
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 11, Number 1, Spring 2019

DUALITY ON VALUE SEMIGROUPS

PHILIPP KORELL, MATHIAS SCHULZE AND LAURA TOZZO

ABSTRACT. We establish a combinatorial counterpart
of the Cohen-Macaulay duality on a class of curve singular-
ities which includes algebroid curves. For such singularities
the value semigroup and the value semigroup ideals of all
fractional ideals satisfy axioms that define so-called good
semigroups and good semigroup ideals. We prove that each
good semigroup admits a canonical good semigroup ideal
which gives rise to a duality on good semigroup ideals. We
show that the Cohen-Macaulay duality and our good semi-
group duality are compatible under taking values.

1. Introduction. Value semigroups of curve singularities have
been studied intensively for decades. Waldi [Wal72, Wal00] showed
that any plane algebroid curve is determined by its value semigroup
up to equivalence in the sense of Zariski. The value semigroup thus
determines the topological type for any plane complex curve singular-
ity.

Kunz [Kun70] showed that an analytically irreducible and residu-
ally rational local ring R is Gorenstein if and only if its (numerical)
value semigroup ΓR is symmetric. Jäger [Jäg77] used the symme-
try condition to define a semigroup ideal K0 such that (suitably nor-
malized) canonical ideals K of R are characterized by having value
semigroup ideal ΓK = K0.

Waldi [Wal72] was the first to describe a symmetry property of
the value semigroup for plane algebroid curves with two branches.
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Delgado [DdlM87, DdlM88] then made the step to general algebroid
curves proving an analog of Kunz’s result. Later Campillo, Delgado,
and Kiyek [CDK94] relaxed the hypotheses to include analytically
reduced and residually rational local rings R with infinite residue field.

D’Anna [D’A97] extended Jäger’s approach under the preceding
hypotheses. He turned Delgado’s symmetry definition into an explicit
formula for a semigroup ideal K0 (see Definition 5.9) such that any
(suitably normalized) fractional ideal K of R is canonical if and only
if ΓK = K0. In the process he studied axioms satisfied by value
semigroup ideals which lead to the notion of a good semigroup ideal
(see Definition 4.1).

Barucci, D’Anna, and Fröberg [BDF00] studied some more special
classes of rings such as almost Gorenstein rings, Arf rings, and rings of
small multiplicity in relation with their value semigroups. Their setup
includes the case of semilocal rings. Notably they found an example
of a good semigroup which is not the value semigroup of any ring.

Recently Pol [Pol16, Thm. 5.2.1] gave an explicit formula for the
value semigroup ideal of the dual of a fractional ideal for Gorenstein
algebroid curves.

In this paper, we extend and unify D’Anna’s and Pol’s results for a
general class of rings R that we call admissible (see Definition 3.5). We
show that any good semigroup admits a canonical semigroup ideal K
that is defined by a simple maximality property (see Definition 5.11).
Equivalently, such a K induces a duality E 7→ K − E on good
semigroup ideals (see Theorem 5.14). This means that

K − (K − E) = E

for all good semigroup ideals. It turns out that our canonical semi-
group ideals are exactly the translations of D’Anna’sK0. In particular,
D’Anna’s characterization of canonical ideals in terms of their value
semigroup ideals persists for admissible rings (see Theorem 5.25). For
any canonical ideal K of R we show that

ΓK:E = ΓK − ΓE

for all regular fractional ideals E of R (see Theorem 5.27). This means
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that there is a commutative diagram{
regular fractional

ideals of R

}
E7→K:E //

E7→ΓE

��

{
regular fractional

ideals of R

}
E7→ΓE

��

	{
good semigroup
ideals of ΓR

}
E 7→ΓK−E

//

{
good semigroup
ideals of ΓR

}
relating the Cohen-Macaulay duality E 7→ K : E on R to our good
semigroup duality E 7→ K − E on ΓR for K = ΓK.

An important tool to prove the commutativity of the above diagram
is the distance d(F\E) between two good semigroup ideals E ⊂ F
(see Definition 4.12). It plays the role of the length ℓR(F/E) of the
quotient of two fractional ideals E ⊂ F on the semigroup side. In fact,
the two quantities agree in the case where E = ΓE and F = ΓF (see
Proposition 4.18), that is,

ℓR(F/E) = d(ΓF\ΓE).

D’Anna [D’A97, 2.7 Prop.] stated that d(F\E) = 0 is equivalent to
E = F , which implies E = F in the preceding case. We give a proof
of this crucial fact (see Proposition 4.17).

Before approaching these main results, we review the definition of
value semigroups and their ideals and give a detailed account of their
compatibility with localization and completion (see §3).

2. Preliminaries. All rings under consideration are commutative
and unitary. For a ring R we denote by Max(R) the set of its maximal
ideals. We call a one-dimensional Noetherian ring R Cohen-Macaulay
if depth(Rm) = 1 for all m ∈ Max(R).

For an R-module M we write ℓR(M) for its length and M̂ for its
completion at the Jacobson radical of R. By ei we denote the ith unit
vector of a free module.

The total ring of fractions QR of a ring R is the localization of R
at the set Rreg of all regular elements of R. More generally, we set
Sreg := S ∩Qreg

R for any subset S ⊂ QR. Note that Rreg = R ∩Qreg
R .
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We denote by R the integral closure of R in QR. If R is reduced, then
it coincides with the normalization of R.

We abbreviate F : E := F :QR E for any subsets E ,F ⊂ QR.
We collect some trivial properties of this colon operation for future
reference.

Remark 2.1. Let x ∈ Qreg
R and E , E ′,F ,F ′,G be R-submodules of

QR. Then

(a) (G : F) : E = G : (FE),
(b) (xE) : F = x(E : F) = E : (x−1F),
(c) E : F ′ ⊂ E : F ⊂ E ′ : F if E ⊂ E ′ and F ⊂ F ′, and
(d) E : F = (E : R′) : F if R ⊂ R′ ⊂ QR is a ring extension and
F an R′-module.

2.1. Fractional ideals. Fractional ideals play a central role in our
considerations. Here we summarize the properties we shall use. Let R
be a ring.

Definition 2.2.

(a) An R-submodule E of QR is called regular if Ereg ̸= ∅ or,
equivalently, QRE = QR.

(b) An R-submodule E ⊂ QR such that rE ⊂ R for some r ∈ Rreg

is called a fractional ideal (of R). We denote by RR the set of
regular fractional ideals of R.

(c) An R-submodule E of QR is invertible if EF = R for some R-
submodule F of QR. We denote by R∗

R the set of all invertible
R-submodules of QR.

(d) The conductor of a fractional ideal E of R is CE := E : R ⊂ E .

Remark 2.3. The fractional ideals of a Noetherian ring R are the
finitely generated R-submodules of QR. If R is a one-dimensional
Cohen-Macaulay ring, then any F ∈ RR is a faithful maximal Cohen-
Macaulay module of R.
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The set RR is a (commutative) monoid under product of ideals. If
E ⊂ QR is an invertible R-submodule, then it is regular and finitely
generated, and its inverse is uniquely determined as F = E−1 = R : E
(see [KV04, Ch. II, (2.1) Rem. (3) and (2.2) Prop. (1), (2)]). In
particular, the (abelian) group R∗

R of all invertible R-submodule of
QR is a submonoid of RR. In the case where R is semilocal, all
elements of R∗

R are principal fractional ideals (see [KV04, Ch. II,
(2.2) Prop. (3)]).

In the following we summarize the relation of the colon operation
with the Hom functor and flat base change and well-known properties
of completion.

Lemma 2.4. Let R be a ring.

(a) For E ,F ∈ RR, F : E ∈ RR, and there is a canonical
isomorphism

F : E → HomR(E ,F), x 7→ (y 7→ xy),

of R-modules compatible with multiplication in QR and com-
position of homomorphisms. Iterating yields a commutative
diagram of canonical maps

E //

((PP
PPP

PPP
PPP

PPP F : (F : E)

∼=
��

HomR(HomR(E ,F),F).

(b) Any flat ring homomorphism φ : R → R′ induces a ring
homomorphism

φ̃ : QR → QR′ .

If φ is injective, then also φ̃ is injective, and ER′ := φ̃(E)R′ ∼=
E ⊗R R′ for any R-submodule E of QR.

(c) If R→ R′ is flat and E ,F ∈ RR, then E ⊗R R′ ∼= ER′ ∈ RR′ ,
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and there is a commutative diagram

QR

��

φ̃

||xx
xx
xx
xx
x

F : E? _oo

��

∼=
// HomR(E ,F)

��

QR′ QRR
′? _oo (F : E)R′? _oo

∼=
// HomR(E ,F)⊗R R′

∼=
��

FR′ : ER′
7 W

iiTTTTTTTTTTTTTTTTTT

∼=
// HomR′(ER′,FR′).

(d) If : R → R′ is faithfully flat (and hence injective), then
ER′∩QR = E and (E∩F)R′ = ER′∩FR′ for any R-submodules
E and F of QR.

Proof. See [HK71, Lem. 2.1 and 2.3] and [Bou61, Ch. I, §3, no. 5,
Prop. 10]. �

Lemma 2.5. Let R be a Noetherian ring.

(a) The ring extension R→ R̂ is faithfully flat.

(b) If E is finitely generated, then ER̂ = Ê.
(c) If R is semilocal, then R̂ =

∏
m∈Max(R) R̂m, where R̂m = R̂m =

R̂m̂ are local rings.
(d) If R is semilocal and R ⊂ R′ is a finite ring extension, then

R′ ⊗R R̂ = R̂′.

Proof. See [Mat89, Thms. 8.7, 8.14, 8.15] and [Nag62, (16.8)

Thm.]. To see R̂m = R̂m̂ in (c) note that mR̂ = m̂ by (b), and hence
m = m̂ ∩R by (a) and Lemma 2.4.(d). �

In our main case of interest, regular fractional ideals are in bijection
under completion.

Lemma 2.6. Let R be a one-dimensional local Cohen-Macaulay ring.

Then QRR̂ = QR̂, and there is an inclusion preserving group isomor-



DUALITY ON VALUE SEMIGROUPS 87

phism

RR → RR̂,

E 7→ Ê ,
F ∩QR ←[ F .

Proof. See [KV04, Ch. II, (2.4)], [HK71, Lem. 2.11] and Lem-
mas 2.4.(c) and (d) and 2.5.(a) and (b). �

The following result will serve to eliminate the ambiguity of canon-
ical ideals.

Lemma 2.7. Let R = (R,m) be a local Noetherian ring, R′ ⊂ QR a
finite extension ring of R with |R/m| ≥ |Max(R′)|, and E ∈ RR such
that ER′ is a cyclic R′-module. Then ER′ = xR′ for some x ∈ Ereg.
In particular, R ⊂ yE ⊂ R′ for y = x−1 ∈ Qreg

R .

Proof. By hypothesis, R′ is semilocal (see [Mat89, Exc. 9.3]), and
ER′ = zR′ for some z ∈ Qreg

R . Then z−1ER′ = R′ implies the existence
of a w ∈ R′∗∩z−1E (see the proof of [Jäg77, Hilfssatz 2]), and x := zw
satisfies the requirements. �

2.2. Valuation rings. To deal with rings with zero-divisors, we
need a general notion of valuation (ring), sometimes called a Manis
or pseudo-valuation (ring) (see [KV04, Mat73, CDK94]). In the
case of one-dimensional Cohen-Macaulay rings, only discrete valuation
rings arise (see § 3).

Definition 2.8.

(a) A ring R is said to have a large Jacobson radical if every prime
ideal of R containing the Jacobson radical of R is a maximal
ideal (see [KV04, Ch. I, (1.9) Prop.]).

(b) A ring R is called Marot if every regular ideal, or equivalently
regular fractional ideal, E of R is generated by Ereg.
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Remark 2.9.

(a) Any semilocal ring has a large Jacobson radical (see [KV04,
Ch. I, (1.11) Rem. (2)]).

(b) If QR has a large Jacobson radical, then R is a Marot ring (see
[KV04, Ch. I, (1.12) Prop.]). In particular, this holds by (a)
if R is reduced Noetherian.

Let Q be a ring with Qreg = Q∗ having a large Jacobson radical.

Definition 2.10. A valuation ring of Q is a subring V ( Q such that
the set Q \ V is multiplicatively closed. For any ring R ⊂ V , we call
V a valuation ring over R. If R ⊂ Q is a subring with QR = Q, we
denote by VR the set of all valuation rings of Q over R.

Remark 2.11. Let V be a valuation ring of Q.

(a) Then V is integrally closed in QV = Q (see [KV04, Ch. I,
(2.1) Lem.]).

(b) There is a unique regular maximal ideal mV of V . In particu-
lar, V reg \ V ∗ ⊂ mV (see [KV04, Ch. I, (2.2) Thm.]).

(c) Each E ∈ R∗
V is principal (see [KV04, Ch. II, (2.2) Prop. (2)

and Ch. I, (2.4) Prop. (2)]).

Let V be a valuation ring of Q. Then the group R∗
V is totally

ordered by reverse inclusion (see [KV04, Ch. I, (2.2) Thm.]). The
infinite prime ideal of V

IV := V : Q =
∩

E∈R∗
V

E ∈ Spec(V ) ∩ Spec(Q)

is the intersection of all regular (principal) fractional ideals of V (see
[KV04, Ch. I, (2.4) Prop. (3)(a)]). We include R∗

V into the totally
ordered monoid

R∗
V,∞ := R∗

V ∪ {IV } .

For E ,F ∈ R∗
V,∞ we have EF = IV if {E ,F} ̸⊂ R∗

V , and E < IV for
all E ∈ R∗

V .
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For x ∈ Q, we denote by µV (x) the intersection of all regular V -
submodules of Q containing x. If x ∈ Q \ IV , then µV (x) ∈ R∗

V

(see [KV04, Chapter I, (2.4) Proposition (3)(b)]). In particular,
µV (x) = xV if x ∈ Qreg, and µV (x) = IV if and only if x ∈ IV .
This yields a map

µV : Q→ R∗
V,∞

satisfying (see [KV04, Ch. I, (2.13) Prop.])

(2.1) µV (xy) = µV (x)µV (y), µV (x+ y) ≥ min{µV (x), µV (y)}

for any x, y ∈ Q, where equality holds if µV (x) ̸= µV (y). We can write

(2.2) V = {x ∈ Q | µV (x) ≥ V }

with regular maximal ideal

(2.3) mV = {x ∈ Q | µV (x) > V } ⊃ IV
and units (see Remark 2.11.(b))

(2.4) V ∗ = {x ∈ Qreg | µV (x) = V } = (V \mV )reg.

Definition 2.12. A valuation ring V of Q with regular maximal ideal
mV is called a discrete valuation ring if mV ∈ R∗

V is the only regular
prime ideal of V (see [KV04, Chapter I, (2.16) Definition]).

Let V be a discrete valuation ring of Q. Then

(2.5) mV = min{E ∈ R∗
V | E > V } ∈ R∗

V ,∪
k∈Z m

k
V = Q, and

∩
k∈Z m

k
V = IV (see [KV04, Ch. I, (2.15) Prop.]).

Therefore, there is a (unique) order preserving group isomorphism

ϕV : R∗
V → Z,(2.6)

E 7→ max{k ∈ Z | mkV ≤ E},

mkV ←[ k.
In fact, for E ∈ R∗

V and k ∈ Z maximal with mkV ≤ E , we have
V = mkV : mkV ≤ E : mkV < mV , and hence E = mkV by (2.5).
Embedding Z into the totally ordered monoid

Z∞ := Z ∪ {∞}
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and extending ϕV by setting ϕV (IV ) := ∞ yields a commutative
diagram

(2.7) Q

µV

����

νV

## ##F
FF

FF
FF

FF

R∗
V,∞ ∼=

ϕV // Z∞.

Definition 2.13. A discrete valuation of Q is a map ν : Q�Z∞
satisfying

ν(xy) = ν(x) + ν(y), ν(x+ y) ≥ min{ν(x), ν(y)},

for any x, y ∈ Q (see (2.1)). We refer to ν(x) ∈ Z∞ as the value of
x ∈ Q with respect to ν. The subring Vν = {x ∈ Q | ν(x) ≥ 0} of Q is
called the valuation ring of ν.

The valuation νV associated as above to a discrete valuation ring
V of Q is discrete, and its valuation ring is VνV = V .

3. Value semigroups. We specialize our setup to a one-dimensional
semilocal Cohen-Macaulay ring R. In this section we introduce value
semigroups and value semigroup ideals, decompose them into local
contributions, and show their invariance under completion.

3.1. Admissible rings. One-dimensional local integrally closed Co-
hen-Macaulay rings are discrete valuation domains (see [KV04,
Ch. II, (2.5) Prop.]). In general, the totality VR of valuation rings
of QR over R is described in the following theorem. This provides
the foundation for the definition and investigation of value semigroup
ideals.

Theorem 3.1. Let R be a one-dimensional semilocal Cohen-Macaulay
ring.

(a) The set VR is finite and non-empty, and it contains discrete
valuation rings only.
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(b) We have Max(QR) = {IV | V ∈ VR}, and for any I ∈
Max(QR) there is a bijection

{V ∈ VR | IV = I} → VR/(I∩R),

V 7→ V/I,

where QR/(I∩R) = QR/I.

(c) The integral closure of R in QR can be written as R =
∩

VR.
(d) Any regular ideal of R is principal.
(e) There is a bijection

Max(R)→ VR,

n 7→ ((R \ n)reg)−1R,

mV ∩R← [ V.
In particular, R/(mV ∩R) = V/mV and mV ∩R ∈ Max(R).

Proof. See [KV04, Ch. II, (2.11) Thm.] and use Lying Over for
the particular claim of (e). �

By equation (2.4) and Theorem 3.1.(b) and (c),

R
∗
= {x ∈ QR | ν(x) = 0},(3.1)

R∗ = R
∗ ∩R = {x ∈ R | ν(x) = 0}.

By Theorem 3.1.(d), we have RR = R∗
R
, and there is a group

isomorphism

ψ = ψR : RR →
∏

V ∈VR

R∗
V ,(3.2)

E 7→ (EV )V ∈VR
,∩

V ∈VR

EV ←[ (EV )V ∈VR
.

In fact, writing E = tR for some t ∈ Qreg
R ,∩

V ∈VR

EV =
∩

V ∈VR

tV = t
∩

V ∈VR

V = tR = E
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by Theorem 3.1.(d), and ψ is injective. Diagram (2.7) taken component-
wise with

ϕ = ϕR :=
∏

V ∈VR

ϕV

gives rise to a commutative diagram

(3.3) Qreg
R

zzzzuu
uu
uu
uu
uu
uu

µ

����

ν

%% %%J
JJJ

JJJ
JJJ

JJ

RR ∼=

ψ
//
∏

V ∈VR

R∗
V ∼=

ϕ
// ZVR .

Then surjectivity of ν, and hence of ψ, follows from the approximation
theorem for discrete valuations (see [KV04, Ch. I, (2.20) Thm. (3)])
which can be proved using Theorem 3.1.(e) and the Chinese remainder
theorem. The isomorphisms ψ and ϕ preserve the partial orders on
RR and

∏
V ∈VR

R∗
V by reverse inclusion and the natural partial order

on ZVR .

Definition 3.2. LetR be a one-dimensional semilocal Cohen-Macaulay
ring, and let VR be the set of (discrete) valuation rings of QR over R
(see Theorem 3.1.(a)) with corresponding valuations

ν = νR := (νV )V ∈VR
: QR → ZVR

∞ .

(a) To each E ∈ RR we associate its value semigroup ideal

ΓE := ν(Ereg) ⊂ ZVR .

If E = R, then the monoid ΓR is called the value semigroup of
R.

(b) The value semigroup ΓR is called local if 0 is the only element
of ΓR with a zero component in ZVR .

(c) We define a decreasing filtration Q• on QR by

Qα := {x ∈ QR | ν(x) ≥ α}

for α ∈ ZVR . By E• := E∩Q• we denote the induced filtration
on an R-submodule E of QR.
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Lemma 3.3. Let R be a one-dimensional semilocal Cohen-Macaulay
ring. Then

(a) Qα = (ϕ ◦ ψ)−1(α) =
∩
V ∈VR

mαV

V ∈ RR for any α ∈ ZVR ,

(b) with E also Eα is a (regular) fractional ideal of R for all
α ∈ ZVR ,

(c) Qν(x) = xR for any x ∈ Qreg
R and, in particular, Q0 = R, and

(d) ΓQα = α + NVR for any α ∈ ZVR and, in particular, ΓR =

NVR .

Proof.

(a) By definition of µV , the first equality is due to isomor-
phism (2.6) and diagram (2.7). Isomorphisms (2.6) and (3.2) yield
the second equality.

(b) Let E be a fractional ideal of R and α ∈ ZVR . Then Eα is an
R-module by (a), and rE ⊆ R for some r ∈ Rreg. Thus, rEα ⊆ rE ⊆ R
and Eα is a fractional ideal of R. If E ∈ RR, then there is an x ∈ Ereg.
By surjectivity of ν in diagram (3.3) and equation (2.2), there is a
y = z yz ∈ (Rβ)reg for arbitrarily large β ∈ ZVR . Then xy ∈ (Eα)reg
for β ≥ α− ν(x), and hence Eα ∈ RR.

(c) The particular claim is due to part (a) and Theorem 3.1.(c).
The general claim then follows immediately by writing y ∈ Qν(x) as
y = x yx since ν( yx ) ≥ 0.

(d) The particular claim follows from surjectivity of ν in dia-
gram (3.3), Theorem 3.1.(c), and equation (2.2). Again by surjectivity
of ν, α = ν(x) for some x ∈ Qreg

R . Then the general claim follows using
part (c). �

The following result was stated without proof in [DdlM88, (1.1.1)]
and [BDF00, §2].

Proposition 3.4. Let R be a one-dimensional semilocal Cohen-
Macaulay ring with value semigroup ΓR. Then R is local if and only
if ΓR is local.
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Proof. Suppose first that R is local with maximal ideal m. Then
Theorem 3.1.(e) and equation (2.3) imply

m ⊂
∩

V ∈VR

mV =
∩

V ∈VR

{x ∈ QR | νV (x) > 0}.

The statement follows with equation (3.1).

Suppose now that ΓR is local, and set m := {x ∈ R | ν(x) > 0}. By
equation (3.1), any proper ideal of R is contained in m. Moreover, m
is obviously closed under multiplication by elements of R. We show
that ν(x) has no zero component for all x ∈ m. This implies that m is
also closed under addition, and hence an ideal.

For this, assume that there is an x ∈ m such that νV1(x) = 0 for
some V1 ∈ VR. Then x ∈ R \ Rreg ⊂

∪
V ∈VR

IV by hypothesis on

ΓR and Theorem 3.1.(b). Thus, there is a V1 ̸= V2 ∈ VR such that
x ∈ IV2 .

By hypothesis on R, there is a y ∈ Rreg \R∗. Then ν(y) ∈ ΓR \{0},
and hence νV (y) > 0 for all V ∈ VR by assumption on ΓR. After
replacing y by a suitable power, we may assume that νV (x) ̸= νV (y)
for all V ∈ VR. Then ν(x + y) = min{ν(x), ν(y)} ∈ ZVR . Thus,
x+y ∈ Rreg again since R\Rreg ⊂

∪
V ∈VR

IV , and hence ν(x+y) ∈ ΓR.

Therefore, by assumption on ΓR, νV1(x + y) = νV1(x) = 0 yields
ν(x+ y) = 0, and thus νV2(y) = νV2(x+ y) = 0 contradicts the choice
of y. �

In the following we show that, under suitable hypotheses, value
semigroups E = ΓE of fractional ideals E of R satisfy certain axioms
used to define the notion of good semigroup ideals in §4.

Definition 3.5. LetR be a one-dimensional semilocal Cohen-Macaulay
ring.

(a) We call R analytically reduced if R̂ is reduced or, equivalently,

R̂m is reduced for all m ∈ Max(R) (see Lemma 2.5.(c)).
(b) The ring R is called residually rational if R/n = R/n ∩ R for

all n ∈ Max(R) or, equivalently, V/mV = R/mV ∩ R for all
V ∈ VR (see Theorem 3.1.(e)).
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(c) We say that R has large residue fields if |R/m| ≥ |VRm
| for all

m ∈ Max(R).
(d) We call R admissible if it is analytically reduced and residually

rational with large residue fields.

Definition 3.6. Let S be a partially ordered monoid, isomorphic to
NI with its natural partial order, where I is a finite set. We consider
the following properties of a subset E of the group of differences
DS
∼= ZI of S (see [DdlM88, §1] and [D’A97, §2]).

(E0) There exists an α ∈ DS such that α+ S ⊂ E.
(E1) If α, β ∈ E, then min{α, β} := (min{αi, βi})i∈I ∈ E.
(E2) For any α, β ∈ E and j ∈ I with αj = βj there exists an ϵ ∈ E

such that ϵj > αj = βj and ϵi ≥ min{αi, βi} for all i ∈ I \ {j}
with equality if αi ̸= βi.

We call E good if it satisfies (E0), (E1), and (E2). The difference of
E,F ⊂ DS is

E − F := {α ∈ DS | α+ F ⊂ E}.

The following result shows that the isomorphism in Definition 3.6
is unique.

Lemma 3.7. Any group automorphism φ of Zs preserving the partial
order is defined by a permutation of the standard basis.

Proof. Let φ be an automorphism of Zs preserving the partial
order. Then (φ(ei))i∈{1,...,s} is a basis of Zs, and hence, 0 < ej =∑s
i=1 λiφ(ei) = φ(

∑s
i=1 λiei) for some λi ∈ Z. Since φ is order

preserving, this implies λi ∈ N for all i. For the kth component we
have

s∑
i=1

λiφ(ei)k = (ej)k =

{
1 if k = j,

0 otherwise.

Since φ is order preserving, we have φ(ei) > 0. This yields ej = φ(ei)
for some i. �
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Lemma 3.8. Let R be a one-dimensional analytically reduced semilo-
cal Cohen-Macaulay ring, and let E ∈ RR. Then R is a finite R-
module, and hence RR ⊂ RR. In particular, CE ∈ RR ∩ RR and

CE = xR = Qν(x) for some x ∈ Qreg with ν(x) + NVR ⊂ ΓE .

Proof. If R is analytically reduced, then R is reduced (see Lemma
2.5.(a)). Hence, QR localizes (see [HS06, Cor. 2.1.13]), and Rm is
a finite Rm-module (see [KV04, Ch. II, (3.22) Thm.]). As integral
closure localizes (see [HS06, Prop. 2.1.6]), we have Rm = Rm, and
it follows that R is a finite R-module and hence RR ⊂ RR. The
particular claim follows by Theorem 3.1.(d) and Lemma 3.3.(c) and
(d). �

In the following, we collect results of D’Anna (see [D’A97]) and
provide a detailed proof.

Proposition 3.9. Let R be a one-dimensional semilocal Cohen-
Macaulay ring, and let E ∈ RR.

(a) We have ΓE + ΓR ⊂ ΓE .
(b) If R is analytically reduced, then ΓE satisfies (E0) with S = ΓR

and I = VR.
(c) If R is local and analytically reduced with large residue field,

then ΓE satisfies (E1).
(d) If R is local and residually rational, then ΓE satisfies (E2).

In particular, if R is local admissible, then ΓE is good (see Defini-
tion 3.6).

Proof.

(a) Since E is an R-module and Qreg
R = Q∗

R a group, RregEreg ⊂
Ereg. Then the claim follows from ν in diagram (3.3) being a group
homomorphism.

(b) Recall that S = NI with I = VR by Lemma 3.3.(d), and I is
finite by Theorem 3.1.(a). By Lemma 3.8, there is an x ∈ Qreg such
that

ν(x) + S = ν(xR
reg

) = ν(CregE ) ⊂ ν(Ereg) = ΓE .
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(c) Let x, y ∈ Ereg with ν(x) = α and ν(y) = β. By Lemma 3.8
and Theorem 3.1.(d) and (e), Lemma 2.7 applies to R′ := R. We
may thus assume that ⟨x, y⟩R = zR for some z ∈ ⟨x, y⟩regR ⊂ Ereg.
Then ν(z) ≥ min{ν(x), ν(y)} ≥ ν(z) by Lemma 3.3.(d), and hence
min{ν(x), ν(y)} = ν(z) ∈ ΓE .

(d) Denote by m the maximal ideal of R. Let α, β ∈ ΓE and W ∈
VR such that αW = βW . Choose x, y ∈ Ereg such that ν(x) = α and
ν(y) = β. Then νW (x/y) = αW − βW = 0, and hence x/y ∈ W \mW
by equations (2.2) and (2.3). By hypothesis, V/mV = R/m for all

V ∈ VR. Thus, x/y = u in W/mW = R/m for some u ∈ R \ m.
In particular, νW (u − x/y) > 0 and ν(u) = 0 by equations (2.2)
and (2.3). Then uy − x ∈ E with νW (uy − x) > νW (y) = βW and
νV (uy − x) ≥ min{αV , βV } for all V ∈ VR \ {W} with equality
if αV ̸= βV . This remains true after replacing u by any element
u′ ∈ u + m. It is left to show that, for some u′, νV (u

′ − x/y) < ∞
for all V ∈ VR with αV = βV . Since R is Cohen-Macaulay, there is a
z ∈ mreg ⊂ mreg

W , and hence (∞, . . . ,∞) > ν(zk) ≥ k · (1, . . . , 1). Then
u′ = u + zk satisfies the requirement if k > νV (u − x/y) < ∞ for all
V ∈ VR with αV = βV . �

While the value semigroup operation preserves inclusions, it is not
compatible with the expected counterparts of multiplication and colon
operation on the semigroup side.

Remark 3.10. LetR be a one-dimensional semilocal Cohen-Macaulay
ring, and let E ,F ∈ RR.

(a) If E ⊂ F , then ΓE ⊂ ΓF .
(b) The inclusion ΓEF ⊃ ΓE+ΓF is not an equality in general (see

Example 3.11).
(c) The inclusion ΓE:F ⊂ ΓE − ΓF is not an equality in general

(see [BDF00, Exa. 3.3]).

Example 3.11. Consider the admissible ring

R := C[[(−t41, t2), (−t31, 0), (0, t2), (t51, 0)]] ⊂ C[[t1]]× C[[t2]] = R
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and the R-submodules of QR

E := ⟨(t31, t2), (t21, 0)⟩R, F := ⟨(t31, t2), (t41, 0), (t51, 0)⟩R.

Figure 1 shows that R is local (see Proposition 3.4), and that (E2)
fails for ΓE + ΓF . Thus, ΓEF ) ΓE + ΓF by Proposition 3.9.

ΓR ΓE

ΓF ΓE + ΓF

Figure 1. The value semigroup (ideals) in Example 3.11.

3.2. Compatibility with localization. Let R be reduced. Then
QR, and hence R, commutes with localization (see [HS06, Cor. 2.1.13
and Prop. 2.1.6]).

Lemma 3.12. Let R be a reduced one-dimensional semilocal Cohen-
Macaulay ring. For any m ∈ Max(R) the localization map π : QR →
(QR)m = QRm

induces a bijection

ρm : {V ∈ VR | mV ∩R = m} → VRm
,

V 7→ Vm,

π−1(W )←[ W.
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In particular, (mV )m = mW if V 7→W .

Proof. Let m ∈ Max(R) and V ∈ VR with mV ∩R = m, and hence
R \ m ⊂ V \ mV . By exactness of localization, (mV )m ( Vm contains
a regular non-unit, and hence

Rm ⊂ Vm ( (QR)m = QRm
.

An explicit calculation shows that (QR)m \ Vm is multiplicatively
closed, and hence Vm ∈ VRm

. Moreover, V = π−1(Vm) since V ( QR
is a maximal subring (see [KV04, Ch. I, (2.15) Prop. (3)(d)]).

Now, let W ∈ VRm
, and set V := π−1(W ). Then Vm =W ( QRm

,
and hence R ⊂ V ( QR. With QRm

\W also QR\V is multiplicatively
closed, and hence V ∈ VR. Consider the commutative diagram of ring
homomorphisms

V
π // W

R
ι //

?�

OO

Rm.
?�

OO

Using Theorem 3.1.(e), p := π−1(mW ) ∈ Spec(V ) satisfies

p ∩R = ι−1(mW ∩Rm) = ι−1(mRm
) = m.

In particular, with m also p is regular, and hence p = mV by
Theorem 3.1.(a) (see Definition 2.12). �

Let R be a reduced one-dimensional semilocal Cohen-Macaulay
ring. By Theorem 3.1.(e), the sets {V ∈ VR | mV ∩R = m}, m ∈
Max(R), form a partition of VR. By Lemma 3.12, there is a bijection

ρ : VR →
⊔

m∈Max(R)

VRm
,

V 7→ ρmV ∩R(V ) = VmV ∩R,

inducing an order preserving group homomorphism∏
V ∈VR

R∗
V →

∏
m∈Max(R)

∏
W∈VRm

R∗
W ,

(EV )V ∈VR
7→ ((Eρ−1(W ))m)m∈Max(R),W∈VRm

.
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Since it maps (mkVV )V ∈VR 7→ (m
kρ−1(W )

W )m∈Max(R),W∈VRm
, it is an

isomorphism due to (2.6). Combined with diagram (3.3) for R and
Rm for m ∈ Max(R), it fits into a commutative diagram

Qreg
R

//

�� ��
??

??
??

??
??

??

ν

�� ��

∏
m∈Max(R)

Qreg
Rm

xxxxppp
ppp

ppp
ppp

∏
m νRm

{{{{

RR ∼=

ξ
//

∼=ψ

��

∏
m∈Max(R)

RRm

∼=
∏

m ψRm

��∏
V ∈VR

R∗
V ∼=

//

∼=ϕ

��

∏
m∈Max(R)

∏
W∈VRm

R∗
W

∼=
∏

m ϕRm

��

ZVR
∼=

//
∏

m∈Max(R)

ZVRm ,

where ξ(E) := (Em)m∈Max(R) with Em ∈ RRm
= RRm

for any E ∈ RR

(see Lemma 2.4.(c)). This implies

(3.4) ν(x) = (νRm
(x/1))m∈Max(R)

for all x ∈ Qreg
R . To ease notation, we identify the bottom groups in

the above diagram.

The first part of the following result was stated by Barucci, D’Anna,
and Fröberg (see [BDF00, § 1.1]).

Theorem 3.13. Let R be a one-dimensional reduced semilocal Cohen-
Macaulay ring. Then there is a decomposition into local value semi-
groups

ΓR =
∏

m∈Max(R)

ΓRm
,
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and any E ∈ RR decomposes as

ΓE =
∏

m∈Max(R)

ΓEm
.

Proof. By Proposition 3.4, ΓRm
is local for all m ∈ Max(R). It

remains to prove the second decomposition.

By equation (3.4), there is an inclusion ΓE ⊂
∏

m∈Max(R) ΓEm
.

Let now α = (αm)m∈Max(R) ∈
∏

m∈Max(R) ΓEm
. Then there are

xm/ym ∈ Em, m ∈ Max(R), such that νRm
(xm/ym) = αm for every

m ∈ Max(R). By equation (3.1), we may clear denominators and
assume that ym = 1 for every m ∈ Max(R). By the Chinese remainder
theorem, there is a zm ∈ (

∩
Max(R) \ {m}) \m for each m ∈ Max(R).

Then by equations (2.2) and (2.3) and by Theorem 3.1.(e), we have
νRm

(zm/1) = 0 and νV (zm/1) > 0 for all V ∈ VRn
for every

n ∈ Max(R) \ {m}. Let

km > max{νV (xn/1)− νV (xm/1) | V ∈ VRn
, n ∈ Max(R) \ {m}}.

Then z :=
∑

m∈Max(R) xmz
km
m ∈ E with νRm

(z/1) = αm for any

m ∈ Max(R). Thus, ν(z) = α by equation (3.4). The claimed equality
follows. �

Corollary 3.14. Let R be a one-dimensional reduced semilocal Cohen-
Macaulay ring with large residue fields, and let E ∈ RR.

(a) If R is analytically reduced, then ΓE satisfies (E1).
(b) If R is residually rational, then ΓE satisfies (E2).

In particular, if R is admissible, then ΓE is good (see Definition 3.6).

Proof. Using Theorem 3.13, this follows from Proposition 3.9. Note
that to prove property (E2) for elements α, β ∈ ΓE which are different
in all components in ΓEm

for some m ∈ Max(R), we need to apply (E1)
in ΓEm

. �

3.3. Invariance under completion. The invariance of value semi-
group ideals with completion is due to D’Anna (see [D’A97, §1]). We
give a proof including the semilocal case.
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Lemma 3.15. With R also R̂ is a one-dimensional (semi)local Cohen-
Macaulay ring.

Proof. See Lemma 2.5.(c) and [BH93, Cor. 2.1.8]. �

Theorem 3.16. Let R be a one-dimensional local Cohen-Macaulay
ring. Then there is a bijection

σ : VR → VR̂,

V 7→ V R̂,

W ∩QR ←[ W.
In particular, mV R̂ = mW if V 7→W .

Proof. See [KV04, Ch. II, (3.19) Thm. (2)] for the bijection.

With mV also mV R̂ is regular, and R/mR = R̂/mRR̂ implies

R̂ = R+mRR̂ (see Lemma 2.5.(a) and (b)). Since mR ⊂ mV and hence

VmRR̂ ⊂ mV R̂, it follows that V R̂/mV R̂ = V/(mV R̂ ∩ V ) = V/mV
(see Lemma 2.4.(d)). The particular claim thus follows by uniqueness
of mW (see Remark 2.11.(b)). �

Corollary 3.17. Let R be a one-dimensional local Cohen-Macaulay

ring. Then R̂ = RR̂. In particular, R̂ = R̂ if R is finite over R.

Proof. This follows from Lemma 3.15 and Theorems 3.1.(c) and
3.16 using Lemmas 2.4.(d) and 2.5.(a) (see [KV04, Ch. II, (3.19)
Thm. (3)]). Lemmas 2.4.(c) and 2.5.(d) yield the particular claim. �

Let R be a one-dimensional local Cohen-Macaulay ring. By Theo-
rem 3.16, there is an order preserving group homomorphism∏

V ∈VR

R∗
V →

∏
W∈VR̂

R∗
W

(EV )V ∈VR 7→ (Eσ−1(W )R̂)W∈VR̂

mapping (mkVV )V ∈VR
7→ (m

kσ−1(W )

W )W∈VR̂
which is an isomorphism

due to (2.6). Combined with diagram (3.3) for R and R̂ (see
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Lemma 3.15), it fits into a commutative diagram

Qreg
R

//

%% %%K
KKK

KKK
KKK

K

ν

�� ��

Qreg

R̂

yyyysss
sss

sss
ss

νR̂

����

RR

η

∼=
//

ψ ∼=

��

R
R̂

ψR̂
∼=
��∏

V ∈VR

R∗
V ∼=

//

ϕ ∼=
��

∏
W∈VR̂

R∗
W

ϕR̂
∼=
��

ZVR
∼=

// ZVR̂ ,

where η : E 7→ ER̂ and η−1 : F ∩ QR ← [ F . To ease notation, we
identify the bottom groups in the above diagram.

The following lemma relates value semigroup ideals to jumps in the
filtration induced by Q• (see [CDK94, (4.3) Rem.]).

Lemma 3.18. Let R be a one-dimensional analytically reduced local
Cohen-Macaulay ring with large residue fields, and let E ∈ RR.

(a) For any α ∈ ZVR , α ∈ ΓE is equivalent to Eα/Eα+eV ̸= 0 for
all V ∈ VR.

(b) If R is residually rational, then ℓR(Eα/Eα+eV ) ≤ 1 for all
α ∈ ZVR and V ∈ VR.

Proof.

(a) By Remark 2.9.(b), R is a Marot ring, and by Lemma 3.3.(b),
Eα ∈ RR is generated by regular elements. Thus, Eα/Eα+eV ̸= 0 if
and only if there is a β ∈ ΓE with β ≥ α and βV = αV . The claim
follows since ΓE satisfies property (E1) by Proposition 3.9.(c).
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(b) By diagram (3.3), α = ν(x) for some x ∈ Qreg
R . By Defini-

tion 3.2.(c), there is an isomorphism

Eα/Eα+eV ⊂ Qα/Qα+eV Q0/QeV = R/(mV ∩R) = V/mV
·x
∼=

oo

for every V ∈ VR, where the equalities are due to Lemma 3.3.(a) and
(c) and Theorem 3.1.(e). If R is residually rational, then V/mV =
R/m, and the claim follows. �

Theorem 3.19. Let R be a one-dimensional analytically reduced
semilocal Cohen-Macaulay ring with large residue fields. Then

ΓE = ΓÊ

for any E ∈ RR.

Proof. By Lemma 2.5.(b) and (c),

Êm = E ⊗RRm⊗Rm
R̂m = E ⊗R R̂m = E ⊗R R̂m̂ = E ⊗R R̂⊗R̂ R̂m̂ = Êm̂

for all m ∈ Max(R). Therefore, Theorem 3.13 reduces the claim to the
case where R is local.

By Lemmas 2.4.(d), 2.5.(a), and 3.3.(a) and Theorem 3.16, Êα = Êα
for all α ∈ VR. By Lemma 3.18.(a), α ∈ ΓE is equivalent to
Eα/Eα+eV ̸= 0 for all V ∈ VR. This latter condition commutes with
completion by Lemma 2.5.(a). �

4. Good semigroups. In this section, we consider semigroup
ideals that satisfy the properties in Definition 3.6 which hold true
in the case of value semigroup ideals (see Proposition 3.9 and Corol-
lary 3.14). These semigroup ideals are called good by Barucci, D’Anna,
and Fröberg [BDF00]. As a combinatorial counterpart of the relative
length of two fractional ideals, we describe the distance of two good
semigroup ideals.

4.1. Axioms and properties. Let S be a cancellative commutative
monoid. Then S embeds into its (free abelian) group of differences
DS . If S is partially ordered, then DS carries a natural induced partial
order.
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Definition 4.1. Let S be a partially ordered cancellative commutative
monoid such that α ≥ 0 for all α ∈ S. Assume that DS is generated
by a finite set I such that there is an isomorphism DS

∼= ZI which
preserves the natural partial orders. By Lemma 3.7, I is unique and
serves to make sense of components of elements.

(a) If 0 is the only element of S with a zero component, then we
call S local.

(b) We call S a good semigroup if it satisfies properties (E0), (E1),
and (E2) with

S := {α ∈ DS | α ≥ 0} ∼= NI .

(c) A semigroup ideal of a good semigroup S is a subset ∅ ̸= E ⊂
DS such that E + S ⊂ E and α+ E ⊂ S for some α ∈ S.

Let now E and F be semigroup ideals of a good semigroup S.

(d) We call

CE := E − S = {α ∈ DS | α+ S ⊂ E}

the conductor (semigroup) ideal of E and set C := CS .
(e) If E satisfies (E1), then we denote by µE := minE its

minimum which exists due to Dickson’s lemma [Dic13] and
by γE := µCE its conductor. Note that

CE = γE + S.

We abbreviate τE := γE − (1, . . . , 1), γ := γS and τ := τS .
(f) If E satisfies (E1) and (E2), then we call E a good semigroup

ideal of S. The set of good semigroup ideals of S is denoted
by GS .

Remark 4.2.

(a) Any semigroup ideal E of S satisfies property (E0) since S
does and E + S ⊂ E.

(b) If S ⊂ S′ ⊂ S are good semigroups, then DS′ = DS and hence
S′ = S. It follows that GS′ ⊂ GS and, in particular, S′ ∈ GS .

(c) For any semigroup ideal E of S satisfying (E1), µE = 0
is equivalent to S ⊂ E ⊂ S. In fact, if µE = 0, then
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S = 0 + S = µE + S ⊂ E, and α ≥ µE = 0 for all
α ∈ E implies E ⊂ S. Conversely, if S ⊂ E ⊂ S, then

0 = µS ≥ µE ≥ µS = 0.
(d) Let R be an admissible (local) ring. Then S = ΓR satisfies

property (E0) with S = ΓR = NVR by Proposition 3.9.(b) and

Lemma 3.3.(d). It follows that DΓR
= DS = ZVR . Then S

is a good (local) semigroup, and ΓE ∈ GS for any E ∈ RR by
Proposition 3.4 and Corollary 3.14.

We collect some trivial properties of the difference for future refer-
ence.

Remark 4.3. Let S be a good semigroup, α ∈ DS , and E,E
′, F, F ′

be semigroup ideals of S. Then

(a) E − S = E,
(b) GS → GS , E 7→ α+ E, is an inclusion preserving bijection,
(c) (α+ E)− F = α+ (E − F ) = E − (−α+ F ), and
(d) E − F ′ ⊂ E − F ⊂ E′ − F if E ⊂ E′ and F ⊂ F ′.

Although GS is neither a monoid nor closed under difference (see
Remark 3.10), there is at least the following positive result (see
Lemma 3.8).

Lemma 4.4. For any two semigroup ideals E and F of a good
semigroup S, also E − F is a semigroup ideal of S. If E satisfies
(E1), so does E − F , and CE ∈ GS ∩GS.

Proof. Since F is a semigroup ideal of S, we have (E−F )+S+F =
(E − F ) + F ⊂ E, and hence (E − F ) + S ⊂ E − F . Since E is a
semigroup ideal of S, there is an α ∈ DS such that α+ E ⊂ S. Then
we have for any β ∈ F , α + β + (E − F ) ⊂ α + E ⊂ S. Thus, E − F
is a semigroup ideal of S.

Assume now that E satisfies property (E1). Then for any α, β ∈
E − F and δ ∈ F , we have min{α, β} + δ = min{α + δ, β + δ} ∈ E
since α+ δ, β+ δ ∈ E. Hence, min{α, β} ∈ E−F , and E−F satisfies
property (E1).
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We have CE + S + S = (E − S) + S + S = (E − S) + S ⊂ E, and
hence CE + S ⊂ E − S = CE . Therefore, CE is a semigroup ideal of
S. As just shown, it satisfies (E1), and hence min{α, β}+S ⊂ CE for
any α, β ∈ CE . It follows that CE satisfies (E2). �

Remark 4.5. Let M be a finite index set, and let Sm, m ∈ M ,
be good semigroups. Then S =

∏
m∈M Sm is a good semigroup,

DS =
∏
m∈M DSm , and S =

∏
m∈M Sm. Let Em denote the image of

E ⊂ DS under projection to DSm .

Let E =
∏
m∈M Em and F =

∏
m∈M Fm. Then E − F =∏

m∈M (Em − Fm). If, for all m ∈ M , Em is a (good) semigroup
ideal of Sm, then E is a (good) semigroup ideal of S. In particular,
γE = (γEm)m∈M if the latter is defined.

The following result decomposes good semigroups and their good
semigroup ideals into local components.

Theorem 4.6. Any good semigroup S decomposes uniquely and com-
patibly with the partial orders as a finite direct product

S =
∏
m∈M

Sm

of good local semigroups Sm. Any semigroup ideal E of S satisfying
(E1) decomposes as (see Remark 4.5)

E =
∏
m∈M

Em.

In particular, if E ∈ GS, then Em ∈ GSm for all m ∈M .

Proof. See [BDF00, Thm. 2.5, Rem. 2.6, Prop. 2.12]. �

Remark 4.7. As value semigroups and their ideals are special good
semigroups and good semigroup ideals (see Corollary 3.14), the decom-
positions in Theorem 3.13 are special cases of those in Theorem 4.6.



108 PHILIPP KORELL, MATHIAS SCHULZE AND LAURA TOZZO

The following objects were introduced by Delgado [DdlM87,
DdlM88] for investigating the Gorenstein symmetry. They detect
equality in Lemma 3.18.(b) in the case where E = ΓE (see [CDK94,
(4.6) Rem.]).

Definition 4.8. Let S be a good semigroup, E a semigroup ideal of
S, α ∈ DS , and J ⊂ I. We set

(a) ∆J(α) := {β ∈ DS | αi = βi for i ∈ J and αj < βj for j ∈
I \ J},

(b) ∆E
J (α) := ∆J (α) ∩ E,

(c) ∆(α) :=
∪
i∈I ∆i(α), where ∆i(α) := ∆{i}(α), and

(d) ∆E(α) := ∆(α) ∩ E.

In the remainder of this subsection, we provide some technical tools
for §5.2. The following two lemmas were proved by Delgado in the case
where E = S (see [DdlM88, Lem. 1.8 and Cor. 1.9]).

Lemma 4.9. Let S be a good semigroup and E ∈ GS. Assume that
there is a δ ∈ E and a J ⊂ I such that δj ≥ γEj for all j ∈ J . If
α ∈ DS with

αj ≥ γEj for all j ∈ J,
αi = δi for all i ∈ I \ J,

then α ∈ E.

Proof. Choose an ϵ ∈ DS such that

ϵj = δj for all j ∈ J,
ϵi > max{γEi , δi} for all i ∈ I \ J.

In particular, ϵ ≥ γE , and hence ϵ ∈ E. By property (E2) applied to
δ and ϵ, we obtain for any j ∈ J a δ′ ∈ E with δ′ ≥ δ+ ej and δ

′
i = δi

for all i ∈ I \ J . Therefore, we may assume that δ ≥ α.
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Choose an ϵ ∈ DS such that

ϵj = αj for all j ∈ J,
ϵi > max{γEi , αi} for all i ∈ I \ J.

In particular, ϵ ≥ γE , and hence ϵ ∈ E. Thus, α = min{ϵ, δ} ∈ E
since E satisfies (E1). �

Lemma 4.10. Let S be a good semigroup. Then ∆E(τE) = ∅ for any
E ∈ GS.

Proof. Assume that ∆E(τE) ̸= ∅. Then there is an i ∈ I with a
δ ∈ ∆E

i (τ
E). That is, δi = γEi − 1 and δj ≥ γEj for all j ∈ I \ {i}.

Therefore, Lemma 4.9 implies γE − ei + S ⊂ E, contradicting the
minimality of γE in CE = E − S. �

Lemma 4.11. Let E and F be semigroup ideals of a good semigroup
S satisfying property (E1). Then γE−F = γE − µF .

Proof. Note that γE−F is defined since E−F satisfies property (E1)
by Lemma 4.4. Since F − µF ⊂ S and γE + S ⊂ E, we have

γE − µF + S + F ⊂ γE + S ⊂ E,

and hence γE − µF ≥ γE−F . Conversely, γE−F + µF ≥ γE follows
from

γE−F +µF +S = γE−F +µF −µF +F +S = γE−F +S+F ⊂ E. �

4.2. Distance and length.

Definition 4.12. Let S be a good semigroup, and let E ⊂ DS be a
subset.

Two elements α, β ∈ E are called consecutive in E if α < β and
α < δ < β implies δ ̸∈ E for any δ ∈ DS . A chain

(4.1) α = α(0) < · · · < α(n) = β

of elements α(i) ∈ E is said to be saturated of length n if α(i) and
α(i+1) are consecutive in E for all i ∈ {0, . . . , n− 1}. Let E satisfy
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(E4) For any fixed α, β ∈ E, any two saturated chains (4.1) in E
have the same length.

Then the distance of α and β in E with α ≤ β is the length

dE(α, β) := n

of a saturated chain (4.1). The distance between two semigroup ideals
E ⊂ F of S satisfying properties (E1) and (E4) is then

d(F\E) := dF (µ
F , γE)− dE(µE , γE).

Proposition 4.13. Let S be a good semigroup. Then any E ∈ GS

satisfies property (E4).

Proof. See [D’A97, 2.3 Prop.]. �

Remark 4.14. Let S be a good semigroup, and let E ⊂ F be
semigroup ideals of S satisfying properties (E1) and (E4).

(a) dE is additive with respect to composition of chains.
(b) dE(α, β) ≤ dF (α, β) for all α, β ∈ E with α ≤ β.
(c) d(F\E) = d(α+ F\α+ E) for all α ∈ DS .
(d) In the situation of Theorem 4.6 (see [BDF00, Prop. 2.12.(iii)])

with E,F ∈ GS , we have

d(F\E) =
∑
m∈M

d(Fm\Em).

(e) If ϵ ≥ γE , then

d(F\E) = dF (µ
F , γE)− dE(µE , γE)

= dF (µ
F , γE) + dF (γ

E , ϵ)− dE(µE , γE)− dE(γE , ϵ)
= dF (µ

F , ϵ)− dE(µE , ϵ)

by (a) and since dF (γ
E , ϵ) = dE(γ

E , ϵ).

In the following, we collect the main properties of the distance
function d. We begin with additivity.
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Lemma 4.15. Let S be a good semigroup, and let E ⊂ F be two
semigroup ideals of S satisfying properties (E1) and (E4). Then

d(G\E) = d(G\F ) + d(F\E).

Proof. This can be seen using Remark 4.14.(e) (see [D’A97,
2.7 Prop.]). �

The distance function detects equality as formulated by D’Anna
(see [D’A97, 2.8 Prop.]). The proof of this fact is an immediate
consequence of the following lemma.

Lemma 4.16. Let E ⊂ F be two semigroup ideals of a good semigroup
S, where E ∈ GS and F satisfies property (E1). Let α ∈ F\E be
minimal. Then any β ∈ E maximal with β < α and β′ ∈ E minimal
with α < β′ are consecutive in E.

Proof. Suppose that β < ϵ < β′ for some ϵ ∈ E. By choice of β
and β′, α ̸≤ ϵ ̸≤ α, and hence min{α, ϵ} < α. By property (E1)
of F , min{α, ϵ} ∈ F , and hence min{α, ϵ} ∈ E by minimality of
α ∈ F \ E, and β = min{α, ϵ} by maximality of β. In particular,
βj = ϵj < αj ≤ β′

j for some j ∈ I. Applying property (E2) to β, ϵ ∈ E
yields an ϵ′ ∈ E with β < ϵ′, where βj < ϵ′j . After replacing ϵ′ by
min{ϵ′, β′} ∈ E, using property (E1) of E, β < ϵ′ < β′, and hence
β = min{α, ϵ′}. However, this contradicts βj < αj , ϵ

′
j . �

Proposition 4.17. Let S be a good semigroup, and let E,F ∈ GS

with E ⊂ F . Then E = F if and only if d(F\E) = 0.

Proof. For the non-trivial implication, assume that d(F\E) = 0
but E ( F . In particular, µF = µE by Remark 4.14.(a). Choose a
minimal α ∈ F\E. Then µE < α < γE . In fact, assume that α ̸≤ γE .
Then applying property (E1) of F to α and γE yields a δ ∈ F with
δ < α, γE , and hence δ ∈ E by minimality of α. However, Lemma 4.9
then implies that α ∈ E, contradicting the assumption on α. By
Lemma 4.16, we have

µF = µE ≤ β < α < β′ ≤ γE
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for some consecutive β, β′ ∈ E. By Proposition 4.13 and Re-
marks 4.14.(a) and (b),

dF (µ
F , γE) = dF (µ

F , β) + dF (β, β
′) + dF (β

′, γE)

> dE(µ
E , β) + dE(β, β

′) + dE(β
′, γE) = dE(µ

E , γE),

contradicting the hypothesis. �

Finally, we show that the distance function coincides with the
relative length of fractional ideals when evaluated on their value
semigroup ideals.

Proposition 4.18. Let R be an admissible ring. If E ,F ∈ RR such
that E ⊂ F , then

ℓR(F/E) = d(ΓF\ΓE).

Proof. See [D’A97, 2.2 Prop.] for part of the following proof in
the local case. By Corollary 3.14, E := ΓE and F := ΓF are good
semigroup ideals of ΓR, and hence by Corollary 4.13, they satisfy
property (E4).

Let r be the Jacobson radical of R. By Theorem 3.1.(e), r ⊂∩
V ∈VR

mV and hence ν(x) ≥ (1, . . . , 1) for all x ∈ r by equation (2.3).

By Lemma 3.8, CE = Qϵ for some ϵ ∈ ZVR with ϵ ≥ γE . It follows
that, for sufficiently large k ∈ N,

rkF ⊂ Qµ
F+k·(1,...,1) ⊂ Qϵ = CE ⊂ E .

This turns F/E into a module over the product ring (see Lemma 2.5.(c))

R/rk =
∏

m∈Max(R)

Rm/m
k.

It follows that F/E =
∏

m∈Max(R)(F/E)m, and hence

ℓR(F/E) =
∑

m∈Max(R)

ℓRm
(Fm/Em).

By Theorem 3.13 and Remark 4.14.(d), we may therefore assume that
R is local. By Lemma 3.18, then ℓR(Eα/Eα+eV ) ≤ 1 with equality for
all V ∈ VR if and only if α ∈ E.
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Let α, β ∈ E be consecutive in E. Then dE(α, β) = 1 by definition.
For any δ ∈ ZVR with α < δ < β, δ ̸∈ E and hence ℓR(Eδ/Eδ+eV ) = 0
for some V ∈ VR. If δW = βW for some W ∈ VR, then Eβ/Eβ+eW ⊂
Eδ/Eδ+eW and hence ℓR(Eδ/Eδ+eW ) ≥ ℓR(Eβ/Eβ+eW ) = 1 since
β ∈ E. Thus, δV < βV and hence ℓR(Eα/Eβ) = 1 by additivity of
length.

By additivity of length and distance, it follows that

dE(µ
E , ϵ) = ℓR(Eµ

E

/Eϵ) = ℓR(E/Eϵ)

for any ϵ ≥ γE , and hence (see Remark 4.14.(e))

d(F\E) = dF (µ
F , ϵ)− dE(µE , ϵ)

= ℓR(F/Fϵ)− ℓR(E/Eϵ)
= ℓR(F/Eϵ)− ℓR(E/Eϵ) = ℓR(F/E). �

As a consequence, the value semigroup ideal detects equality of
regular fractional ideals (see [D’A97, 2.5 Cor.]).

Corollary 4.19. Let R be an admissible ring, and let E ,F ∈ RR such
that E ⊂ F . Then E = F if and only if ΓE = ΓF .

Proof. See Propositions 4.17 and 4.18. �

5. Dualities. This section is devoted to duality and contains our
main results. After a review of canonical ideals, we develop a combina-
torial duality on the good semigroup ideals of any good semigroup. We
show that it mirrors the duality by canonical ideals by taking values.

5.1. Cohen-Macaulay duality. LetR be a one-dimensional Cohen-
Macaulay ring. In the following we recall some basics of canonical
ideals. We begin with the definition (see [HK71, Def. 2.4]).

Definition 5.1. Let R be a one-dimensional Cohen-Macaulay ring.
A regular fractional ideal K ∈ RR is said to be a canonical (fractional)
ideal of R if, for all E ∈ RR,

E = K : (K : E)
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or, equivalently, E = HomR(HomR(E ,K),K) (see Lemma (2.4).(a)).
In particular, R = K : K.

Dualizing with a canonical ideal preserves relative length of regular
fractional ideals.

Lemma 5.2. Let R be a one-dimensional Cohen-Macaulay ring, K a
canonical ideal of R and E ,F ∈ RR with E ⊂ F . Then

ℓR(K : E/K : F) = ℓR(F/E).

Proof. See [HK71, Rem. 2.5.(c)]. �

Being a canonical ideal is a local property in the following sense.

Lemma 5.3. Let R be a one-dimensional Cohen-Macaulay ring and
K ∈ RR. Then K is a canonical ideal of R if and only if Km = KRm ∈
RRm

is a canonical ideal of Rm for all m ∈ Max(R).

Proof. This follows from Lemma 2.4 (see [HK71, Lem. 2.6]). �

Remark 5.4. Let R be a one-dimensional Cohen-Macaulay ring, and
let K be a canonical ideal of R. For m ∈ Max(R), Km is then of type
1 by Lemma 5.2. In fact, if R = (R,m) is local, then the type of K
equals the length of

Ext1R(R/m,K) ∼= (K : m)/(K : R).

Therefore, canonical ideals are canonical modules (see Remark 2.3 and
[BH93, Prop. 3.3.13 and Def. 3.3.16]).

Canonical ideals are unique up to projective factors.

Proposition 5.5. Let R be a one-dimensional Cohen-Macaulay ring
with a canonical ideal K. Then K′ is a canonical ideal of R if and only
if K′ = EK for some invertible ideal E of R. In the case where R is
semilocal, the latter condition becomes K′ = xK for some x ∈ Qreg

R .
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Proof. See [HK71, Satz 2.8] and §2.1. �

If R is local, then by Lemmas 2.4.(c), 2.5.(a), and 2.6, R has a

canonical ideal K if and only if its completion R̂ has a canonical ideal

K̂ (see also [HK71, Lem. 2.10]). This latter existence can be further
characterized as follows.

Theorem 5.6. A one-dimensional local Cohen-Macaulay ring R has a

canonical ideal if and only if R̂ is generically Gorenstein. In particular,
any one-dimensional analytically reduced local ring has a canonical
ideal.

Proof. See [HK71, Kor. 2.12, Satz 6.21]. �

Corollary 5.7. Any one-dimensional analytically reduced local Cohen-
Macaulay ring R with large residue field has a canonical ideal K such

that R ⊂ K ⊂ R. It is unique up to multiplication by R
∗
with unique

value semigroup ideal.

Proof. By Theorem 5.6, there is a canonical ideal E of R. By
Lemma 3.8 and Theorem 3.1.(d) and (e), Lemma 2.7 applies to
R′ = R. It yields a y ∈ Qreg

R such that K := yE satisfies the inclusion

requirements, and hence KR = R. By Proposition 5.5, the canonical
ideals of R are of the form K′ = xK with x ∈ Qreg

R . If also K′ satisfies

the inclusions, then xR = xK′R = KR = R, and hence x ∈ R∗
. By

(3.1), ν(x) = 0 and thus ΓK′ = ΓK. �

Finally, canonical ideals propagate along finite ring extensions (see
[BH93, Thm. 3.3.7.(b)]).

Lemma 5.8. Let φ : R → R′ be a local homomorphism of one-
dimensional local Cohen-Macaulay rings such that R′ is a finite R-
module and QR = QR′ . If KR is a canonical ideal of R, then KR : R′

is a canonical ideal of R′.

Proof. This follows from Remark 2.1.(d) and Definition 5.1. �
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5.2. Duality on good semigroups. Let S be a good semigroup.
Motivated by a result of Jäger in the irreducible case (see [Jäg77,
Hilfssatz 5]), D’Anna introduced the following object (see [D’A97,
§3]) to characterize canonical ideals in terms of their value semigroup
ideal (see Theorem 5.24).

Definition 5.9. For any good semigroup S, we call (see Defini-
tions 4.1.(e) and 4.8)

K0
S :=

{
α ∈ DS | ∆S(τ − α) = ∅

}
.

the (normalized) canonical (semigroup) ideal of S.

Lemma 5.10. Let S be a good semigroup. Then the set K0
S is a

semigroup ideal of S satisfying property (E1) with minimum µK
0
S = 0

and conductor γK
0
S = γ.

Proof. See [D’A97, 3.2 Prop.] and Lemma 4.10. �

Our definition of a canonical semigroup ideal below relies on the
inclusion relations of good semigroup ideals and avoids a fixed con-
ductor.

Definition 5.11. Let S be a good semigroup (see Definition 4.1). We
call K ∈ GS a canonical (semigroup) ideal of S if K ⊂ E implies
K = E for all E ∈ GS with γK = γE .

Remark 5.12. By Remark 4.3.(b), with K also α+K is a canonical
ideal of S for any α ∈ DS .

The following result was stated by Barucci, D’Anna, and Fröberg
in the case where K = K0

S (see [BDF00, Prop. 2.15]).

Proposition 5.13. Let S =
∏
m∈M Sm be the decomposition of a good

semigroup S into good local semigroups Sm (see Theorem 4.6). A good
semigroup ideal K ∈ GS is a canonical ideal of S if and only if Km is
a canonical ideal of Sm for every m ∈M .
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Proof. First note that Km ∈ GSm for any m ∈M by Theorem 4.6.
Suppose that K is a canonical ideal of S. Let m ∈ M , and assume
that Km is not a canonical ideal of Sm. Then there is an Em ∈ GSm

with γEm = γKm and Km ( Em. By Remark 4.5, E := Em ×∏
n∈M\{m}Kn ∈ GS with γE = γK and K ( E, contradicting K

being a canonical ideal.

Suppose now that Km is a canonical ideal of Sm for all m ∈M . Let
E ∈ GS with γE = γK and E ⊂ K. By Theorem 4.6 and Remark 4.5,
Em ∈ GSm with γEm = γKm and Km ⊂ Em for all m ∈M . Since Km

is a canonical ideal, this implies that Km = Em for every m ∈M , and
hence E = K. Thus, K is a canonical ideal. �

Our aim in this subsection is to establish the following result on
canonical semigroup ideals in analogy with the ring case.

Theorem 5.14. Any good semigroup S has a canonical ideal. More-
over, for any K ∈ GS the following statements are equivalent:

(i) K is a canonical ideal of S.
(ii) There is an α ∈ DS such that α+K = K0

S.
(iii) For all E ∈ GS we have K − (K − E) = E.

If K is a canonical ideal of S, then the following hold:

(a) If S ⊂ K ⊂ S, then K = K0
S.

(b) If E ∈ GS, then K − E ∈ GS.
(c) K −K = S.
(d) If S′ ⊂ S is a good semigroup with S ⊂ S′, then K ′ = K − S′

is a canonical ideal of S′.

Proof. By Proposition 5.17, K0
S ∈ GS , and hence (ii) =⇒ (i) yields

existence.

(i) ⇒ (ii) See Proposition 5.18.

(ii) ⇒ (iii) See Remark 4.3.(c) and Proposition 5.23.

(iii) ⇒ (i) See Proposition 5.21.

(a) See (ii), Remark 4.2.(c) and Lemma 5.10.

(b) See (ii), Remark 4.3.(b) and (c) and Proposition 5.17.
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(c) Set E := S in (iii).

(d) See Corollary 5.19. �

Remark 5.15. The assumption E ∈ GS in Theorem 5.14.(iii) and
(b) is necessary (see the example given by Figure 2).

We first approach Part (b) of Theorem 5.14 in the case where
K = K0

S . To this end, we collect some properties of K0
S .

Lemma 5.16. Let S be a good semigroup. Then the semigroup ideal
K0
S of S has the following properties:

(a) ∆K0
S (τ) = ∅.

(b) If E is a semigroup ideal of S, then

K0
S − E = {α ∈ DS | ∆E(τ − α) = ∅}.

Proof. This follows by calculation from Definitions 4.8 and 5.9 (see
[D’A97, 3.3 Comp., 3.4 Lem.]). �

The proof of Theorem 5.14.(b) in the case whereK = K0
S is achieved

by the following proposition. It shows, in particular, that K0
S is good.

D’Anna established a weaker statement, where (E2) is replaced by a
certain property (E3) (see [D’A97, 3.6 Thm.]).

Proposition 5.17. Let S be a good semigroup. Then K0
S − E ∈ GS

for any E ∈ GS and, in particular, K0
S ∈ GS.

Proof. The idea of the following proof is illustrated in Figure 3.

Suppose that K0
S − E ̸∈ GS . Since K0

S − E is a semigroup ideal
of S satisfying property (E1) by Lemmas 4.4 and 5.10, it violates
property (E2). That is, there are α, β ∈ K0

S − E with ∅ ̸= J := {j ∈
I | αj ̸= βj} ⊂ I, ζ(0) := min{α, β} ∈ K0

S−E, and l0 ∈ I \J such that

ζ ̸∈ K0
S − E whenever ζl0 > ζ

(0)
l0

, ζi ≥ ζ
(0)
i for all i ∈ I, and ζj = ζ

(0)
j

for all j ∈ J . In particular, any choice of a sequence l1, l2, l3, . . . ∈ I \J
yields

(5.1) ζ(0) ∈ K0
S − E, ζ(r) := ζ(r−1) + elr−1 ̸∈ K0

S − E.
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S K0
S

E K0
S − E

K0
S − (K0

S − E)

Figure 2. A semigroup ideal E satisfying property (E1) but not (E2),
where K0

S − E ̸∈ GS and E ( K0
S − (K0

S − E).

By Lemma 5.16.(b), this means that ∆E(τ − ζ(0)) = ∅, and, for all
r ≥ 1, ∆E

i (τ − ζ(r)) ̸= ∅ for some i ∈ I. In order to construct a
sequence of indices in I \ J as above, we proceed by induction on r.
In each step we show additionally that ∆E

j (τ − ζ(r)) = ∅ for all j ∈ J ,
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and we choose an lr ∈ I \ J and a

(5.2) δ(r) ∈ ∆E
lr (τ − ζ

(r)).

Assume that this was done for r − 1, and suppose that there is a
j ∈ J such that ∆E

j (τ − ζ(r)) ̸= ∅. Then j ̸= lr−1, and there is a

δ ∈ ∆E
j (τ − ζ(r)) = ∆E

j (τ − ζ(r−1)) ⊔∆E
{j,lr−1}(τ − ζ

(r−1))(5.3)

= ∆E
{j,lr−1}(τ − ζ

(r−1)),

where the first equality holds by (5.1) and the second by the induction
hypothesis. We deduce a contradiction with different arguments for
r = 1 and r ≥ 2, respectively.

First consider the case r = 1. Since β ∈ K0
S −E and δ ∈ E, we get

δ + β ∈ K0
S . Since j ∈ J , we may assume that βj > ζ

(0)
j , and we have

βl0 = ζ
(0)
l0

by choice of l0. By (5.3), δ+ ζ(0) ∈ ∆{j,l0}(τ) which implies

that δ + β ∈ ∆
K0

S

l0
(τ), contradicting Lemma 5.16.(a).

Assume now that r ≥ 2. By (5.2) and (5.3) and since j ̸= lr−1,

δ
(r−1)
lr−1

= τlr−1
− ζ(r−1)

lr−1
= δlr−1

, δ
(r−1)
j > τj − ζ(r−1)

j = δj .

Then property (E2) applied to δ(r−1), δ ∈ E yields an ϵ ∈ E with
ϵ ≥ min{δ(r−1), δ} ≥ τ − ζ(r−1), ϵlr−1 > δlr−1 , and ϵj = δj . It follows

that ϵ ∈ ∆E
j (τ − ζ(r−1)), contradicting the induction hypothesis.

Finally, choose an r >
∑
i∈I\J |τi − ζ

(1)
i − µEi |. Then δ

(r)
lr

=

τlr−ζ
(r)
lr

< µElr by (5.2), contradicting the minimality of µE . It follows

that K0
S − E ∈ GS as claimed. With E = S, the particular claim

follows by Remark 4.3.(a) and Lemma 5.10. �

We can now relate our canonical ideals (see Definition 5.11) to
D’Anna’s normalized one (see Definition 5.9).

Proposition 5.18. Let S be a good semigroup, and let K ∈ GS. Then
K is a canonical ideal of S if and only if K = α+K0

S for some α ∈ DS.
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kr

lr−1

∆ l r−
1
(τ

−
ζ
(r

) )

∆kr
(τ

−
ζ
(r

−1) )

∆ {kr
,l r

−1
}
(τ

−
ζ
(r

−1) )

∆ l r−
1
(τ

−
ζ
(r

−1) )

δ(r−1)δ(r)

ϵ

τ − ζ(r)

τ − ζ(r−1)

Figure 3. Induction step in the proof of Proposition 5.17 in the case
where I \ J = {lr−1}.

Proof. Using Remark 5.12, it suffices to show that K0
S is the unique

canonical ideal of S with conductor γK
0
S = γ (see Lemma 5.10).

To this end, we show that E ⊂ K0
S for any E ∈ GS with γE = γ.

Since K0
S ∈ GS by Proposition 5.17, this shows that K0

S is a canonical
ideal. Applied to any other canonical ideal K of S with conductor
γK = γ, it gives K = K0

S .

So let E ∈ GS with γE = γ, and hence τE = τ . Assume that there
is a β ∈ E\K0

S . Then there is a δ ∈ ∆S(τ−β) (see Definition 5.9), and
hence β + δ ∈ ∆E(τE). This contradicts Lemma 4.10, and therefore
E ⊂ K0

S as claimed. �

As a consequence we deduce the counterpart of Lemma 5.8 on the
semigroup side (see Theorem 5.14.(d)).
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Corollary 5.19. Let S ⊂ S′ ⊂ S be good semigroups. If K is a
canonical ideal of S, then K ′ = K − S′ is a canonical ideal of S′.

Proof. By Remark 4.2.(b), S′ ∈ GS , and, by Proposition 5.18,
K = α+K0

S for some α ∈ DS . Then by Lemma 5.16.(b),

K ′ = (α+K0
S)− S′

= α+ (K0
S − S′)

= α+ {β ∈ DS | ∆S′
(τ − β) = ∅}

= α+ τ − τS
′
+ {δ ∈ DS | ∆S′

(τS
′
− δ) = ∅}.

Thus, K ′ is a canonical ideal of S′ by Proposition 5.18. �

By the following two propositions, we establish an equivalent defi-
nition of canonical semigroup ideals (see Theorem 5.14.(iii)) analogous
to that of canonical ideals (see Definition 5.1).

Lemma 5.20. Let E and F be semigroup ideals of a good semigroup
S.

(a) There is an inclusion E ⊂ F − (F − E).
(b) If E and F satisfy property (E1), F ( E, and γE = γF , then

E ( F − (F − E).

Proof.

(a) This follows trivially from Definition 4.1.(d).

(b) Note that F ( E forces µF−E > 0. Using Lemmas 4.11 and
4.4, we obtain

γF−(F−E) = γF − µF−E < γF = γE .

Then the claim follows from (a). �

Proposition 5.21. Let S be a good semigroup, and let K ∈ GS such
that K − (K − E) = E for all E ∈ GS. Then K is a canonical ideal
of S.
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Proof. Assume that K is not a canonical ideal of S. Then there
is an E ∈ GS with γE = γK and K ( E (see Definition 5.11). By
Lemma 5.20.(b) and the hypothesis, this leads to the contradiction
E ( K − (K − E) = E. �

Lemma 5.22. Let E be a semigroup ideal of a good semigroup S, and
let α ∈ K0

S − (K0
S − E). If ζ ∈ DS satisfies ∆E(τ − ζ) = ∅, then

∆S(τ − ζ − α) = ∅. Equivalently, if β ∈ DS satisfies ∆S(τ − β) ̸= ∅,
then ∆E(τ − β + α) ̸= ∅.

Proof. Using Lemma 5.16.(b), we compute

K0
S − (K0

S − E)

= {α ∈ DS | α+ (K0
S − E) ⊂ K0

S}
= {α ∈ DS | α+ {ζ ∈ DS | ∆E(τ − ζ) = ∅} ⊂ K0

S}
= {α ∈ DS | ∀ζ ∈ DS : ∆

E(τ − ζ) = ∅ =⇒ ∆S(τ − ζ − α) = ∅}.

The equivalent formulation is obtained by setting ζ = β−α ∈ DS . �

Proposition 5.23. Let S be a good semigroup. Then K0
S−(K0

S−E) =
E for any E ∈ GS and, in particular, K0

S −K0
S = S.

Proof. By Lemma 5.20.(a), there is a trivial inclusion

E ⊂ K0
S − (K0

S − E) =: E′.

By Lemmas 5.10 and 4.4, E′ is a semigroup ideal of S satisfying
condition (E1). So in the case where E ( E′, there is a minimal
α ∈ E′ \E. By property (E1) of E, there is a k ∈ I such that no ϵ ∈ E
satisfies ϵk = αk and ϵi ≥ αi for all i ∈ I \ {k}.

We set β := γ − ek ∈ DS , that is,

βk = τk,

βi = γi for all i ∈ I \ {k}.
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Then 0 ∈ ∆S
k (τ − β), and Lemma 5.22 yields a ζ ∈ ∆E

j (τ − β + α) for
some j ∈ I. That is, ζ ∈ E with

ζj = τj − βj + αj ,

ζi > τi − βi + αi for all i ∈ I \ {j}.

We must have j ̸= k as otherwise ϵ = ζ would contradict the choice of
k. Thus,

ζj = αj − 1,

ζk > αk,

ζi ≥ αi for all i ∈ I \ {j, k} .

Since ζ ∈ E ⊂ E′, by property (E1) of E′ applied to ζ and α, we find

α > α− ej = min{α, ζ} =: α′ ∈ E′.

Property (E2) of E applied to α′, ζ ∈ E would yield an ϵ ∈ E
contradicting the choice of k. Thus, α > α′ ∈ E′ \ E contradicts
the minimality of α. We conclude that E = E′. With E := S the
particular claim follows by Remark 4.3.(a) and Lemma 5.10. �

5.3. Relation of dualities. In this subsection, we put the Cohen-
Macaulay duality in §5.1 and the duality of good semigroup ideals in
§5.2 in relation.

We begin by extending the following result of D’Anna to semilocal
rings.

Theorem 5.24. Let R be an admissible local ring. Then a fractional
ideal K of R with R ⊂ K ⊂ R is canonical if and only if ΓK = K0

ΓR

(see Definition 5.9).

Proof. See [D’A97, 4.1 Thm.]. �

Theorem 5.25. Let R be an admissible ring. Then K ∈ RR is a
canonical ideal of R if and only if ΓK is a canonical ideal of ΓR.

Proof. First assume that R is local. By Proposition 5.5 and Corol-
lary 5.7, K is a canonical ideal of R if and only if there is an x ∈ Qreg

R
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such that xK is a canonical ideal of R with R ⊂ xK ⊂ R. By The-
orem 5.24, this is equivalent to K0

ΓR
= ΓxK = ν(x) + ΓK. By The-

orem 5.14.(i) ⇔ (ii), this is the case if and only if ΓK is a canonical
ideal of ΓR.

Let now R be semilocal. By Lemma 5.3, K is a canonical ideal of
R if and only if Km is a canonical ideal of Rm for every m ∈ Max(R).
By the local case, this is equivalent to (ΓK)m = ΓKm

being a canonical
ideal of (ΓR)m = ΓRm

for every m ∈ Max(R) (see Theorem 4.6 and
Remark 4.7). By Proposition 5.13 and Remark 4.7, this is the case if
and only if ΓK is a canonical ideal of ΓR. �

Next we show that taking values is compatible with the dualities of
§5.1 and §5.2. We use the following result stated by Waldi in the case
where E = R and F = R (see [Wal72, Bem. 1.2.21]).

Lemma 5.26. Let R be an admissible ring, E ∈ RR and F ∈ RR.

Set E := ΓE and F := ΓF . Then E : F = QγE−µF

and hence

ΓE:F = E − F . In particular, CE = QγE

and hence ΓCE = CE.

Proof. By Remark 2.1.(b), Theorem 3.1.(d), and Lemma 3.3.(c)
and (d), it suffices to prove the particular claim. By Lemma 3.8,

CE ⊂ Qγ
E

(see Definition 4.1.(e)). By Lemma 3.3.(d), ΓQγE ⊂ E, and
hence ΓEγE = ΓQγE = CE . With Lemma 3.8 and Corollary 4.19, it

follows that QγE

= EγE ⊂ E , and hence QγE ⊂ CE since QγE

is an
R-module. �

Theorem 5.27. Let R be an admissible ring with canonical ideal K.
Then

(a) ΓK:F = ΓK − ΓF for any F ∈ RR and
(b) d(ΓK − ΓE\ΓK − ΓF ) = d(ΓF\ΓE) for any E ,F ∈ RR with
E ⊂ F .

Proof. Set S := ΓR and K := ΓK.

By Theorem 3.13, Lemmas 2.4.(b) and 5.3, and Remark 4.14.(d), we
may assume that R is local. By Remarks 2.1.(b), 4.3.(c) and 4.14.(c),
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Proposition 5.5, Corollary 5.7, and Theorem 5.24, we may further
assume that K = K0

S .

We now prove both (a) and (b) simultaneously, setting E := F in
the first case. By Proposition 4.18 and Lemma 5.2,

d(ΓK:E\ΓK:F ) = ℓR((K : E)/(K : F)) = ℓR(F/E) = d(ΓF\ΓE) =: n.

In particular, since CE ∈ RR by Lemma 3.8,

(5.4) d(ΓK:CE\ΓK:F ) = ℓR(F/CE) =: m+ n.

Choose a composition series in RR (see [AM69, Ch. 6])

CE = E0 ( E1 ( · · · ( Em = E ( Em+1 ( · · · ( Em+n = F .

By Corollaries 3.14 and 4.19, and Remark 3.10.(a), applying Γ yields
a chain in GS

ΓCE = ΓE0 ( ΓE1 ( · · · ( ΓEm = ΓE ( ΓEm+1 ( · · · ( ΓEm+n = ΓF .

By Remarks 4.3.(d) and 3.10, Propositions 5.17 and 5.23, and Lemma 5.26,
dualizing with K yields again a chain in GS

ΓK:CE = ΓK − ΓCE = K − ΓE0 ) · · · ) K − ΓEm =(5.5)

K − ΓE ) K − ΓEm+1 ) · · · ) K − ΓEm+n = K − ΓF ⊃ ΓK:F ,

and d(K − ΓEi\K − ΓEi+1) ≥ 1 for all i = 0, . . . ,m + n − 1 by
Proposition 4.17. Applying Lemma 4.15 to the chain (5.5), it follows
with equation (5.4) that

(5.6) d(K − ΓEi\K − ΓEi+1) = 1

for all i = 0, . . . ,m+ n− 1. Hence,

d(K − ΓE\K − ΓF ) =

m+n−1∑
i=m

d(K − ΓEi\K − ΓEi+1) = n = d(ΓF\ΓE),

and d(K − ΓF\ΓK:F ) = 0. By Proposition 4.17, this implies ΓK:F =
ΓK − ΓF . �

To conclude, we extend first Delgado’s (see [DdlM88, (2.8) Thm.])
and then Pol’s (see [Pol16, Thm. 5.2.1]) characterizations of Goren-
steinness to admissible rings.
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Definition 5.28. We call a good semigroup S symmetric if S is a
canonical ideal of S.

Proposition 5.29. Let R be an admissible ring. Then R is Goren-
stein if and only if ΓR is symmetric.

Proof. Gorensteinness of R is equivalent to R being a canonical
ideal of R (see [HK71, Kor. 3.4]), and hence to ΓR being a canonical
semigroup ideal of ΓR by Theorem 5.25. �

Proposition 5.30. Let R be an admissible ring. Then R is Goren-
stein if and only if

(5.7) ΓR:E = {α ∈ DΓR
| ∆ΓR(τΓE − α) = ∅}

for every E ∈ RR.

Proof. If R is Gorenstein, then ΓR is a canonical ideal of ΓR by
Proposition 5.29. Hence, Lemma 5.16.(b) and Theorems 5.14.(a) and
5.27.(a) yield

ΓR:E = ΓR − ΓE = K0
ΓR
− ΓE = {α ∈ DΓR | ∆ΓE (τΓR − α) = ∅}.

Conversely, if equation (5.7) is satisfied for every E ∈ RR, then, in
particular,

ΓR = ΓR:R = {α ∈ DΓR | ∆ΓR(τΓR − α) = ∅} = K0
ΓR

is a canonical ideal by Proposition 5.18, and R is Gorenstein by
Proposition 5.29. �
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