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ON THE CLASS SEMIGROUP OF THE CYCLOTOMIC
Zp-EXTENSION OF THE RATIONAL NUMBERS

YUTAKA KONOMI AND TAKAYUKI MORISAWA

ABSTRACT. For a commutative integral domain, the
class semigroup and the class group are defined as the
quotient of the semigroup of fractional ideals and the
group of invertible ideals by the group of principal ideals,
respectively. Let p be a prime number. In algebraic number
theory, especially in Iwasawa theory, the class group of
the ring of integers O of the cyclotomic Zp-extension of
the rational numbers has been studied for a long time.
However, the class semigroup of O is not well known. We
are interested in the structure of the class semigroup of
O. In order to study it, we focus on the structure of the
complement set of the class group in the class semigroup
of O. In this paper, we prove that the complement set is a
group and determine its structure.

1. Introduction and main result. Let R be a commutative in-
tegral domain. We denote by F(R), I(R) and P(R) the set of all
non-zero fractional, invertible and principal ideals of R, respectively.
The quotient C(R) = I(R)/P(R) is a commutative group, called the
class group of R. If R is the ring of integers of an algebraic number
field of finite degree, C(R) is one of the main objects of investigation in
algebraic number theory.

We put S(R) = F(R)/P(R). Then, S(R) is a commutative monoid
and called the class semigroup of R. If R is a Dedekind domain, then
all ideals of R are invertible, that is,

F(R) = I(R) and S(R) = C(R).

However, in general, they are not equal. Thus, it is interesting to study
not only the class group C(R) but also the class semigroup S(R) for a
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non-Dedekind domain R. For example, the class semigroup was studied
by Zanardo and Zannier [5] and Bazzoni and Salce [4]. Moreover, for
a Prüfer domain R, Bazzoni [1, 3] showed that S(R) is a Clifford
semigroup if and only if R is a Prüfer domain of finite character. She
also gave the structure of S(R) as a Clifford semigroup in [2].

In this paper, we focus on the ring of integers of the cyclotomic Zp-
extension of the rational numbers Q. This extension plays an important
role in Iwasawa theory.

Let p be a prime number. We denote by Bn the unique real subfield of
the 2pn+1th cyclotomic field Q(µ2pn+1), whose Galois group Gal(Bn/Q)
is isomorphic to Z/pnZ. In addition, we put

B =
∞∪

n=0

Bn.

Then, the Galois group Gal(B/Q) is isomorphic to the p-adic integer
ring Zp as additive groups. The fields B and Bn are called the
cyclotomic Zp-extension of Q and its nth layer, respectively.

Let O be the ring of integers of B. Then O is not a Dedekind domain,
but a non-Noetherian Prüfer domain. Thus, the complement of the
group of invertible ideals F(O)\I(O) is non-trivial. Furthermore, O is
a Prüfer domain of finite character, see Proposition 2.3. This property
does not hold for all rings of integers of algebraic number fields of
infinite degree.

By studying the decomposition of ideals, we show the following
theorem.

Theorem 1.1. We have the following :

(i) The set F(O) \ I(O) is a group with respect to the usual
multiplication of ideals.

(ii) The set S(O) \ C(O) is a group with respect to the usual
multiplication of ideal classes.

(iii) The group S(O) \ C(O) is isomorphic to C(O) × R/Z[1/p] as
Gal(B/Q)-modules, where Gal(B/Q) acts trivially on R/Z[1/p].

Remark 1.2.

(i) The set F(O) \ I(O) does not contain O, which is the unit
element of the commutative monoid F(O). Thus, F(O)\I(O) is not a
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submonoid of F(O). However, F(O)\I(O) is a subsemigroup of F(O).
In particular, the unit element of the group F(O) \ I(O) is p defined
in (4.1).

(ii) In the same manner as F(O) \ I(O), the set S(O) \ C(O) is not
a submonoid but a subsemigroup of the commutative monoid S(O). In
particular, the unit element of the group S(O) \ C(O) is [p], which is
not equal to [O].

(iii) As noted above, Bazzoni gave the structure of the class semi-
group of a general Prüfer domain of finite character as a Clifford semi-
group. Since we especially deal with the ring of integers of the cyclo-
tomic Zp-extension of Q, our assertion and proof of Theorem 1.1 (iii)
are much simpler and more explicit than hers.

2. Invertible ideal. In this section, we explain the properties re-
lated to the invertible ideals of O. We recall that p, B, Bn and O denote
a prime number, the cyclotomic Zp-extension of Q, its nth layer and
ring of integers, respectively. For an ideal I of O and a non-negative
integer n, we put In = I ∩ Bn. In particular, On = O ∩ Bn is the ring
of integers of Bn.

The next lemma is well known in the theory of cyclotomic fields.

Lemma 2.1.

(i) The cyclotomic Zp-extension B/Q is unramified outside p.
(ii) The prime p is totally ramified in B/Q.
(iii) For any prime number ℓ with ℓ ̸= p, there exists a non-negative

integer n such that the decomposition field at ℓ in B/Q is Bn.

The following lemma is easy, but essential.

Lemma 2.2. For a non-zero ideal I of O, the following are equivalent.

(i) I is an invertible ideal.
(ii) I is finitely generated over O.
(iii) There exists a non-negative integer n such that I = InO.

Proof. Firstly, we assume that I is an invertible ideal. By this
assumption, there exists an invertible ideal J with IJ = O, and hence,
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there exist x1, . . . , xk ∈ I and y1, . . . , yk ∈ J such that
∑k

i=1 xiyi = 1.
Then, I = Ox1 + · · ·+Oxk, that is, finitely generated over O. In fact,
clearly, we have I ⊃ Ox1 + · · ·+Oxk. Conversely, if x is contained in
I, then we have

x =
k∑

i=1

(xyi)xi ∈ Ox1 + · · ·+Oxk

since IJ = O and xyi ∈ IJ for any 1 ≤ i ≤ k.

Secondly, suppose that I is finitely generated over O, and let
x1, . . . , xk ∈ I be generators of I over O. Since

I =

∞∪
n=1

In,

there exists a non-negative integer n such that x1, . . . , xk are contained
in In. Then, I = InO. Actually, it is clear that InO is contained
in I. Conversely, if x is contained in I, then there exist y1, . . . , yk ∈ O
with x =

∑k
i=1 xiyi. Hence, we have x ∈ InO since xi ∈ In for any

1 ≤ i ≤ k.

Finally, we assume that there exists a non-negative integer n with
I = InO. Since On is a Dedekind domain, we have F(On) = I(On),
and then In is an invertible ideal of On. Therefore, there exists
an invertible ideal I−1

n of On such that InI
−1
n = On. This implies

I(I−1
n O) = O, that is, I is an invertible ideal of O. �

Lemmas 2.1 and 2.2 lead to the following proposition, which gives
value to the study of the class semigroup S(O).

Proposition 2.3. The ring O is a Prüfer domain of finite character,
that is, a Prüfer domain in which every non-zero ideal is contained but
in a finite number of maximal ideals.

Remark 2.4. From [1, Theorem 2.14], we obtain that the class
semigroup S(O) is a Clifford semigroup.

3. Sequence of integers. We want to treat non-invertible ideals
of O to prove Theorem 1.1. For this purpose, we mention the sequence
of integers derived from these ideals.
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For a real number α and a non-negative integer n, we put

(3.1) αn = ⌊pnα+ 1⌋,

where ⌊β⌋ denote the greatest integer not exceeding a real number β.
We have the following lemmas.

Lemma 3.1. Let α be a real number.

(i) For any non-negative integer n, we have

pnα < αn ≤ pnα+ 1.

(ii) For any non-negative integer n, we have

p(αn − 1) + 1 ≤ αn+1 ≤ pαn.

(iii) We have

lim
n→∞

αn

pn
= α.

Lemma 3.2. Let {an}∞n=0 be a sequence of integers which satisfies an
inequality

(3.2) p(an − 1) + 1 ≤ an+1 ≤ pan

for any non-negative integer n.

(i) The sequence {an/pn}∞n=0 is monotonic decrease and converge.
(ii) Put α = limn→∞(an/p

n). For any non-negative integer n, if α
satisfies

α <
an
pn

,

then we have an = αn.

Proof of Lemma 3.1. The inequality in (i) is clear from the definition
of αn.

Let β be a real number. Then, there exist integers a, b and a real
number c such that

β = a+
b

p
+

c

p2
,

with 0 ≤ b, c < p. This implies

⌊β + 1⌋ = a+ 1, ⌊pβ + 1⌋ = pa+ b+ 1.
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Hence, we obtain the inequality

p(⌊β + 1⌋ − 1) + 1 ≤ ⌊pβ + 1⌋ ≤ p⌊β + 1⌋.

By applying this inequality to β = pnα, we get assertion (ii).

From the inequality in (i), we have the inequality

α <
αn

pn
≤ α+

1

pn
.

By the squeeze theorem, we obtain

lim
n→∞

αn

pn
= α. �

Proof of Lemma 3.2. From inequality (3.2), we have

an − 1

pn
≤ an+1 − 1

pn+1
<

an+1

pn+1
≤ an

pn
.

Hence, the sequences{
an − 1

pn

}∞

n=0

and

{
an
pn

}∞

n=0

are bounded, monotonic, increasing and decreasing, respectively. Thus,
they are convergent sequences.

Put α as the limit of an/p
n, as n tends to infinity. By the above

argument and the assumption of (ii), we have

an − 1

pn
≤ α <

an
pn

.

Hence, we obtain
pnα < an ≤ pnα+ 1.

Since an is an integer, we get an = αn. �

4. Fractional ideals. The main purpose of this section is to prove
Theorem 4.2, which is analogous to a prime factorization of non-
invertible ideals of O. Moreover, we explain why the complement set
S(O) \C(O) has the group structure as a corollary of this theorem (cf.,
Corollary 4.4).
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Let pn be the prime ideal of On above p. Note that pn is a principal
ideal for any non-negative integer n. We set

(4.1) p =
∞∪

n=0

pn.

Then, p is the unique maximal ideal of O above p.

For any real number α, we define an ideal pα as

pα =

∞∪
n=0

pαn
n .

In particular, we have p0 = p.

Lemma 4.1. Let α and β be real numbers.

(i) We have (pα)n = pαn
n .

(ii) We have

pαpβ =

∞∪
n=0

pαn+βn
n .

(iii) We have pαpβ = pα+β.
(iv) Any ideal pα is a non-invertible ideal.

Proof. From Lemma 3.1 (ii), we have

p(αn − 1) + 1 ≤ αn+1 ≤ pαn

for any non-negative integer n. This inequality and Lemma 2.1 (ii)
imply

p
αn+1

n+1 ∩ Bn = pαn
n .

Hence, we obtain (pα)n = pαn
n .

From the definition of pα and pβ , we have

pαpβ ⊃ pαn+βn
n

for any non-negative integer n, and we get

pαpβ ⊃
∞∪

n=0

pαn+βn
n .



76 YUTAKA KONOMI AND TAKAYUKI MORISAWA

Conversely, let z be an element in pαpβ . We can take x1, . . . , xk ∈ pα

and
y1, . . . , yk ∈ pβ as z =

∑k
i=1 xiyi.

Then, there exists a non-negative integer n such that xi, yi ∈ Bn for
any 1 ≤ i ≤ k. From (i), xi and yi are contained in pαn

n and pβn
n ,

respectively; hence, we have

z ∈ pαn+βn
n ⊂

∞∪
n=0

pαn+βn
n .

Therefore, we obtain

pαpβ =
∞∪

n=0

pαn+βn
n .

In order to prove (iii), we note that the sequences{
αn

pn

}∞

n=0

,

{
βn

pn

}∞

n=0

and

{
(α+ β)n

pn

}∞

n=0

are monotonically decreasing, and

lim
n→∞

(
αn

pn
+

βn

pn

)
= α+ β = lim

n→∞

(α+ β)n
pn

.

From the above equality and Lemma 3.1 (i), for any non-negative
integer n, there exists an integer m ≥ n such that

αm

pm
+

βm

pm
≤ (α+ β)n

pn
.

Hence, we have
p(α+β)n
n ⊂ pαm

m pβm
m ⊂ pαpβ .

This implies
pα+β ⊂ pαpβ .

By the same argument, we obtain

pαn+βn
n ⊂ pα+β

and

pαpβ =
∞∪

n=0

pαn+βn
n ⊂ pα+β
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from (ii). Therefore, we obtain

pαpβ = pα+β .

From (iii) and p = p0, we have pα = pαp. If pα were invertible, then
we would have O = p. Hence, pα is not an invertible ideal. �

Now, we can show the following theorem which is the aim of this
section.

Theorem 4.2. Let I be a non-zero ideal of O which is not invertible.
Then, there exist an invertible ideal a of O and a real number α such
that I = apα.

Proof. Let I be a non-zero ideal of O which is not invertible. For
any non-negative integer n, there exist an invertible ideal an of On and
an integer an such that

In = anp
an
n

and an is coprime to pn. We put

a =
∞∪

n=0

an.

Since B/Q is the cyclotomic Zp-extension, from Lemma 2.1 (iii), there
exists an n0 such that an = an0On for any integer n ≥ n0. Hence, we
have a = an0O. From Lemma 2.2, this implies that a is an invertible
ideal.

From the equality p
an+1

n+1 ∩ Bn = pan
n , we have an inequality

p(an − 1) + 1 ≤ an+1 ≤ pan.

From Lemma 3.2 (i), the sequence {an/pn}∞n=0 is monotonically de-
creasing and convergent. Let α be the limit of an/p

n as n tends to ∞.
Then, we obtain an inequality

an − 1

pn
≤ α ≤ an

pn
.

Assume that there exists a non-negative integer n1 such that an1/p
n1 =

α. Since the sequence {an/pn}∞n=0 is monotonically decreasing and
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convergent to α, we have

an
pn

= α =
an1

pn1

for any integer n ≥ n1. We set m = max{n0, n1}. Then, we have

In = ampam
m On

for any integer n ≥ m. Hence, I = ampam
m O, that is, I is an invertible

ideal from Lemma 2.2. This is a contradiction. Therefore, we have an
inequality

an − 1

pn
≤ α <

an
pn

;

hence, the equality an = αn follows from Lemma 3.2 (ii). Thus, we
obtain

I = apα. �

We obtain Theorem 1.1 (i) and (ii) as corollaries of Theorem 4.2 and
Lemma 4.1 (iii).

Corollary 4.3. The set F(O) \ I(O) is a group with respect to the
usual multiplication of ideals, that is,

apα · bpβ = abpα+β .

Moreover, the identity element is p, and the inverse element of apα is
a−1p−α.

Corollary 4.4. We have

S(O) \ C(O) = {[apα] ∈ S(O) | a ∈ I(O), α ∈ R},

and the set S(O) \ C(O) is a group with respect to the usual multiplica-
tion of ideal classes, that is,

[apα] · [bpβ ] = [abpα+β ].

Moreover, the identity element is [p], and the inverse element of [apα]
is [a−1p−α].

Remark 4.5. Corollary 4.3 implies that F(O) is the disjoint union of
two groups I(O) and F(O) \ I(O), and their identity elements are O
and p, respectively. Then, the idempotents of F(O) are O and p.
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5. Proof of Theorem 1.1 (iii). We define the natural map ρ as

ρ : C(O)× R −→ S(O) \ C(O); ([a], α) 7−→ [apα].

From Theorem 4.2, ρ is a surjective group homomorphism. On the
kernel of ρ, we have the following lemma.

Lemma 5.1. We have

Ker ρ = {[O]} × Z[1/p].

Proof. Let ([a], α) be an element in Ker ρ. Then, there exists an
x ∈ B such that

xp = apα.

We may assume that x ∈ Bn and a = anO. Thus, we have

xpn = anp
αn
n .

Since pn is a principal ideal, an is principal. Hence, we obtain [a] = [O].
Then, there exists a y ∈ B such that

yp = pα.

We may assume that y ∈ Bn. Therefore, we obtain

pαn−1
n Om = yOm = pαm−1

m

for any integer m ≥ n. Thus, we have

αn − 1

pn
=

αm − 1

pm

for any integer m ≥ n. Since the sequence {(αn − 1)/pn}∞n=0 converges
to α, we have

α =
αn − 1

pn
∈ Z[1/p].

Conversely, we take α ∈ Z[1/p]. Then, there exist an integer a and
a non-negative integer n with

α =
a

pn
.

For any integer m ≥ n, we have

αm = ⌊pmα+ 1⌋ = pm−na+ 1.
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Hence, we obtain
pα = panp.

Since pn is a principal ideal, we obtain

ρ([O], α) = [pα] = [p],

that is, ([O], α) is contained in Ker ρ. �
From Corollary 4.4 and Lemma 5.1, we obtain the isomorphism in

Theorem 1.1 (iii). Since pσn = pn for any σ ∈ Gal(B/Q), we have
pσ = p. Therefore, Gal(B/Q) acts trivially on R/Z[1/p].
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