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ON MORE RESTRICTED PARTITIONS
M. S. CHEEMA !

1. Introduction. Recently Gupta [2] studied the function
g(n,m, h, k) which enumerates the number of partitions of n into
exactly k summands each less than or equal to m and in which the
number of distinct summands is exactly h. Earlier Cheema and
Haskell [1] studied p(n, r, m, k), the number of partitions of n into r
summands such that each summand is less than or equal to k and
greater than or equal to m. In this article it is shown that the above
results can be generalized to study g(n, [, m, h, k) (and other related
functions) which enumerates the number of partitions of n into exactly
k summands each less than or equal to m and greater than or equal to
lin which the number of distinct summands is exactly h.

2. g(n, 1, m, h, k) is the coefficient of x"z*¢" in
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Thus the coefficient of t* in f(¢) is
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Using partial fractions we have
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The coefficient of zk-h in (2.5) is given by F(x,l,m, h k)=
Z,T":, B;"M(x)xi*=h) and g(n, I, m, h, k) is obtained as the coefficient of
x™in F(x, I, m, h, k).

These results are easily extended to the study of f(n, m, h, k) which
enumerates the number of partitions of n into summands greater than
or equal to m such that the total number of summands is equal to k
and the number of distinct summands is h. In this case f(n,m, h, k)
is the coefficient of x"zk" in [[.Za(1 + 2(t — 1)x))/(1 — 2zx?). Using
the identity
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2.8) H (1=x)"1= Z g.(n)x"
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reduces the problem to that of finding the coefficient z*x" in
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summations being over all nonnegative integers u, ¢, r, s under the
above conditions.

If another extra restriction is imposed that the parts should be odd,
the corresponding generating functions are

w® x2i+1y ’

ew I (14 22 )= F o m b Ryenaten
m x2it+ly ,

(2.12) H < 1+ m t >= 2 g'(n, m, h, k)x"zkth,

i=0
Again one can use the following identities
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(1 + ax2m+l)(1 + ax2m+3)(1 + ax2m+5) . e
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The details are similar.

3. Concluding remarks. Let g*(n, 1, m, h, k) denote the number of
those g-type partitions of n in which the greatest part used is m and let
G(n, 1, m, h, k) be the number of those in which the number of sum-
mands is at most k (Z h). Thus

g*(n,l,m,h k)= g(n,l,m,h k) — g(n,l, m — 1, h, k),

k
G(n, L, m,h k)= Y g(n I, m,h,j).

i=1

It also follows from their generating functions that g(n, [, m, h, k) =
g(n — k(I — 1), m, h, k). Thus the properties of g(n, I, m, h, k) reduce
to those of g(n, m, h, k) studied by Gupta in [2] and it is easy to show
that F(x,l,m, h, k) is a polynomial in x of degree exactly mk +
h(2l — h — 1)[2. The reduction formulas derived by Gupta can also
be extended.
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