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ABSTRACT. The present work deals with some spectral
properties of the problem

(P)

{ Dα
b,−(p(x)Dα

a,+y)(x) + λq(x) y(x) = 0, a < x < b,

lim
x→a
>

(x− a)1−αy(x) = 0 = y(b),

where p, q ∈ C([a, b]), p(x) > 0, q(x) > 0, for all x ∈ [a, b] and
1/2 < α < 1. Dα

b,− and Dα
a,+ are the right- and left-sided

Riemann-Liouville fractional derivatives of order α ∈ (0, 1),
respectively. λ is a scalar parameter.

First, we prove, using the spectral theory of linear com-
pact operators, that this problem has an infinite sequence of
real eigenvalues and the corresponding eigenfunctions form a
complete orthonormal system in the Hilbert space L2

q [a, b].
Then, we investigate some asymptotic properties of the spec-
trum as α →

<
1. We give, in particular, the asymptotic ex-

pansion of the first eigenvalue.

1. Introduction. Sturm-Liouville theory has an important role in
mathematics, physics and engineering. During the last few years,
fractional Sturm-Liouville problems have appeared in the literature.
They were introduced by Klimek and Agrawal [7, 8]. Both Riemann-
Liouville and Caputo derivatives were used. These authors proved that
the eigenvalues are real and the eigenfunctions are orthogonal by using
a Green-type formula as in the classical case.
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Another important research area concerns the inverse problem in
diffusion equations with fractional derivatives, namely, the problem of
recovery of the diffusion potential from spectral data and the initial
condition. Recently, much progress has been made in this direction by
Tuan [18] and Bas [3], where one can find a wide number of references
on the subject and many interesting comments. In [16], more problems
have been presented. Also, similar problems to our (P) have been
considered by Bas et al. [2, 4] with singular coefficients p(·) as in
Bessel-type equations.

The purpose of this paper is to investigate some basic spectral prop-
erties of the fractional Sturm-Liouville problem (P) with generalized
Dirichlet conditions. By generalized Dirichlet conditions, we mean

(1.1) lim
x→a
>

(x− a) 1−α y(x) = 0 = y(b).

Note that this kind of condition involves continuous as well as non-
continuous functions at the point a. For example,

lim
x→a
>

ln (x− a) = −∞ but lim
x→a
>

(x− a) 1−α ln (x− a) = 0.

Obviously, Dirichlet conditions are a particular case of the generalized
ones, and the limit in equation (1.1) implies that y is in L1.

We start by considering the problem (P) on the domain Dom where
y ∈ Dom if and only if y verifies the following conditions:

(C1) y ∈ C(]a, b]) and lim
x→a
>

(x− a) 1−α y(x) = 0

(C2) D α
a,+ y ∈ C([a, b[) and lim

x→b
<

(b− x) 1−α D α
a,+ y(x) exists,

with the aim of transform (P) into an integral equation problem, which
can be analyzed by classical tools of operator theory. Condition (C1) is
nothing but the generalized Dirichlet condition at x = a. The second,
(C2), will appear naturally further on in the calculation of the integral
operator.

The number λ is said to be an eigenvalue for problem (P) if there
exists a function in Dom, not identically zero, which satisfies the frac-
tional regular Sturm-Liouville equation and the generalized Dirichlet
conditions.
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In what follows, we prove that the set of eigenvalues of (P) is real
and infinite. This result partially answers a question in [16, page 9,
Remark 1], where the situation is quite similar. However, the simplicity
of the eigenvalues is still an open problem.

The corresponding eigenfunctions form a complete orthonormal sys-
tem in the Hilbert space L2

q[a, b] endowed with the usual scalar product
and the associated norm:

⟨u, v⟩q =

∫ b

a

u(x) v(x) q(x) dx, ∥u∥q =
√
⟨u, u⟩q.

This result follows from the theory of linear compact operators and the
fractional Green’s function properties, following the approach in [10]
adapted to our generalized boundary conditions. The second result
investigates the asymptotic behavior of the first eigenvalue of (P) when
α →

<
1. This can be the starting point to put the classical and the

fractional cases in the same theory.

2. Basic concepts. In this section, we recall some definitions
and properties of Riemann-Liouville fractional integrals and fractional
derivatives used below. For more details see [11, 14, 15, 17].

Definition 2.1 ([11, 15]). Let f ∈ C([a, b]). The right- and left-
sided Riemann-Liouville fractional integrals of order α > 0 are defined,
respectively, by

(2.1) (Iαb,−f)(x) =
1

Γ(α)

b∫
x

(t− x)α−1f(t) dt

and

(2.2) (Iαa,+f)(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t) dt

where Γ is the Euler gamma function.
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Definition 2.2 ([11, 15]). The right- and left-sided Riemann-Liouville
fractional derivatives of order α ∈ (0, 1) are defined by:

(Dα
b,−f)(x) = − d

dx
(I1−α

b,− f)(x)(2.3)

and

(Dα
a,+f)(x) =

d

dx
(I1−α

a,+ f)(x),(2.4)

respectively.

Proposition 2.3 ([11, 15, 17]). Let 0 < α < 1 and f ∈ C((a, b)).

(i) [(D α
b,− o I α

b,−) f ](x) = f(x).

(ii) If I 1−α
b,− f ∈ AC([a, b]), then we have

[(I α
b,−oD

α
b,−)f ](x) = f(x)− (b− x)α−1

Γ(α)
lim
x→b
<

(I1−α
b,− f)(x).

(iii) [(Dα
a,+ o Iαa,+)f ](x) = f(x).

(iv) If I1−α
a,+ f ∈ AC([a, b]), then we have

[(Iαa,+oD
α
a,+)f ](x) = f(x)− (x− a)α−1

Γ(α)
lim
x→a
>

(I1−α
a,+ f)(x).

Lemma 2.4 ([11, page 151, Lemma 3.2]). Let 0 < α < 1 and y(x) be
a Lebesgue measurable function on [a, b].

(i) If there exists a limit

lim
x→a
>

(x− a)1−αy(x) = c, c ∈ C,

then the following limit also exists(
I 1−α
a,+ y

)
(a+) := lim

x→a
>

(
I1−α
a,+ y

)
(x) = cΓ(α).

(ii) Symmetrically, if there exists a limit

lim
x→b
<

(b− x)1−α y(x) = d, d ∈ C,
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then the following limit also exists(
I 1−α
b,− y

)
(b−) := lim

x→b
<

(
I1−α
b,− y

)
(x) = dΓ(α).

Finally, we recall the following fractional integration by parts for-
mula, proved in [17, page 46, Corollary 2] (with simple sufficient con-
ditions).

Proposition 2.5. Let f, g, (D α
a,+f), (D

α
b,−g) ∈ C([a, b]). Then

(2.5)

b∫
a

(Dα
a,+f)(x) g(x) dx =

b∫
a

f(x) (Dα
b,−g)(x) dx.

3. Main results.

3.1. Spectral properties. In this subsection, we prove that prob-
lem (P) admits an infinite sequence of eigenvalues, which are real and
negative. Also, the normalized eigenfunctions form an orthonormal
basis in L2

q[a, b].

Proposition 3.1. Let α ∈ ((1/2), 1]. Then

(i) for all y ∈ Dom, problem (P) is equivalent to

y(x) = λ(Tαy)(x),

where Tα is the linear operator defined by

Tα : Dom −→ Dom

y(·) 7−→ (Tα y)(x) =

b∫
a

Gα(x, τ) q(τ) y(τ) dτ

Gα (x, τ) is the fractional Green’s function defined by

(3.1) Gα (x, τ) =


ϕ(b, x)ϕ(b, τ)

ϕ(b, b) Γ(α)
− ϕ(x, τ)

Γ(α)
, if a ≤ τ ≤ x

ϕ(b, x)ϕ(b, τ)

ϕ(b, b) Γ(α)
− ϕ(τ, x)

Γ(α)
, if x ≤ τ ≤ b,
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and

ϕ(u, v) = I α
a,+

(
(u− v)α−1

p(v)

)
(v)(3.2)

=
1

Γ(α)

∫ v

a

(u− τ)α−1(v − τ)α−1 dτ

p(τ)
.

(ii) Tα extends to a compact, self-adjoint operator on L2
q[a, b] and

Ker(Tα) = {0} .

(iii) All the eigenvalues of problem (P) are negative.

Proof.

(i) By applying Iαb,− to the equation

D α
b,−(p(x)D

α
a,+y)(x) + λq(x) y(x) = 0,

we obtain

(Dα
a,+ y)(x) =

(b− x)α−1

Γ(α) p(x)
lim
x→b
<

(I 1−α
b,− p(x)Dα

a,+y)(x)

− λ

p(x)
(I α

b,−q(x) y(x))(x).

Now, we apply the operator Iαa,+. Then

y(x) =
(x− a)α−1

Γ(α)
lim
x→a
>

(I1−α
a,+ y)(x) +

C ϕ(b, x)

Γ(α)
(3.3)

− λI α
a,+

(
1

p(x)
(Iαb,−q(x) y(x))

)
(x),

where, according to Proposition 2.3 (ii), we have

C = lim
x→b
<

(I1−α
b,− p(x)D α

a,+y)(x)

and ϕ(b, x) is defined in equation (3.2).

• Note that the generalized Dirichlet condition

lim
x→a
>

(x− a)1−αy(x) = 0



RFSLP WITH GENERALIZED DIRICHLET CONDITIONS 465

implies that
lim
x→a
>

(I1−α
a,+ y)(x) = 0.

according to Lemma 2.4.
• The application of the second boundary value condition y(b) =
0 gives

C =
λΓ(α)

ϕ(b, b)
lim
x→b
<

Iαa,+

(
1

p(x)
(Iαb,−q(x) y(x))

)
(x),

where ϕ(b, b) = limx→b
<

ϕ(b, x) exists for 1/2 < α ≤ 1, since the

integral

(3.4)

b∫
a

(b− x)2α−2 dx

p(x)

converges if and only if 2α− 1 > 0.

Let us compute the constant C. By using Fubini’s theorem, we obtain:

Iαa,+

(
1

p(x)
(I α

b,−q(x) y(x))

)
(x) =

1

Γ(α)

x∫
a

ϕ(x, τ) q(τ) y(τ) dτ(3.5)

+
1

Γ(α)

b∫
x

ϕ(τ, x)q(τ) y(τ) dτ.

Then we have

C =
λΓ(α)

ϕ(b, b)
lim
x→b
<

Iαa,+

(
1

p(x)
(Iαb,−q(x) y(x))

)
(x)

=
λ

ϕ(b, b)

b∫
a

ϕ(b, τ)q(τ) y(τ) dτ.

Thus, by substituting the first boundary value condition, the constant
C and the integral (3.5) into equation (3.3) we obtain the first impli-
cation.

We can easily verify that, for all y ∈ Dom,

Tαy ∈ Dom.
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Then, the equivalence stated above follows immediately.

(ii) We can obtain the results from the properties of the fractional
Green’s function. The operator Tα defined on Dom can be continu-
ously extended to L2

q[a, b] because Dom is dense, since it contains the
space of infinitely differentiable functions with compact support. The
compactness of Tα follows from the properties below. In fact,

(a) for all (x, τ) ∈ [a, b] × [a, b], Gα (x, τ) is a continuous function
because ϕ(x, τ) is a continuous function in the domain a ≤
τ ≤ x ≤ b and lim

τ→x
<

Gα (x, τ) = lim
τ→x
>

Gα (x, τ), the kernel

Gα ∈ L2
q⊗q([a, b] × [a, b]) therefore Tα is a Hilbert-Schmidt

operator, and thus compact (see [5, 19]).
(b) For all (x, τ) ∈ [a, b] × [a, b], Gα (x, τ) = Gα (τ, x), then G

is a symmetric function on [a, b] × [a, b] so the operator Tα is
self-adjoint in L2

q[a, b].
(c) To prove that the kernel of Tα is reduced to {0}, it suffices to

solve the equation

(Tαy)(x) = 0, for all x ∈ [a, b].

By application of the left- and right-sided Riemann-Liouville
fractional derivatives, respectively, we obtain the result after
some simple calculations.

(iii) Let us consider the fractional Sturm-Liouville equation

Dα
b,−(p(x)D

α
a,+y)(x) + λq(x) y(x) = 0.

By multiplying this equation by y(x) and integrating it on [a, b] we get∫ b

a

Dα
b,−(p(x)D

α
a,+y)(x) y(x) dx+ λ

∫ b

a

q(x)y2(x) dx = 0

Now, by applying Proposition 2.5 (2.5), which is also satisfied with the
generalized Dirichlet conditions (1.1), we obtain∫ b

a

p(x)
(
Dα

a,+ y
)2

(x) dx+ λ

∫ b

a

q(x)y2(x) dx = 0;

hence, λ must be negative.

�
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Theorem 3.2. Let us consider the fractional regular Sturm-Liouville
problem (P) for 1/2 < α < 1. Then

(i) The problem (P) has an infinite countable set {λn}n≥1 of real
negative eigenvalues such that lim

n→∞
λn = −∞, which can be

ordered as:

· · · ≤ λn ≤ · · · ≤ λ3 ≤ λ2 ≤ λ1 ≤ 0.

(ii) The normalized eigenfunctions {ϕn}n corresponding to the eigen-
values {λn}n are orthogonal in L2

q[a, b], that is, for all i ̸= j,

b∫
a

ϕi(x)ϕj(x)q(x) dx = 0.

(iii) Let {ϕn,j}dn
j=1 be an orthonormal basis of En, the eigenspace

corresponding to λn (dn = dim En). The eigenfunctions {ϕn,j}n,j
form an orthonormal basis of the Hilbert space L2

q[a, b], that is, for

all y ∈ L2
q[a, b],

y = lim
N→∞

N∑
n=1

dn∑
j=1

< y, ϕn,j >q ϕn,j .

Proof. Let λ be a non-zero eigenvalue of (P) and µ a non-zero
eigenvalue of Tα. Then, according to Proposition 3.1, we have

(P) ⇐⇒ 1

λ
y = Tα y

and

µy = Tα y ⇐⇒


Dα

b,−(p(x)D
α
a,+y)(x) +

1

µ
q(x) y(x) = 0

lim
x→a
>

(x− a)1−α y(x) = 0 = y(b).

The homogeneous problem does not have a non-zero solution; hence,
zero is neither an eigenvalue of (P) nor an eigenvalue of Tα.

Then, the non-zero eigenvalues of (P) are exactly the inverses of
those of Tα. These last inverses are real countable, negative, tend to
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zero when n → ∞ and they can be ordered as:

|µ1| ≥ |µ2| ≥ |µ3| ≥ · · · ≥ |µk| ≥ · · · → 0

because Tα is self-adjoint and compact in L2
q[a, b]. We can also compute

the properties of the eigenfunctions.

Now, we prove the infinity of eigenvalues by contradiction. Let us
assume that Tα has a finite sequence of non-zero eigenvalues. The
spectral theorem of compact self-adjoint operators gives:

L2
q[a, b] = (KerTα)⊕

( N⊕
k=1

En

)
.

Since the corresponding eigenspaces E1, . . . , En are finite-dimensional
and, according to Proposition 3.1 we have KerTα = {0}, then L2

q[a, b]
must be finite-dimensional, which is a contradiction. �

Remark 3.3. The integral (3.4) converges if and only if α > 1/2.
Thus, the operator Tα remains compact and self-adjoint even if α ≥ 1.
But the corresponding fractional Sturm-Liouville problem must contain
many more boundary conditions.

Recall the expression of the Hilbert-Schmidt norm of a compact
integral operator on L2

q[a, b] [19]. If

(Sy)(x) =

∫ b

a

K(x, t) y(t)q(t)dt,

then

(3.6) ∥S∥2HS =

∫ b

a

∫ b

a

|K(x, t)|2q(t)q(x) dt dx.

Proposition 3.4. All of the eigenvalues of problem (P) verify:

|λ| ≥ 1

∥Tα∥HS
.

Proof. If λ is an eigenvalue, then there exists a y ̸= 0 such that

y = λTαy
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so

∥y∥q = |λ| · ∥Tαy∥q ≤ |λ| · ∥Tα∥ · ∥y∥q ≤ |λ| · ∥Tα∥HS · ∥y∥q.

Then

|λ| ≥ 1

∥Tα∥HS
. �

Remark 3.5. The optimal disc free from eigenvalues has 1/∥Tα∥ as
the radius. But the operator norm is more difficult to compute than
the Hilbert-Schmidt. In our case,

∥Tα∥2HS =

∫ b

a

∫ b

a

|Gα(x, t)|2q(t)q(x) dt dx

can be computed for explicit functions p and q.

3.2. Asymptotic behavior. In this section, we prove that the first
eigenvalue of Tα is close to the first eigenvalue of the following problem

(P1)

{
−(p(x) y′)′(x) + λq(x) y(x) = 0, a < x < b

y(a) = 0 = y(b),

when α →
<

1.

To prove this result, we need some lemmas and propositions.

Lemma 3.6. The nth derivative of 1/Γ(α) and Γ(α) have the following
properties. For all n ≥ 0 there exists Mn > 0, for all α ∈ [1/2, 1],

(3.7)

∣∣∣∣( 1

Γ(α)

)(n)∣∣∣∣ ≤ Mn

and∣∣∣(Γ(α))(n)∣∣∣ ≤ Mn.

Proof. The functions 1/Γ(·), Γ(·) ∈ C∞(]0,+∞[), then they are
bounded on compact sets, as well as all of their derivatives. �
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Lemma 3.7. For a ≤ t ≤ x ≤ b, we have the following property for all
ε > 0 and for all 0 ≤ j ≤ k, there exists Ck,j(ε) > 0 /1/2 + ε < α ≤ 1,

(3.8)

∣∣∣∣ ∫ t

a

(x− τ)α−1 lnj (x− τ)(t− τ)α−1 lnk−j(t− τ) dτ

∣∣∣∣ ≤ Ck,j(ε).

Proof. Let us consider the function fm(ξ, β) = ξβ lnm(ξ) withm ∈ N
and 0 < β < α− (1/2). It is not hard to see that fm(ξ, β) is uniformly
bounded in [0, c]× [0, α− 1/2]. Therefore,∣∣∣∣ ∫ t

a

(x− τ)α−1 lnj(x− τ)(t− τ)α−1 lnk−j (t− τ) dτ

∣∣∣∣
=

∣∣∣∣ ∫ t

a

(x− τ)α−β−1 fj((x− τ), β) (t− τ)α−β−1 fk−j((t− τ), β) dτ

∣∣∣∣
≤ Ak,j(ε)

∫ t

a

(x− τ)α−β−1(t− τ)α−β−1 dτ

≤ Ak,j(ε)

(2α− 2β − 1)

√
(x− a)2α−2β−1 − (x− t)2α−2β−1 ·

√
(t− a)2α−2β−1

≤ Ak,j(ε)

(2α− 2β − 1)
(b− a)2α−2β−1

where we used the Cauchy-Schwartz inequality. By choosing 2β =
α− (1/2), we get∣∣∣∣ ∫ t

a

(x− τ)α−1 lnj(x− τ)(t− τ)α−1 lnk−j (t− τ) dτ

∣∣∣∣ ≤ Ak,j(ε)

ε
dε

(
1

2

)
= Ck,j(ε),

where

dε(γ) =

{
(b− a)

γ
if b ≥ a+ 1

(b− a)2γε if b < a+ 1.
�

Lemma 3.8. Let g be the function defined by

g(α) =

∫ b

a

(b− τ)2α−2 dτ

p(τ)
.

Then g has the following properties:
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(i) for all ε > 0, there exists

Kmin,Kmax > 0/(1/2) + ε < α ≤ 1 =⇒ Kmin ≤ |g(α)| ≤ Kmax.

(ii) For all ε > 0 and n ≥ 0, there exists

ηn > 0/(1/2) + ε < α ≤ 1 =⇒ |g (n)(α)| ≤ ηn.

(iii) For all ε > 0 and n ≥ 0, there exists

δn > 0/(1/2) + ε < α ≤ 1 =⇒ |1/g(α))(n)| ≤ δn.

Proof. Let

g(α) =

∫ b

a

(b− τ)2α−2 dτ

p(τ)
.

Since p ∈ C([a, b]) and p(t) > 0, then

1

M
=

1

max
τ∈[a,b]

p(τ)
≤ 1

p(τ)
≤ 1

min
τ∈[a,b]

p(τ)
=

1

m
;

hence,
(b− a)2α−1

M(2α− 1)
≤ |g(α)| ≤ (b− a)2α−1

m(2α− 1)
.

Letting ε > 0/(1/2) + ε < α ≤ 1, we conclude that

cε
M

≤ |g(α)| ≤ dε (1)

m(2 ε)

where

cε =

{
(b− a)2 ε if b ≥ a+ 1

b− a if b < a+ 1,

which gives the first property.

For g(n)(α), we have

g(n)(α) =

∫ b

a

2n lnn(b− τ)(b− τ)2α−2 dτ

p(τ)

=

∫ b

a

2nfn(b− τ, β)(b− τ)2α−β−2 dτ

p(τ)
,
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and then ∣∣∣g(n)(α)∣∣∣ ≤ 2n

m
An (ε)

(b− a)2α−β−1

2α− β − 1
.

Now, we choose β = α− 1/2 to obtain

(3.9)
∣∣∣g(n)(α)∣∣∣ ≤ 2n

mε
An (ε) dε

(
1

2

)
= ηn

Finally, we can compute (1/g(α))(n) by application of the nth
derivative of composite functions (see [13]) to the following functions:

f(α) =
1

α
and g(α) =

∫ b

a

(b− τ)2α−2 dτ

p(τ)
.

Thus,

(3.10) (f ◦ g) (n) (α) =
n∑

k=1

f (k)(g(α))

k∑
l=0

(−1)k−l

l!(k − l)!
gk−l(α)

(
gl(α)

)(n)
,

where for all k/1 ≤ k ≤ n,

(3.11) f (k)(g(α)) =
(−1)kk!

gk+1(α)

and for all l/0 ≤ l ≤ n, j0 = 0 and jl+1 = n, we have

(3.12)(
gl(α)

)(n)
=

j1∑
j0=0

j2∑
j1=0

j3∑
j2=0

· · ·
jl+1∑
jl=0

[ l∏
i=1

((
ji+1

ji

)
(g(α))

(ji+1−ji)

)]
,

which can easily be proved by induction.

By substituting (3.11) and (3.12) into (3.10) we obtain:

(f ◦ g)(n) (α) =
n∑

k=1

k∑
l=0

(
k
l

)
(−1)l

gl+1(α)

j1∑
j0=0

· · ·

jl+1∑
jl=0

[ l∏
i=1

((
ji+1

ji

)
(g(α))

(ji+1−ji)

)]
,

where for all l/0 ≤ l ≤ n, jl+1 = n.
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Using triangular inequality, the first property of g(α) and prop-
erty (3.9), we conclude that, for all ε > 0 and n ≥ 0, there exists:

�(3.13) δn > 0,

/
1

2
+ ε < α ≤ 1 =⇒

∣∣∣(f ◦ g)(n) (α)
∣∣∣ ≤ δn.

Proposition 3.9. For a ≤ t ≤ x ≤ b and

ϕ(x, t) =
1

Γ(α)

∫ t

a

(t− τ)α−1(x− τ)α−1 dτ

p(τ)
,

we have for all ε > 0 and n ≥ 0, there exists:

Kn > 0

/
1

2
+ ε < α ≤ 1 =⇒

∣∣∣∣ ∂ n

∂ α n
ϕ(x, t)

∣∣∣∣ ≤ Kn.

For all ε > 0 and n ≥ 0, there exists

Bn > 0

/
1

2
+ ε < α ≤ 1 =⇒

∣∣∣∣ ∂n

∂ αn

(
1

ϕ(b, b)

)∣∣∣∣ ≤ Bn.

Proof.

• ∂n

∂αn
ϕ(x, t) =

∂n

∂αn

(
1

Γ(α)

∫ t

a

(t− τ)α−1(x− τ)α−1 dτ

p(τ)

)
by twice applying Leibniz’s formula, we obtain

=

n∑
k=0

(
n
k

)(
1

Γ(α)

)(n−k)(∫ t

a

(t− τ)α−1(x− τ)α−1 dτ

p(τ)

)(k)

=
n∑

k=0

k∑
j=0

(
n
k

)(
k
j

)(
1

Γ(α)

)(n−k)

(∫ t

a

(x− τ)α−1 lnj(x− τ)(t− τ)α−1 lnk−j(t− τ)
dτ

p(τ)

)
.

Then, according to the triangular inequality, we obtain∣∣∣∣ ∂n

∂αn
ϕ(x, t)

∣∣∣∣ ≤ n∑
k=0

k∑
j=0

(
n
k

)(
k
j

) ∣∣∣∣( 1

Γ(α)

)(n−k)∣∣∣∣∣∣∣∣ ∫ t

a

(x− τ)α−1 lnj(x− τ)(t− τ)α−1 lnk−j(t− τ)
dτ

p(τ)

∣∣∣∣.
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The facts that p ∈ C([a, b]) and p(τ) > 0 give

1

p(τ)
≤ 1

min
τ∈[a,b]

p(τ)
=

1

m
.

Then, by Lemmas 3.6 and 3.7, we obtain for all ε > 0 and n ≥ 0 that
there exists

Kn =
1

m

n∑
k=0

k∑
j=0

[(
n
k

)(
k
j

)
Mn−kCk,j

]
> 0/

1

2
+ ε < α ≤ 1 =⇒

∣∣∣∣ ∂n

∂αn
ϕ(x, t)

∣∣∣∣ ≤ Kn.

• We have

ϕ(b, b) =
1

Γ(α)

∫ b

a

(b− τ)2α−2 dτ

p(τ)
⇐⇒ 1

ϕ(b, b)
=

Γ(α)

g(α)
.

Then, by application of Leibniz’s formula, we obtain

(3.14)
∂n

∂αn

(
1

ϕ(b, b)

)
=

n∑
k=0

(
n
k

)
(Γ(α))

(n−k)

(
1

g(α)

)(k)

.

Hence, from properties (3.7) and (3.13) we obtain the desired result. �

Proposition 3.10. Consider once more the operator Tα,

(Tαy)(x) =

b∫
a

Gα(x, τ)q(τ) y(τ) dτ,

where Gα is defined in equation (3.1). Then T
(n)
α = ∂n/(∂αn)Tα is

uniformly bounded for (1/2) + ε ≤ α ≤ 1, that is, for all ε > 0 and
n ≥ 0, there exists:

(3.15) θn > 0/
1

2
+ ε ≤ α ≤ 1 =⇒

∥∥∥T (n)
α

∥∥∥ ≤ θn.

Proof. We have

(T (n)
α y)(x) =

b∫
a

G(n)
α (x, τ)q(τ) y(τ) dτ
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and

• for a ≤ τ ≤ x, then

G(n)
α (x, τ) =

n∑
m=0

(
n
m

)(
1

Γ(α)

)(n−m)

·
[ m∑

l=0

((
m
l

)
ϕ (m−l)(b, x)

l∑
k=0

(
l
k

)
ϕ(l−k)(b, τ)

(
1

ϕ(b, b)

)(k)
)

− ϕ(m)(x, τ)

]
,

and

• for x ≤ τ ≤ b, then
(3.16)

G(n)
α (x, τ) =

n∑
m=0

(
n
m

)(
1

Γ(α)

)(n−m)

·
[ m∑

l=0

((
m
l

)
ϕ (m−l)(b, τ)

l∑
k=0

(
l
k

)
ϕ(l−k)(b, x)

(
1

ϕ(b, b)

)(k)
)

− ϕ(m)(τ, x)

]
,

obtained by Leibniz’s formula.

Then, by the Cauchy-Schwartz inequality, the fact that q ∈ C([a, b])
and q(τ) > 0, we can easily prove that

∥T (n)
α ∥ ≤ ∥T (n)

α ∥H.S. ≤ sup
τ∈[a,b]

q(τ)

√√√√√ b∫
a

b∫
a

[
G

(n)
α (x, τ)

]2
dτ dx.

Thus, by application of Lemma 3.6, Proposition 3.9 and formula (3.16)

of G
(n)
α , we obtain result (3.15). �

Now, we can state the second main result.

Theorem 3.11.

(i) Let m ≥ 0 be a fixed integer. Then, Tα is an (m + 1)th differ-
entiable operator with respect to α at α = 1, and we have the
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following expansion

(3.17) Tαy =
m∑

k=0

(
T

(k)
α y

)∣∣∣
α=1

k!
(α− 1)k +Rm(α) y,

where the Lagrange reminder is expressed by

(3.18) Rm(α)y =
(α− 1)m+1

(m+ 1)!

(
T (m+1)
α y

)∣∣∣
α=ξ

, α < ξ < 1,

and
∥Rm(α)∥ = o(|α− 1|m), α →

<
1.

(ii) If µ−
1 (α) is the first negative eigenvalue of the operator Tα, then

(3.19) lim
α→

<
1
µ−
1 (α) = µ−

1 (1),

where µ−
1 (1) is the first negative eigenvalue of the operator T1.

Proof.

(i) From expression (3.1) of the kernel Gα(x, τ), one can see that
Gα(x, τ) is C∞ in any small neighborhood of α = 1. So we can write
the Taylor formula with Lagrange reminder at this point as:

(Tαy) (x) =
m∑

k=0

(
T

(k)
α y

)
(x)
∣∣∣
α=1

k!
(α− 1)k +Rm(α),

where (
T (k)
α y

)
(x)
∣∣∣
α=1

=

b∫
a

G(k)
α (x, τ)

∣∣∣
α=1

q(τ) y(τ) dτ,

and Rm(α) is the Lagrange reminder defined in equation (3.18).

Then,

∥Rm(α)∥ ≤ ∥T (m+1)
ξ ∥ · |α− 1|m+1

(m+ 1)!
, α < ξ < 1.
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By applying property (3.15), we obtain that there exists:

θm+1 > 0/∥Rm(α)∥ ≤ θm+1 ·
|α− 1|m+1

(m+ 1)!
,

which gives
∥Rm(α)∥ = o(|α− 1|m), α →

<
1.

(ii) Let us take the previous expansion of Tα equation (3.17) with
m = 0. Then

(Tαy) (x) = (T1y) (x) + (α− 1) ·
(
T ′
ξy
)
(x)

⇐⇒
∣∣∣⟨Tαy, y⟩q − ⟨T1y, y⟩q

∣∣∣ = |α− 1| ·
∣∣∣⟨T ′

ξy, y
⟩
q

∣∣∣ .
However,∣∣∣⟨T ′

ξy, y
⟩
q

∣∣∣ ≤ ∥∥T ′
ξ

∥∥ · ∥y∥q ≤
∥∥T ′

ξ

∥∥ , for all y/∥y∥q = 1.

Hence,∣∣∣⟨Tαy, y⟩q − ⟨T1y, y⟩q
∣∣∣ ≤ |α− 1| ·

∥∥T ′
ξ

∥∥
=⇒ −|α− 1| ·

∥∥T ′
ξ

∥∥ ≤ ⟨Tαy, y⟩q − ⟨T1y, y⟩q ≤ |α− 1| ·
∥∥T ′

ξ

∥∥
=⇒ −|α− 1| ·

∥∥T ′
ξ

∥∥+ ⟨T1y, y⟩q ≤ ⟨Tαy, y⟩q ≤ ⟨T1y, y⟩q
+ |α− 1| ·

∥∥T ′
ξ

∥∥
=⇒ −|α− 1| ·

∥∥T ′
ξ

∥∥+ inf
∥y∥q=1

⟨T1y, y⟩q ≤ inf
∥y∥q=1

⟨Tαy, y⟩q

and

inf
∥y∥q=1

⟨Tαy, y⟩q ≤ inf
∥y∥q=1

⟨T1y, y⟩q + |α− 1| ·
∥∥T ′

ξ

∥∥
=⇒ −|α− 1| ·

∥∥T ′
ξ

∥∥+ µ−
1 (1) ≤ µ−

1 (α) ≤ µ−
1 (1) + |α− 1| ·

∥∥T ′
ξ

∥∥ .
From this and the fact that T ′

ξ verifies (3.15), we obtain

lim
α→

<
1
µ−
1 (α) = µ−

1 (1),

and consequently,
lim
α→

<
1
λ−
1 (α) = λ−

1 (1). �



478 FATIMA-ZAHRA BENSIDHOUM AND HACEN DIB

Remark 3.12. We think that the previous expansion of Tα can be
of great importance in the expression of the next terms in asymptotic
development of µ−

1 (α).

4. Illustrative example. Let us show a simple example with p ≡ 1,
q ≡ 1 and [a, b] = [0, 1]. Then, our regular fractional Sturm-Liouville
problem reduces to

(
Dα

1,−D
α
0,+

)
y(x) + λ y(x) = 0, 1

2 < α < 1, 0 < x < 1

lim
x→0
>

x1−α y(x) = 0 = y(1),

and the “inverse” compact operator defined in L2([0, 1]) is

(Tαy)(x) =

1∫
0

Gα(x, τ) y(τ) dτ,

where the fractional Green’s function is

Gα (x, τ) =

{
(2α− 1)φ(1, x)φ(1, τ)− φ(x, τ) if 0 ≤ τ ≤ x,

(2α− 1)φ(1, x)φ(1, τ)− φ(τ, x) if x ≤ τ ≤ 1,

with

φ(τ, x) =
1

Γ(α)

∫ x

0

(x− t)α−1(τ − t)α−1 dt

=
xατα−1

Γ(1 + α)
2F1

1− α , 1

;
x

τ
1 + α

 ,

where 2F1 is the Gauss-hypergeometric function which can be defined
by its Euler representation, see [12],

2F1

a , b
; z

c

 =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

sb−1(1−s)c−b−1(1−z s)−a ds.

Thus, this problem has an infinite sequence of real negative eigenvalues.
The Taylor expansion up to order 1 gives

(Tαy) (x) = (Tαy) (x)|α=1 +
(
T (1)
α y

)
(x)
∣∣∣
α=1

(α− 1) +R1(α)
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where the kernel G̃α(x, τ)|α=1 = x τ −min(x, τ) is the classical Green’s
function of the (P1) problem corresponding to our data.

G̃
(1)
α (x, τ)|α=1 can be computed by integration by parts

G̃(1)
α (x, τ)

∣∣∣
α=1

=


2τ + 2(γ − 1)xτ − u(x)− u(τ) + u(x− τ)

+u(xτ)− xu(1− τ)− τ(1− x) if 0 ≤ τ ≤ x,

2x+ 2(γ − 1)τx− u(τ)− u(x) + u(τ − x)

+u(τx)− τu(1− x)− xu(1− τ) if x ≤ τ ≤ 1,

where u(x) = x lnx and γ is the Euler constant.

We remark that the linear operator associated to this Green’s func-
tion which contains logarithmic functions is not connected to any clas-
sical differential operator. Finally, we have

lim
α−→

<
1
λ−
1 (α) = −π2.
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