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A NOTE ON THE WELL-POSEDNESS
OF TERMINAL VALUE PROBLEMS FOR

FRACTIONAL DIFFERENTIAL EQUATIONS

KAI DIETHELM AND NEVILLE J. FORD

ABSTRACT. This note is intended to clarify some im-
portant points about the well-posedness of terminal value
problems for fractional differential equations. It follows the
recent publication of a paper by Cong and Tuan [2] in this
journal, in which a counter-example calls into question the
earlier results in a paper by this note’s authors. Here, we
show in the light of these new insights, that a wide class
of terminal value problems of fractional differential equations
is well posed, and we identify those cases where the well-
posedness question must be regarded as open.

1. Introduction. In the paper [6], the authors of this note dis-
cussed the important question of whether neighboring solutions of a
Volterra integral equation (possibly with a singular kernel) can inter-
sect. A primary motivation for this work was to establish whether
the terminal value problem for a fractional differential equation is well
posed. The approach stems from the observation that, for an ordinary
differential equation, two solutions coincide everywhere or do not in-
tersect anywhere. However, the fractional derivative, being non-local
away from the origin, opens up the possibility that neighboring solu-
tions may intersect, and this would mean that a unique solution would
not be completely determined by the solution value at some time point
other than the origin, in other words, a terminal value problem might,
in principle, be ill-posed.

The precise formulation of the problem under consideration is based
on Caputo’s definition of a fractional derivative,
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Dα
∗,0+y(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−αy(n)(s) ds,

where α > 0 and n = ⌈α⌉, cf., [3, Section 3]. Classical terminal value
problems for associated differential equations usually refer to the case
0 < α < 1 and then have the form

(1.1) Dα
∗,0+y(t) = f(t, y(t)), y(T ) = y∗,

with some T > 0 and a prescribed value y∗ ∈ R. In such a case, one is
usually interested in the solution on the interval [0, T ]; the fact that the
solution’s function value is prescribed at the end point of the interval of
interest and not–as is traditionally done [4]–at the starting point, gives
rise to the denomination of such a problem as a terminal value problem.
The relation of the problem (1.1) to the theory of Volterra integral
equations is established by the well-known fact [4] that a continuous
function y solves the differential equation that occurs in eq. (1.1) if and
only if there exists some y0 ∈ R such that

(1.2) y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s)) ds.

The key result of our paper [6] was contained in Theorem 3.1 of that
paper which attempted to show that, under fairly weak conditions, two
neighboring solutions of a Volterra integral equation coincide either
everywhere or nowhere. An application of that result appeared to
give rise to the following statement regarding fractional differential
equations [6, Theorem 4.1]:

Theorem 1.1. Let 0 < α < 1, and assume f : [0, T ] × [c, d] → R to
be continuous and satisfying a Lipschitz condition with respect to the
second variable. Consider two solutions y1 and y2 to the differential
equation

Dα
∗,0+yj(t) = f(t, yj(t)), j = 1, 2,

subject to the initial conditions y1(0) = y10 ̸= y20 = y2(0). Then, for
all t where both y1(t) and y2(t) exist, we have y1(t) ̸= y2(t).

From this result, one may conclude that a wide class of terminal
value problems for fractional differential equations of the form (1.1) is
indeed well posed. As pointed out by Cong and Tuan [2] (see below),
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it is important to note here that the result is only claimed for the case
of a scalar differential equation, i.e., we do not allow y to be an N -
dimensional vector with N > 1 and f to be a mapping from a suitable
subset of RN+1 to RN .

Both before the publication of the paper [6] and after, there have
been significant numbers of outputs based on the assumption that
boundary value problems are well posed for fractional calculus. Ac-
cordingly, the recent publication of the paper [2], whose authors point
out, through a counterexample and new proof, that Theorem 3.1 of [6]
(on which the fundamental result given in Theorem 1.1 regarding the
well-posedness of the terminal value problems is based) is valid only
under additional hypotheses, makes it important to assess the implica-
tions of these new insights for those working on fractional differential
equations.

2. The new results. In [2], Cong and Tuan showed that [6, The-
orem 3.1] is true only under additional conditions. However, the most
important cases practically arise where the additional assumptions
hold. Thus, for example, they gave the following result [2, Theorem
5].

Theorem 2.1. Let 0 < α < 1, and let J = [0, T ] for some T > 0.
Consider the equation

(2.1) Dα
∗,0+x(t) = f(t, x(t)),

where f : J × R → R satisfies the Lipschitz condition

|f(t, x)− f(t, y)| ≤ L(t)|x− y|

for all t ∈ J and all x, y ∈ R with some function L ∈ C(J). Then,
for any two different initial values x10, x20 ∈ R, the trajectories of the
corresponding solutions to (2.1) do not meet on J .

It thus immediately follows that Theorem 1.1, i.e., [6, Theorem 4.1])
is correct, although its original proof given in [6] is erroneous.

3. Implications for fractional terminal value problems. For
single term scalar fractional terminal value problems of order α ∈ (0, 1),
Theorem 2.1 provides the theory we require for the problem to be well
posed under simple assumptions (continuity and Lipschitz continuity
of f).
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When it comes to equations of order α > 1, the number of initial
conditions required in an initial value problem associated to the differ-
ential equation (2.1) is m := ⌈α⌉ > 1. Even in the very simple case of
the initial value problems,

Dα
∗,0+yj(t) = λyj(t),

yj(0) = yj0, y′j(0) = 0, j = 1, 2,

with y10 ̸= y20 and 1 < α < 2, it is known [6, Example 5.1] that
the situation regarding the well-posedness is completely different: the
solutions y1 and y2 intersect at least once. Thus, from the point of view
of the associated terminal value problem, we may lose the existence or
the uniqueness of the solution, and thus, the problem becomes ill-posed.

Similarly, in the vector valued case it follows from [2, Theorem 23,
Remark 25] that an intersection of the solution trajectories is possible
whenever α ̸= 1. Thus, in this case, the well-posedness is lost as well.

The fact that these two formally different problems, i.e., the vector-
valued setting on one hand and the higher order problem on the other
hand, exhibit the same type of behavior can be interpreted on the basis
of the fact that there exists some link between them in the sense that
problems of one type may often be rewritten in the form of the other
type [5, 7, 8].

Concerning a number of other aspects, the comments listed in [6,
Section 5] are not affected by the error in the earlier part of that paper;
[2, Theorem 5] proves that they are correct:

(1) The kernel of a Caputo differential operator of order α ∈ (0, 1)
is one-dimensional for all t > 0.

(2) The additional condition required in order to obtain uniqueness
of the solution to a given scalar fractional differential equation of order
α ∈ (0, 1), where the function f on the right-hand side is assumed to
satisfy a Lipschitz condition with respect to the second variable, may
be imposed at an arbitrary point T ≥ 0.

It is legitimate to consider a fractional differential equation subject
to a (terminal) condition given at some point T > 0 and to ask for the
behavior of its solution in the interval [0, T ), i.e., at the points in time
that precede the observation time T .
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4. Conclusions and open questions. The original paper [6] dis-
cussed a number of questions related to separation properties for the
solutions to a general class of Volterra equations; the corresponding
results for fractional differential equations can be seen as special cases
thereof. As described above, the results of [2] prove that the essential
results of [6] for fractional differential equations are correct. In par-
ticular, the numerical technique developed in [6, Section 6] for solving
terminal value problems is justified. However, the issue of finding a
(theoretical) method to compute the exact solution of such a problem
remains unsolved. It seems unclear whether, e.g., a Picard iteration
technique would lead to a sequence that converges towards the exact
solution under sufficiently general assumptions.

When it comes to the general class of Volterra equations discussed
in [6], a number of questions remains open. For the Volterra equation
of Hammerstein type

y(t) = y0 +

∫ t

0

p(t, s)f(s, y(s)) ds,

it is claimed in [6, Theorem 3.1], under very general assumptions on the
kernel p and the usual Lipschitz condition with respect to the second
variable on f , that there exists at most one y0 such that the solution
to this equation satisfies y(T ) = b with prescribed values of T > 0 and
b ∈ R. This is equivalent to a non-intersection of the solutions to the
Volterra equation for different values of y0. It is clear from the results of
[2] that the proof attempted in [6] is incorrect. We conjecture that the
result is correct in the scalar case under certain additional assumptions
on p that might be related to those used in [2, Proof of Lemma 2]. In
the multi-dimensional case (which was not discussed in [6]), it follows
from [2, Section 6] that a corresponding result cannot hold in general;
it may, however, hold if attention is restricted to “sufficiently short”
intervals. It would be of interest to investigate whether one can give
a precise account of what “sufficiently short” means in this context,
and whether the admissible interval length depends on the dimension
of the space to which y maps. This question may also be related to the
findings of Agarwal et al. [1], in particular to their Theorem 3.3.
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