STRONGLY RIGID RELATIONS

I. ROSENBERG

Abstract. Vopěnka, Pultr and Hedrlín proved in 1965 that on any set A there exists a binary rigid relation ρ , i.e. a relation such that the identity transformation is the single homomorphism (compatible mapping) of ρ into ρ . We prove the existence of a strongly rigid binary relation on any set with at least three elements. It is a relation such that all homomorphisms of ρ^n into ρ are projections for all $n=1,2,\cdots$. We characterize all strongly rigid relations on a set with two elements. Our result can be also stated as follows: There exists a binary (if |A| > 2) or ternary (if |A| = 2) relation ρ on A such that the trivial universal algebra $(A; \phi)$ is equivalent to $(A; A_p)$ where A_p is the set of all operations on A preserving ρ .

1. Let A and I be sets such that |A| > 1, |I| > 0. Let A^I be the set of all mappings from I to A. Any subset ρ of A^I will be called an I-relation or |I|-ary relation on A. If $|I| = k < \aleph_0$ we will identify A^I with A^k and, in particular, for |I| = 1, 2, 3 any I-relation is simply a unary, binary or ternary relation on A. Let ρ_i be I-relations on A_i (i = 1, 2). A mapping $f: A_1 \to A_2$ is a homomorphism of ρ_1 into ρ_2 (or $\rho_1 \rho_2$ compatible mapping [13]) if $g \in \rho_1$ implies $f \circ g \in \rho_2$. A homomorphism $f: A \to A$ of ρ into ρ is called an endomorphism. A relation ρ is rigid [13] if the identity transformation is the single endomorphism of ρ . The existence of a binary rigid relation on any set is proved in [13].

Given an *I*-relation ρ on A and $0 < n < \aleph_0$ we define the *I*-relation ρ^n on A^n as follows: $f \in \rho^n$ if there exist $f_i \in \rho$ $(i = 1, \dots, n)$ such that $fx = \langle f_1x, \dots, f_nx \rangle$ for all $x \in I$. For $1 \le i \le n < \aleph_0$ define the projections [4] (called sometimes selective or trivial operations) $e_i^n : A^n \to A$ by $e_i^n x_1 \cdots x_n = x_i$ for all $x_1, \dots, x_n \in A$. Finally set $J = \{e_i^n \mid 1 \le i \le n < \aleph_0\}$.

DEFINITION. Let ρ be an I-relation on A. The set of all homomorphisms of ρ^n into ρ $(1 \le n < \aleph_0)$ will be denoted by A_{ρ} . The relation ρ will be called a strongly rigid relation if $A_{\rho} = J$.

The sets A_p were introduced in [3] for $|I| \le |A| < \aleph_0$ and used in [1], [2], [14] and [7] – [12]. Obviously $f \in A_p$ if and only if ρ is a subalgebra of $\langle A^I, \{f\} \rangle$. A relation ρ is strongly rigid if and

Received by the editors September 10, 1971 and, in revised form, November 19, 1971.

AMS (MOS) subject classifications (1970). Primary 08A25, 08A05.

only if for any $n=1,2,\cdots$, any homomorphism f of ρ^n into ρ is a projection, i.e. $f=e_{i}{}^{n}$ for a suitable $1 \leq i \leq n$. If ρ is strongly rigid, then for n=1 any homomorphism $f:\rho\to\rho$ is the identity and ρ is rigid. The converse is not true; and, in particular, the rigid relation of [13] is not strongly rigid.

Example. Let ρ be a rigid binary relation with a minimal element 0 and a maximal element 1 (i.e. $\langle a, 0 \rangle \in \rho$ and $\langle 1, a \rangle \in \rho$ for no $a \in A$). Then ρ is not strongly rigid.

Indeed it is sufficient to define $f: A^2 \to A$ as follows: Let f01 = 1 and $fx_1x_2 = x_1$ for all $\langle x_1, x_2 \rangle \in A^2 \setminus \{\langle 0, 1 \rangle\}$. If $\langle x_i', x_i'' \rangle \in \rho$ (i = 1, 2), then $x_2' \neq 1$ and $x_1'' \neq 0$ so that $\langle fx_1'x_2', fx_1''x_2'' \rangle = \langle x_1', x_1'' \rangle \in \rho$. Hence $f \in A_\rho$ and this shows that ρ is not strongly rigid.

Universal algebra provides a motivation for the study of strongly rigid relations.

Let $A = \langle A; F \rangle$ be a universal algebra [4]. It is proved in [12] that there exist a set I and an I-relation ρ on A such that $A \simeq \langle A; A_{\rho} \rangle$. The *relational degree* of A is the least cardinality of such a set I. In this paper we will in fact prove that the relational degree of $\langle A; \emptyset \rangle$ is 2 if |A| > 2 and 3 if |A| = 2.

In §2, using Post's results, we characterize all strongly rigid relations on a set with two elements. In §§3 — 4 using the rigid relation from [13] we prove the existence of a strongly rigid relation on any set with at least three elements. The problem to characterize all strongly rigid relations on a set with more than two elements remains open. It seems that this problem is more difficult than the following opposite problem which was solved in [11]: Characterize all relations ρ on I such that A_{ρ} is the set of all operations on A.

- 2. Let *A* be a set with two elements which for convenience will be denoted by 0 and 1. The operations on *A* are simply Boolean functions. We will need the following operations:
 - (1) The zero operations (constants) 0 and 1.
- (2) The unary operation \neg (negation) defined by $\neg 0 = 1$ and $\neg 1 = 0$.
- (3) The binary operation \lor (disjunction or alternative) defined by $0 \lor 0 = 0$ and $0 \lor 1 = 1 \lor 0 = 1 \lor 1 = 1$.
- (4) The binary operation \land (conjunction) defined by $0 \land 0 = 1 \land 0 = 0 \land 1 = 0 \text{ and } 1 \land 1 = 1$.
- (5) The binary operation \dotplus (the sum mod 2) defined by $0 \dotplus 0 = 1 \dotplus 1 = 0$ and $0 \dotplus 1 = 1 \dotplus 0 = 1$.
- (6) The ternary operation l defined by $lx_1x_2x_3 = x_1 + x_2 + x_3$ for any $x_1, x_2, x_3 \in A$.

(7) The ternary operation maj (majority function) defined by maj $x_1x_2x_3 = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3)$ for all $x_1, x_2, x_3 \in A$. Further let 0_I and 1_I be the mappings $I \to \{0\}$ and $I \to \{1\}$, respectively.

If $f_1, \dots, f_n \in A^I$ and $g: A^n \to A$ then $h = gf_1 \dots f_n$ is the element of A^I defined by $hi = g(f_1i) \dots (f_ni)$ for each $i \in I$. Now we can state

Theorem 1. An I-relation ρ on $\{0,1\}$ is strongly rigid if and only if $0_1 \notin \rho$, $1_I \notin \rho$ and there exist $f_i \in \rho$ $(i = 1, \dots, 11)$ such that $\neg f_1 \notin \rho$, $f_2 \lor f_3 \notin \rho$, $f_4 \land f_5 \notin \rho$, $f_6 + f_7 + f_8 \notin \rho$ and maj $f_9f_{10}f_{11} \notin \rho$.

PROOF. Necessity follows from the fact that none of $0, 1, \neg$, \lor , \land , l, maj belongs to A_p if ρ is strongly rigid.

Sufficiency. Assume that $A_p \supset J$. It is proved in [6] that A_p then contains at least one of R_8 , R_6 , R_4 , S_2 , P_2 , L_4 , and D_2 . But these sets contain functions $0, 1, 7, \vee, \Lambda, l$ and maj so that at least one of the conditions of the theorem is not met. A direct check shows:

COROLLARY 1. There is no strongly rigid binary relation on $\{0,1\}$.

Let $V_i^3 = \{\langle a_1, a_2, a_3 \rangle \in A^3 \mid a_1 + a_2 + a_3 = i\}$ (i = 1, 2). A more detailed analysis using permutations of places and transition to dual relations, can be used to show

Corollary 2. The ternary strongly rigid relations on $\{0, 1\}$ have the form $V_1^3 \cup \lambda$ ($\lambda \subset V_2^3$) or $V_2^3 \cup \mu$ ($\mu \subset V_1^3$).

Let s(n) be the number of strongly rigid n-ary relations on $\{0, 1\}$. We know that s(2) = 0, s(3) = 14. We will not investigate s(n) here and we will give only the following crude lower bound.

Corollary 3. For every n, $S(n) \ge 2^{2^n-7}$.

PROOF. If ρ has the property $(1) \langle 0, \dots, 0, 1 \rangle \in \rho$, $\langle 0, \dots, 0, 1, 0 \rangle \in \rho$, $\langle 0, \dots, 0, 1, 0, 0 \rangle \in \rho$ and $(2) \langle 0, \dots, 0 \rangle \notin \rho$, $\langle 0, \dots, 0, 1, 1, 1 \rangle \notin \rho$, $\langle 1, \dots, 1, 0 \rangle \notin \rho$, and $\langle 1, \dots, 1 \rangle \notin \rho$, then it can be easily checked that ρ satisfies the conditions of the proposition. Obviously we may include in ρ any of the remaining $2^n - 7$ n-tuples.

3. The example given in §1 shows that a strongly rigid relation cannot have a minimal and a maximal element. Since the rigid relation given in [13] has both elements we will correct the situation by adjoining two elements and extending the relation so that the new relation does not possess maximal or minimal elements.

Let D be a nonempty set with a rigid binary relation \square . Assume

that $\langle D; \square \rangle$ has no closed paths of length 2 or 3, i.e. for no x, y, and z in D we have $x \square y \square x$ or $x \square y \square z \square x$. In order to get a strongly rigid relation we will add to D two elements, which for convenience will be denoted by 0 and 1. Let $B = \{0, 1\}$ and let $B \cap D = \emptyset$. On the set $A = B \cup D$ define a binary relation \prec as follows:

- (1) set 0 < d < 1 for all $d \in D$,
- (2) set $0 \prec 1 \prec 0$, and
- (3) for any $x, y \in D$ set $x \prec y$ if and only if $x \sqsubseteq y$.

Thus \prec is an extension of \square with 0 below and 1 above all elements of D and a full edge between 0 and 1. We will prove that under certain restrictions \prec is a strongly rigid relation. Let $f: A^n \to A$ be a homomorphism of \prec^n into \prec . First we will prove that there exists $1 \leq p \leq n$ such that $x_p \in B$ implies $fx_1 \cdots x_n = x_p$ and $x_p \in D$ implies $fx_1 \cdots x_n \in D$. We will need the following lemmas.

Lemma 1. The relation \prec is rigid.

PROOF. Let $h: A \to A$ be an endomorphism of \prec . From the definition we get $h0 \prec h1 \prec h0$ and $h0 \prec hd \prec h1$ for all $d \in D$. Since \sqsubseteq has no cycles of length 2 we get h0 = 0, h1 = 1 and $hd \in D$. Since \prec agrees with \sqsubseteq on D we see that h restricted to D is an endomorphism of \sqsubseteq , so that hd = d for any $d \in D$.

Elements of A^n will be denoted by $\tilde{x} = \langle x_1, \dots, x_n \rangle$ and for $a \in A$ the element $\langle a, \dots, a \rangle \in A^n$ will be denoted by \tilde{a} .

Lemma 2. We have $f\tilde{a} = a$ for any $a \in A$.

PROOF. Let $ha = f\tilde{a}$ for any $a \in A$. It is easily verified that h is an endomorphism of \prec and therefore by Lemma 1 the identity.

For any $\tilde{x} \in B^n$ set $\exists \tilde{x} = \langle \exists x_1, \dots, \exists x_n \rangle$. A function $h: B^n \to B$ will be called a Boolean function. We will say that h is *self-dual* if $\exists h\tilde{x} = h \exists \tilde{x} \text{ for any } x \in B^n$.

Let g be the restriction of f to B^n .

Lemma 3. The function g is a Boolean self-dual function.

PROOF. Let $\tilde{x} \in B^n$. Then $\neg \tilde{x} \in B^n$ and $\tilde{x} \prec \neg \tilde{x} \prec \tilde{x}$ (here and in the sequel we will write \prec instead of \prec^n whenever possible). Hence $f\tilde{x} \prec f \neg \tilde{x} \prec f\tilde{x}$ and from the definition of \prec we can conclude $\{f\tilde{x}, f \neg \tilde{x}\} = B \text{ and } \neg f\tilde{x} = f \neg \tilde{x}$.

If $\tilde{x}, \tilde{y} \in B^n$ and $x_i \leq y_i$ for all $i = 1, 2, \dots, n$ (i.e. $\langle x_i, y_i \rangle \in \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 1 \rangle\}$) we will write $\tilde{x} \leq \tilde{y}$. Boolean function is monotonic if $\tilde{x} \leq \tilde{y}$ implies $f\tilde{x} \leq f\tilde{y}$.

LEMMA 4. The function g is monotonic.

PROOF. Let $\tilde{x}, \tilde{y} \in B^n$, $\tilde{x} \leq \tilde{y}$ and suppose $f\tilde{x} = 1$, $f\tilde{y} = 0$. Let $z_i = \exists x_i$ if $x_i = y_i$ and $z_i \in D$ if $\langle x_i, y_i \rangle = \langle 0, 1 \rangle$. Then clearly $\tilde{x} \prec \tilde{z} \prec \tilde{y}$ which leads to the contradiction $1 \prec f\tilde{z} \prec 0$.

Let $V_i = \{ \tilde{x} \in B^n \mid x_1 + \cdots + x_n = i \} (i = 0, \cdots, n).$

Lemma 5. There exists $\tilde{z} \in V_{n-1}$ such that $g\tilde{z} = 0$.

PROOF. The function g being self-dual is not constant. Using this and monotonicity of G it is not difficult to prove that there exists $0 \le i < n$, $\tilde{x} \in V_i$, $\tilde{y} \in V_{i+1}$, $\tilde{x} \le \tilde{y}$ such that $f\tilde{x} = 0$ and $f\tilde{y} = 1$ (see e.g. [5]). Then there exists $1 \le p \le n$ such that $x_p = 0$, $y_p = 1$ and $x_m = y_m$ for all $1 \le m \le n$, $m \ne p$. Choose $d \in D$ and set (1) $u_p = d$, $v_p = 1$, and $w_p = 0$, (2) $u_m = 1$, $v_m = 0$, $w_m = d$ if $x_m = 0$, and (3) $u_m = 0$, $v_m = d$, $w_m = 1$ if $x_m = 1$. It is easy to check $\tilde{x} < \tilde{u} < \tilde{y}$. This gives $0 < f\tilde{u} < 1$ so that $f\tilde{u} \in D$. Direct check shows that $\tilde{u} < \tilde{v} < \tilde{w} < \tilde{u}$ so that $f\tilde{u} < f\tilde{v} < f\tilde{w} < f\tilde{u}$. We have no closed path of length 3 in D and therefore $f\tilde{v} = 1$ and $f\tilde{w} = 0$. Let $z_p = 0$ and $z_m = 1$ for all $1 \le m \le n$, $m \ne p$. Then $\tilde{z} \in V_{n-1}$ and $\tilde{v} < \tilde{z}$. Hence $1 = f\tilde{v} < f\tilde{z}$ and from $\tilde{z} \in V_{n-1} \subset B^n$ we conclude $f\tilde{z} \in B$ and $f\tilde{z} = 0$.

Lemma 6. There exists $1 \le p \le n$ such that $g = e_p^n$.

PROOF. By Lemma 5 there exists $\tilde{z} \in V_{n-1}$ with $g\tilde{z} = 0$. If $z_p = 0$ then for any $\tilde{y} \in B^n$ with $y_p = 0$ we get $\tilde{y} \leq \tilde{z}$ and applying Lemma 4 we obtain $g\tilde{y} \leq g\tilde{z} = 0$, i.e. $g\tilde{y} = 0$. For any $\tilde{t} \in B^n$ with $t_p = 1$, this and self-duality of g yields $\exists \tilde{y} \in g = 0$. Thus we get the required result.

LEMMA 7. If $x_p \in B$ then $f\tilde{x} = x_p$.

PROOF. Let $\tilde{x} \in A^n$ and $x_p \in B$. For each $i = 1, \dots, n$ set $y_i = z_i = \exists x_i$ if $x_i \in B$ and $y_i = 0$, $z_i = 1$ if $x_i \in D$. Immediate check shows $\tilde{y} \prec \tilde{x} \prec \tilde{z}$ so that $f\tilde{y} \prec f\tilde{x} \prec f\tilde{z}$. Since $\tilde{y}, \tilde{z} \in B$, applying Lemma 6 we get $f\tilde{y} = y_p = \exists x_p$ and $f\tilde{z} = z_p = \exists x_p$. Thus $\exists x_p \prec f\tilde{x} \prec \exists x_p$ and this implies $f\tilde{x} \in B$ and $f\tilde{x} = x_p$.

LEMMA 8. If $x_p \in D$ then $f\tilde{x} \in D$.

PROOF. Let $\tilde{x} \in A^n$ and $x_p \in D$. For each $i = 1, \dots, n$ set (1) $y_i = 0$, $z_i = 1$ if $x_i \in D$ and (2) $y_i = z_i = \neg x_i$ if $x_i \in B$. Then $\tilde{y} \prec \tilde{x} \prec \tilde{z}$ so that $f\tilde{y} \prec f\tilde{x}$. Since $x_p \in D$ we have $y_p = 0$ and $z_p = 1$. Applying Lemma 7 we get $f\tilde{y} = y_p = 0$ and $f\tilde{z} = z_p = 1$. Thus $0 \prec f\tilde{x} \prec 1$ and this yields $f\tilde{x} \in D$.

4. For strong rigidity we will make further assumptions on \square . The first type will be used for finite sets D.

We say that a binary relation \triangleleft on S is a spanning forest if given any $u, v \in D$ there exists at most one finite sequence y_0, \dots, y_m in D such that $u = y_0, v = y_m$ and $y_i \triangleleft y_{i+1}$ or $y_{i+1} \triangleleft y_i$ for each $i = 0, 1, \dots, m-1$, and $\{x \in D \mid x \triangleleft d \text{ or } d \triangleleft x\} \neq \emptyset$ for each $d \in D$.

Theorem 2. Let \Box be a rigid relation on D. Let \triangleleft be a spanning forest which is a subrelation of the relation \Box such that the identity transformation is the only homomorphism of \triangleleft into \Box .

Then the relation \prec on $D \cup \{0, 1\}$ defined in $\S 3$ is strongly rigid.

PROOF. Let f be a homomorphism from \leq^n into \leq . Since we can permute the variables, using Lemmas 7 and 8 we can assume without loss of generality that (1) $f\tilde{x} = x_1$ for all $\tilde{x} \in A^n$, $x_1 \in B$ and (2) $f\tilde{x} \in D$ for all $\tilde{x} \in A^n$, $x_1 \in D$. Fix $\tilde{x} \in A^n$ with $x_1 \in D$. Let G be the connected component of the graph $\langle D; \triangleleft \rangle$ containing x_1 and let $t \in G$. We will define $\phi t \in A^n$ in the following way: (1) Let $\phi x_1 = \tilde{x}$. (2) Let y_0, \dots, y_m be the unique finite sequence in D such that $x_1 =$ y_0 , $t = y_m$ and $y_i \triangleleft y_{i+1}$ or $y_{i+1} \triangleleft y_i$ for every $i = 0, \dots, m-1$. Assume that $\tilde{u} = \phi y_{m-1}$ has been already defined. We set $z_1 = y_m$ and for $i = 2, \dots, n$ we set (1) $z_i = \bigcap u_i$ if $u_i \in B$, (2) $z_i = 1$ if $u_i \in D$ and $y_{m-1} \triangleleft t$, and (3) $z_i = 0$ if $u_i \in D$ and $t \triangleleft y_{m-1}$. This defines a mapping $\phi: G \to A^n$. Let $hx = f\phi x$ for $x \in G$ and hx = x for $x \in D \setminus G$. Hence h is a mapping from D into A. We claim that h maps D into D. This is obvious for any $x \in D \setminus G$. Let $x \in G$ and $\tilde{u} = \phi x$. We can see from the definition that $u_1 \in D$ so that by Lemma 8 we get $hx = f\tilde{u} \in D$. Since \triangleleft is a subrelation of \square , it is easy to verify from the definition of ϕ that for $u, v \in G$, $u \triangleleft v$ implies $\phi u \prec \phi v$. Hence h is a homomorphism of \triangleleft into \prec . By assumption h is the identity transformation. In particular, $f\tilde{x} = f\phi x_1 = hx_1 = hx_2 = hx_1$ x_1 and this completes the proof.

COROLLARY 4. A strongly rigid binary relation exists on any finite set with at least 3 elements.

PROOF. Let $D = \{d_0, \dots, d_k\}$ and let $d_i \square d_j$ if and only if i < k and j = i + 1. It is sufficient to set \triangleleft equal to \square and verify all assumptions of the Theorem 2.

For infinite sets we will have the following sufficient condition.

Theorem 3. Let \Box be a rigid relation on D. Suppose that there exists $E \subseteq D$ satisfying

(1) To any $x \in E$ there exist $a_1, \dots, a_4 \in D$ and $y \in D$ such that $x \sqsubset a_1 \sqsubset \dots \sqsubset a_4 \sqsubset y$,

and

$$z \sqsubset b_1 \sqsubset \cdots \sqsubset b_4 \sqsubset y \Rightarrow z = x$$

for any $z, b_1, \dots, b_4 \in D$.

(2) If $y_1 \in D \setminus E$, $y_2 \in D$, and for any $e \in E$

$$e \sqsubset y_1 \Rightarrow e \sqsubset y_2, \qquad y_1 \sqsubset e \Rightarrow y_2 \sqsubset e,$$

then $y_1 = y_2$.

Then the relation \prec on $D \cup \{0,1\}$ defined in §3 is strongly rigid.

PROOF. Let $\tilde{x} \in A^n$ and let $x_1 \in E$. By assumption there exist a_1, \dots, a_4, y in D such that $x_1 \sqsubseteq a_1 \sqsubseteq \dots \sqsubseteq a_4 \sqsubseteq y$. Fix an element $d \in D$ and define $\tilde{t}^{(i)} \in A^n$ $(i = 1, \dots, 4)$ as follows: Let $t_1^{(i)} = a_i$. For $j = 2, \dots, n$ set (1) $t_j^{(i)} = 1/2[1 - (-1)^i]$ if $x_j \in D \cup \{0\}$, and (2) $t_j^{(1)} = 0$, $t_j^{(2)} = d$, $t_j^{(3)} = 1$, and $t_j^{(4)} = 0$ if $x_j = 1$. It is easy to check that $\tilde{x} \prec \tilde{t}^{(1)} \prec \dots \prec \tilde{t}^{(4)} \prec \tilde{y}$. Hence $f\tilde{x} \prec f\tilde{t}^{(1)} \prec \dots \prec f\tilde{t}^{(4)} \prec f\tilde{y}$. Since by Lemma 2 we have $f\tilde{y} = y$, the assumption yields the required equality $f\tilde{x} = x_1$.

Let $\tilde{x} \in A^n$ and let $x_1 \in D \setminus E$. Let $y_1 = x_1$ and $y_2 = f\tilde{x}$. Assume $e \in E$ and $e \sqsubseteq y_1$. Let $t_1 = e$ and for $i = 2, \dots, n$ set (1) $t_i = 0$ if $x_i \in D$ and (2) $t_i = \exists x_i$ if $x_i \in B$. Then $\tilde{t} \prec \tilde{x}$ and therefore $f\tilde{t} \prec f\tilde{x}$. But in the first part of the proof we have shown that $t_1 = e \in E$ implies $f\tilde{t} = t_1 = e$. Thus $e \prec f\tilde{x}$. We know from Lemma 7 that $f\tilde{x} \in D$ and therefore $e \sqsubseteq f\tilde{x}$, i.e. $e \sqsubseteq y_2$. A similar argument shows $y_1 \sqsubseteq e$ $\Rightarrow y_2 \sqsubseteq e$. Hence using the second part of the assumptions we get $y_1 = y_2$, i.e. $f\tilde{x} = x_1$.

We conclude with

THEOREM 4. A strongly rigid binary relation exists on any set with at least three elements.

PROOF. For finite sets the statement was proved in Corollary 4. Let A be infinite. We can choose two elements $0, 1 \in A$ and set $D = A \setminus \{0, 1\}$. The existence of a rigid relation on D was proved in [13]. Using the denotation of [13] we set $E = D \setminus \{1, \omega_{\xi}, \omega_{\xi} + 1\}$. For the condition 1 of Theorem 3 it suffices to set $\alpha_{i} = x + i$ $(i = 1, \dots, 4)$ and y = x + 5.

We will check the condition (2). Let $y_1 = 1$. Choosing e = 0, from $0 \square 1$ we get $0 \square y_2$. Similarly, for e = 2, from $1 \square 2$ we get $y_2 \square 2$. Therefore $y_2 = 1 = y_1$. Consider now $y_1 = \omega_{\xi}$. Choosing

 $e = \omega_{\xi} + 1$ we get $y_2 \sqsubseteq \omega_{\xi} + 1$. If $\omega_{\xi} \in D_1$, then from $\omega_0 \sqsubseteq \omega_{\xi}$ we get $\omega_0 \sqsubseteq y_2$ and this together with $y_2 \sqsubseteq \omega_{\xi} + 1$ yields $y_2 = \omega_{\xi} = y_1$. If $\omega_{\xi} \in D_0$, then there exist an increasing sequence $\{\alpha_n\}$ such that $\alpha_n \sqsubseteq \omega_{\xi}$ and $\sup \alpha_n = \omega_{\xi}$. Then again $\alpha_n \sqsubseteq y_2$ for all n and therefore $y_2 = \omega_{\xi} = y_1$. Finally, let $y_1 = \omega_{\xi} + 1$. Then from $\omega_{\xi} \sqsubseteq \omega_{\xi} + 1$ we get $\omega_{\xi} \sqsubseteq y_2$ and therefore $y_2 = \omega_{\xi} + 1 = y_1$. Thus (2) holds and the relation \prec is a strongly rigid relation on A.

Concluding Remarks. (1) The referee has pointed out that it is natural to ask the following question. Let α be a cardinal. A relation ρ is α -strongly rigid if for any set J with $|J| < \alpha$ the only homomorphisms $\rho^J \to \rho$ are the projections. Here we have proved only the existence of an \aleph_0 -strongly rigid relation.

(2) The number of strongly rigid n-ary relations on a set is also of interest. We conjecture that for a finite set with k elements the number s(n) of n-ary strongly rigid relations satisfies

$$\lim_{n\to\infty} 2^{-k^n} s(n) = 1,$$

i.e. for a big n almost all n-ary relations are strongly rigid.

REFERENCES

- 1. R. A. Baĭramov, Predicate stabilizers and Sheffer functions in a finite-valued logic, Akad. Nauk Azerbaĭdžan. SSR Dokl. 24 (1968), no. 2, 3-6. (Russian) MR 42 #44.
- 2. ——, The predicative characterizability of subalgebras of many-valued logic, Izv. Akad. Nauk Azerbaidžan. SSR Ser. Fiz.-Tehn. Mat. Nauk 1969, no. 1, 100–104. (Russian) MR 41 #5195.
- 3. Forty years of mathematics in the USSR: 1917–1957. Vol. 1, Fizmatgiz, Moscow, 1959. (Russian) MR 22 #6672.
- G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1968. MR 40 #1320.
- 5. S. V. Jablonskii, Functional constructions in a k-valued logic, Trudy Mat. Inst. Steklov. 51 (1958), 5-142. (Russian) MR 21 #3331.
- 6. E. L. Post, The two-valued iterative systems of mathematical logic, Ann. of Math. Studies, no. 5, Princeton Univ. Press, Princeton, N. J., 1941. MR 2, 337.
- 7. I. Rosenberg, La structure des fonctions de plusieurs variables sur un ensemble fini, C. R. Acad. Sci. Paris 260 (1965), 3817-3819. MR 31 #1185.
- 8. , Uber die funktionale Vollständigkeit in der mehrwertigen Logiken, Rozpravy Československé Akad. Věd. Rada Mat. Přírod. Věd. 80 (1970), no. 4, 3-93.
- 9. —, Über die Verschiedenheit maximaler Klassen in P_k , Rev. Roumaine Math. Pures Appl. 14 (1969), 431-438. MR 40 #28.
- 10. —, Algebren und Relationen, Elektron. Informationsverarbeit. Kybernetik 6 (1970), 115–124. MR 42 #48.
- 11. —, Universal algebras with all operations of bounded range, Publ. CRM 176, March 1972.

- 12. —, A classification of universal algebras by infinitary relations, Algebra Universalis 1 (1972), 350-354.
- 13. P. Vopěnka, A. Pultr and Z. Hedrlín, A rigid relation exists on any set, Comment. Math. Univ. Carolinae 6 (1965), 149-155. MR 32 #1127.
- 14. E. Ju. Zaharova, V. B. Kudrjavcev and S. V. Jablonskii, *Precomplete classes in k-valued logics*, Dokl. Akad. Nauk SSSR 186 (1969), 509-512= Soviet Math. Dokl. 10 (1969), 618-621. MR 39 #6738.

University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Université de Montréal, Québec, Canada

