ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 3, Number 4, Fall 1973

STRONGLY RIGID RELATIONS
I. ROSENBERG

AssTRacT. Vopénka, Pultr and Hedrlin proved in 1965 that
on any set A there exists a binary rigid relation p, i.e. a relation
such that the identity transformation is the single homomor-
phism (compatible mapping) of p into p. We prove the
existence of a strongly rigid binary relation on any set with at
least three elements. It is a relation such that all homo-
morphisms of p"™ into p are projections for all n =1, 2, ---.
We characterize all strongly rigid relations on a set with two
elements. Our result can be also stated as follows: There
exists a binary (if |A| > 2) or ternary (if |A] = 2) relation
p on A such that the trivial universal algebra (A; ¢ ) is equiva-
lent to (A; A)) where A, is the set of all operations on A
preserving p.

1. Let A and I be sets such that [A| > 1, |I| > 0. Let Al be the set
of all mappings from I to A. Any subset p of AT will be called an I-
relation or |I|-ary relation on A. If |I| = k < R, we will identify A!
with A* and, in particular, for |I| = 1,2,3 any I-relation is simply a
unary, binary or ternary relation on A. Let p; be I-relations on A;
(i=1,2). A mapping f:A; — A, is a homomorphism of p, into
p2 (or pypo compatible mapping [13]) if g € p, implies f° g € p,.
A homomorphism f: A — A of p into p is called an endomorphism.
A relation p is rigid [13] if the identity transformation is the single
endomorphism of p. The existence of a binary rigid relation on any
set is proved in [13].

Given an I-relation p on A and 0 < n < X, we define the I-relation
p" on A" as follows: f € pn if there exist fEp (i=1, - - -, n) such
that fx = (fix, - - -, fyx) for all x € . For 1 = i = n < R, define the
projections [4] (called sometimes selective or trivial operations)
en: A" > Abyem™, - - - x, = x;forallx, - -+, x, € A. Finally set ] =
{ei"|1§i§n< No}

DeFINITION. Let p be an I-relation on A. The set of all homo-
morphisms of p" into p (1=n < R,) will be denoted by A, The
relation p will be called a strongly rigid relation if A, = J.

The sets A, were introduced in [3] for |I| = |A| < R, and used in
(1], [2], [14] and [7] —[12]. Obviously f& A, if and only if
p is a subalgebra of (Al {f}). A relation p is strongly rigid if and
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only if for any n=1,2, - -+, any homomorphism f of p" into p
is a projection, i.e. f= ¢ for a suitable 1 =i=n. If p is strongly
rigid, then for n =1 any homomorphism f:p — p is the identity
and p is rigid. The converse is not true; and, in particular, the rigid
relation of [13] is not strongly rigid.

ExampLE. Let p be a rigid binary relation with a minimal element
0 and a maximal element 1 (i.e. (a,0) E pand (1,a) E p fornoa € A).
Then p is not strongly rigid.

Indeed it is sufficient to define f: A2 — A as follows: Let f01 =1
and fxpxg=1x, for all (x,x) € AN\{(0,1)}. If (x;,x")Ep
(i=1,2), then x,’ # 1 and x," # 0 so that (fx;'xy’, fx,"x") =
(x;,%,") Ep. Hence f E A, and this shows that p is not strongly
rigid.

gUniversal algebra provides a motivation for the study of strongly
rigid relations.

Let A= (A; F) be a universal algebra [4]. It is proved in [12]
that there exist a set I and an I-relation p on A such that A= (A; A)).
The relational degree of A is the least cardinality of such a set I. In
this paper we will in fact prove that the relational degree of (A; @)
is2if |[A| > 2 and 3if [A| = 2.

In §2, using Post’s results, we characterize all strongly rigid relations
on a set with two elements. In §§3 — 4 using the rigid relation from [13]
we prove the existence of a strongly rigid relation on any set with at
least three elements. The problem to characterize all strongly rigid
relations on a set with more than two elements remains open. It
seems that this problem is more difficult than the following opposite
problem which was solved in [11]: Characterize all relations
p on I such that A, is the set of all operations on A.

2. Let A be a set with two elements which for convenience will be
denoted by 0 and 1. The operations on A are simply Boolean functions.
We will need the following operations: _

(1) The zero operations (constants) 0 and 1.

(2) The unary operation 71 (negation) defined by 70=1 and
q1=0.

(3) The binary operation V (disjunction or alternative) defined by
OV0O=0andOV1=1V0=1V1=1

(4) The binary operation A (conjunction) defined by 0 A0 =
1IN0O=0A1=0andl Al1=1.

(5) The binary operation + (the sum mod 2) defined by 0 + 0 =
1+41=0and0+1=1+0=1.

(6) The ternary operation [ defined by lx;xyx; = x, + x5 + x5 for
any x,, xp, X3 € A
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(7) The ternary operation maj(majority function) defined by
maj x %% = (x; A x3) V (x; A xg3) V (22 A x3) for all xp, x,, x3 € A
Further let 0; and 1; be the mappings I — {0} and I — {1}, respec-
tively.

Iffi, -, fa € Aland g: A —> Athen h = gf, -+ - f, is the element
of A! defined by hi = g(fii) -+ * (fui) for each i € 1. Now we can
state

TueorReM 1. An I-relation p on {0, 1} is strongly rigid if and only
if0, € p, 1 & p and there exist f, E p (i =1, - - -, 11) such that 1,
ip, LV fi€e iNfi§p fot frt+ fi§p and majfofiofu

p-

Proor. Necessity follows from the fact that none of 0,1, 71, V, A, [,
maj belongs to A, if p is strongly rigid.

Sufficiency. Assume that A, D J. It is proved in [6] that A, then
contains at least one of Rg, Rg, Ry, Sy, Ps, Ly, and D,. But these sets
contain functions 0, 1,77, V, A, I and maj so that at least one of the
conditions of the theorem is not met. A direct check shows:

CoroLLary 1. There is no strongly rigid binary relation on {0,1}.

Let V3 = {{a}, a5,a3) E A3 |a; + ay + a3 =i} (i=1,2). A more
dptailed analysis using permutations of places and transition to dual
relations, can be used to show

CoroLLARY 2. The ternary strongly rigid relations on {0, 1} have the
form ‘/1:3 U A (A C st) or V23 U [ (I.LC V13).

Let s(n) be the number of strongly rigid n-ary relations on {0, 1}.
We know that s(2) = 0, s(3) = 14. We will not investigate s(n) here
and we will give only the following crude lower bound.

CoroLLary 3. For every n, S(n) = 22" 7.

Proor. If p has the property (1) 0, - - -,0,1) €p, (0, - -+,0,1,0) €
p, (0,++,0,1,0,0) € p and (2) (0, - --,0) & p, (0, --,0,1,1,1)
EEp, (1, ---,1,0) €Ep, and (1, ---,1) ¢p, then it can be easily
checked that p satisfies the conditions of the proposition. Obviously
we may include in p any of the remaining 2" — 7 n-tuples.

3. The example given in §1 shows that a strongly rigid relation
cannot have a minimal and a maximal element. Since the rigid rela-
tion given in [13] has both elements we will correct the situation
by adjoining two elements and extending the relation so that the new
relation does not possess maximal or minimal elements.

Let D be a nonempty set with a rigid binary relation [C. Assume
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that (D; ) has no closed paths of length 2 or 3, i.e. for no x, y, and z
in Dwe have x C y C x or x C y C z[C x. In order to get a strongly
rigid relation we will add to D two elements, which for convenience
will be denoted by 0 and 1. Let B= {0,1} and let BN D= @.
On the set A= B U D define a binary relation < as follows:

(1) set0 < d< 1foralld € D,

(2) set0< 1< 0, and

(3) forany x,y € Dsetx < yifand only if x [ y.

Thus < is an extension of [ with 0 below and 1 above all elements
of D and a full edge between 0 and 1. We will prove that under
certain restrictions < is a strongly rigid relation. Let f: A» — A be
a homomorphism of <" into <. First we will prove that there exists
1 = p = nsuch thatx, € Bimplies fx, - - - x, = x, and x, € D implies
fx; -+ - x, € D. We will need the following lemmas.

LemMma 1. The relation < is rigid.

Proor. Let h: A — A be an endomorphism of <. From the defini-
tion we get h0 < hl < h0 and h0 < hd < hl for all d € D. Since C
has no cycles of length 2 we get h0 = 0, hl = 1 and hd € D. Since <
agrees with [ on D we see that h restricted to D is an endomorphism
of C, so that hd = d forany d € D.

Elements of A" will be denoted by ¥ = (x,, - - -,x,,) and fora € A
the element (@, - - -, a) € A" will be denoted by a.

LemMa 2. We have fa = a forany a € A.

Proor. Let ha = fa for any a € A. It is easily verified that h is
an endomorphism of < and therefore by Lemma 1 the identity.

For any ¥ € B*set 1% = ( lx, - - -, 7lx,). A function h: B> —» B
will be called a Boolean function. We will say that h is self-dual if
Thi = h 1% for any x € B~

Let g be the restriction of f to B".

LemmMma 3. The function g is a Boolean self-dual function.

Proor. Letx € B". Then 1% € Brand ¥ < 1% < % (here and in the
sequel we will write < instead of <™ whenever possible). Hence
fA<f1x<f% and from the definition of < we can conclude
{f&, f 1%}=Band 1 fx=f 1%

If € B" and x;=y; for all i=12 - n (e (x,y;) €
{€0,0), €0,1), <1,1)}) we will write ¥ =4. Boolean function is
monotonic if X = § implies ¥ = fi.

Lemma 4. The function g is monotonic.
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Proor. Let %, i € B, ¥ =7 and suppose f=1, fij=0. Let
z= 1x if ;;=y; and z, €D if (x;,y;) = (0,1). Then clearly
X < z < ij which leads to the contradiction 1 < fz < 0.

LetV,= {€B"|x;+ -+ +x,=i}(i=0, -, n).

LemMma 5. There exists Z € V,,_, such that gz = 0.

Proor. The function g being self-dual is not constant. Using this
and monotonicity of G it is not difficult to prove that there exists
0=i<n, X€V, jEV,,,, =7 such that fi=0 and fj=1
(see e.g. [5]). Then there exists 1 = p = n such that x, =0, y, =1
and x,, = y,, for all L=m=n, m # p. Choose d € D and set (1)
u,=d v,=1,and w,=0, 2) 4, =1, v,=0, w, =d if x,, =0,
and 3) 4, =0, v,=d, w,=1 if x,=1. It is easy to check
¥ <a <i. This gives 0 < fa <1 so that fit € D. Direct check
shows that 4 < 8 < @< 4 so that fi < fo < fio < fii. We have
no closed path of length 3 in D and therefore fo = 1 and fuw = 0.
Let z,=0 and z,=1 for all 1=m=n, m# p. Then 2EV,_,
and © < Z. Hence 1= 6 < fz and from z€ V,_; C B* we con-
clude fZ € Band fz = 0.

Lemma 6. There exists 1 = p = n such that g = e,

Proor. By Lemma 5 there exists Z € V,,_; with gz=0. If z,=0
then for any § € B" with y, = 0 we get §j = Z and applying Lemma
4 we obtain gij = gz =0, i.e. gj = 0. For any 1 € B" with ¢, =1,
this and self-duality of g yields gt = g 1 = 0. Thus we get the
required result.

LemMma 7. Ifx, € Bthen fX = x,,

Proor. Let ¥ € Anand x, € B. Foreachi=1, - - -, nsety, = z; =
“lx; if x; €B and y; = 0, z;, =1 if x; € D. Immediate check shows
7 <x<Z so that fij< f& < fz. Since §§,z € B, applying Lemma
6 we get fj=y,= "lx, and fZ=z,= "lx, Thus "lx, < f%
< 7lx, and this implies fX € Band f% = «x,,.

Lemma 8. Ifx, € D then fx € D.

Proor. Let ¥ € Anand x, ED. Foreachi=1, ---, nset(l)y; =
0,z,=1ifx; EDand (2)y;= z;= "lx;if x; EB. Then § < ¥ < Z s0
that f§j < f& . fz. Since x, ED we have y,=0 and z,= 1.
Applying Lemma 7 we get fj=y,=0 and fZ=z,=1. Thus
0 < fx < 1 and this yields fx € D.
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4. For strong rigidity we will make further assumptions on .
The first type will be used for finite sets D.

We say that a binary relation <l on S is a spanning forest if given
any u, v € D there exists at most one finite sequence y,, * - -, y,, in
D such that u=y,, v =1y, and y; < yis; Or y;y; <q y; for each
i=01 -, m—1 and xED|xqd or dJx}# P for each
d € D.

Tueorem 2. Let [ be a rigid relation on D. Let <] be a spanning
forest which is a subrelation of the relation T such that the identity
transformation is the only homomorphism of < into .

Then the relation < on D U {0, 1} defined in §3 is strongly rigid.

Proor. Let f be a homomorphism from <" into <. Since we can
permute the variables, using Lemmas 7 and 8 we can assume without
loss of generality that (1) f& =x; for all X € A", x;, € B and (2)
fXED for all x € A", x; €ED. Fix ¥ € A" with x; € D. Let G be
the connected component of the graph (D; <] ) containing x, and let
t € G. We will define ¢t € A" in the following way: (1) Let ¢x; = %.
(2) Let yo, * * *, yn, be the unique finite sequence in D such that x; =
Yo, t =1y, and y; Qyiyy or Yy, < y; for every i=0, - m — L
Assume that @ = ¢y,,_, has been already defined. We set z, = y,,
andfori=2, - -, nweset(1)z,= 1w ifu; €EB, (2)z,=1ifu; ED
and y,,_, < ¢, and (3) z; = 0 if v; € D and t < y,,_,. This defines a
mapping ¢: G — A" Let hx = f¢x for x €EG and hx=x for
x € D\G. Hence h is a mapping from D into A. We claim that h
maps D into D. This is obvious for any x € D\G. Let x € G and
@ = ¢x. We can see from the definition that u; € D so that by Lemma
8 we get hx = fi € D. Since < is a subrelation of [, it is easy to
verify from the definition of ¢ that for u,v € G, u Jv implies
¢u < ¢v. Hence h is a homomorphism of < into <. By assumption
h is the identity transformation. In particular, f& = f¢x, = hx, =
x, and this completes the proof.

CoroLLARY 4. A strongly rigid binary relation exists on any finite
set with at least 3 elements.

Proor. Let D = {dy, - - -, di} and let d; C d; if and only if i < k
and j=i+ 1. It is sufficient to set < equal to C and verify all
assumptions of the Theorem 2.

For infinite sets we will have the following sufficient condition.

TueoreM 3. Let T be a rigid relation on D. Suppose that there
exists E C D satisfying
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(1) To any x € E there exista,, * - *,a, € D andy € D such that
xCaC---CalCy,
and
zChC---ChCy=z=x

foranyz,by, - -, by, €ED.
(2) Ify, € D\E, y, € D, and foranye € E

eCy =el y, yCe=y,Ce,

theny, =
Then the relatzon < on D U {0, 1} defined in §3 is strongly rigid.

Proor. Let ¥ € A" and let x; € E. By assumption there exist
ay, ', a4y in D such that x; C q, C -+ - C a4 C y. Fix an element
dED and deﬁne tOE A" (i=1,--,4) as follows: Let ¢, = q;.
Forj 2, ,nset (1) 9 =12[1-(-1)] if x; €D U {0}, and
2) ;1 =0, t2>—dt3)—1 and ¥ =0 if x; = 1. Itlseasyto
CheCk that x< g - <t < 7. Hence fx <ft < -0 <
ft < fi. Since by Lemma 2 we have f§ =y, the assumption
yields the required equality fx = «x,.

Let X € A" and let x; € D\E. Let y, = x, and ys = fX. Assume
e€EEand ey, Lett, =eandfori=2 - nset(l)t=0if
x, €ED and (2) t; = Tlx; if x; € B. Then t < & and therefore ft < fx.
But in the first part of the proof we have shown that ¢, = e € E implies
ft =1t =e Thus e< fx. We know from Lemma 7 that f& € D
and therefore e [ f%, i.e. e C y,. A similar argument shows y, C e
=y, C e. Hence using the second part of the assumptions we get
Yy, = Yy, ie fX = x,.

We conclude with

THEOREM 4. A strongly rigid binary relation exists on any set with
at least three elements.

Proor. For finite sets the statement was proved in Corollary 4.
Let A be infinite. We can choose two elements 0,1’ € A and set
D = A\{0, I'}. The existence of a rigid relation on D was proved in
[13]. Using the denotation of [13] we set E = D\{l, w, w, + 1}.
For the condition 1 of Theorem 3 it suffices to set o, = x + i
(i=1,"-,4)andy = x + 5.

We will check the condition (2). Let y, = 1. Choosing e =0
from 0 C 1 we get 0C y,. Similarly, for e = 2, from 1 C 2 we get
Yo L 2. Therefore y, = 1= y,;. Consider now y, = @, Choosing
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e=w;+1weget y _ o, + 1. If o, € D, then from w,C o, we
get wy C y, and this together with y, T w, + 1 yields y, = w, = y,.
If w; € Dy, then there exist an increasing sequence {a,} such that
a, T w; and sup o, = w,. Then again a, C y, for all n and therefore
Yo = w, = y,. Finally, let y, = o, + 1. Then from w,C o, + 1 we
get w; L y, and therefore y, = w, + 1 = y,. Thus (2) holds and the
relation < is a strongly rigid relation on A.

ConcrLupiNe REMARKS. (1) The referee has pointed out that it is
natural to ask the following question. Let a be a cardinal. A relation
p is a-strongly rigid if for any set J with |J| < a the only homomor-
phisms p/ — p are the projections. Here we have proved only the
existence of an Xo-strongly rigid relation.

(2) The number of strongly rigid n-ary relations on a set is also of
interest. We conjecture that for a finite set with k elements the number
s(n) of n-ary strongly rigid relations satisfies

lim2-*"s(n) = 1,

n—s

i.e. for a big n almost all n-ary relations are strongly rigid.
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