj G B. Then f -< x and therefore/? -< /x . 
But in the first part of the proof we have shown that tY = e G E implies 
ft = tY = e. Thus e -< fi. We know from Lemma 7 that fiŒD 
and therefore e CI fi, i.e. e CI y2. A similar argument shows yx\Z. e 
=> y2 CI e. Hence using the second part of the assumptions we get 

y i = y2,i.e.fi = *i-
We conclude with 

THEOREM 4. A strongly rigid binary relation exists on any set with 
at least three elements. 

PROOF. For finite sets the statement was proved in Corollary 4. 
Let A be infinite. We can choose two elements 0/ l ' G A and set 
D = A\{0/ 1'}. The existence of a rigid relation on D was proved in 
[13]. Using the denotation of [13] we set E = D\{1, c^, ^ 4- 1}. 
For the condition 1 of Theorem 3 it suffices to set oti = x + i 
(i = 1, • • -, 4) and y = x + 5. 

We will check the condition (2). Let yx = 1. Choosing e = 0, 
from 0 LI 1 we get 0 LI t/2- Similarly, for e = 2, from 1 1 2 we get 
y2 LI 2. Therefore y2 = 1 = t/i. Consider now yY = cô . Choosing 
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e = Ù)Ç + 1 we get y 2 C o>̂  + 1. If o>̂  G. D1? then from CÜ0 IZ CÔ  we 
get CÜ0 \Z y2 and this together with y2 C cô  + 1 yields j / 2

 = ^ = J/i-
If o)̂  G Do, then there exist an increasing sequence {a^} such that 
ctn \Z ù)ç and sup a^ = a>̂ . Then again o^ IZ y2 f° r an* n a n d therefore 
!/2 = ^ = yi- Finally, let yl = a)ç + 1. Then from cû  Z cô  -h 1 we 
get c^ IZ j/2 a n d therefore j / 2

 = ^ + 1 = J/i- Thus (2) holds and the 
relation -< is a strongly rigid relation on A. 

CONCLUDING REMARKS. (1) The referee has pointed out that it is 
natural to ask the following question. Let a be a cardinal. A relation 
p is a-strongly rigid if for any set / with \J\< a the only homomor-
phisms pJ —» p are the projections. Here we have proved only the 
existence of an K0-strongly rigid relation. 

(2) The number of strongly rigid n-ary relations on a set is also of 
interest. We conjecture that for a finite set with k elements the number 
s(n) of n-ary strongly rigid relations satisfies 

lim2_/c" s(n) = 1, 
n-* °° 

i.e. for a big n almost all n-ary relations are strongly rigid. 
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