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THE DEGREE OF THE ALGEBRA
OF COVARIANTS OF A BINARY FORM

LEONID BEDRATYUK AND NADIA ILASH

ABSTRACT. We calculate the degree of the algebra of
covariants C4 for binary d-forms. We obtain the integral
representation and asymptotic behavior of the degree.

1. Introduction. Let R = Ry ® Ry @ -+, Ry = C, be a finitely
generated graded commutative C-algebra without zero divisors. Denote
by

P(R,z) = Z dim R;27,
=0

its Poincaré series. Letting r be the transcendence degree of the
quotient field of R over C, the number

deg(R) := lim (1 — 2)"P(R, 2),
z—1

is called the degree of the algebra R. The first two terms of the Laurent
series expansion of P(R, z) at the point z = 1 have the following form

_ deg(R) Y(R)
P(R,z) = -2 + (=21 +

The numbers deg(R) and (R) are important characteristics of the
algebra R. For instance, if R is an algebra of invariants of a finite

group G, then deg(R)~! is an order of the group G and 2% is the

number of pseudo-reflections in G, see [2].

Let Vy be the standard (d+1)-dimensional complex representation of
SLy, and let Z; := C[V,4]°"2 be the corresponding algebra of invariants.
In the language of classical invariant theory the algebra Z; is called the
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algebra of invariants for binary forms of degree d. The following explicit
formula for the degree deg(Zy) was derived by Hilbert in [4]:

1 d—3
~ 1 > (-1)6(21) (g —e) , if d is odd,

T 0<e<d/2

d—3
1
~odl Z (—1)° (j) (;Z — e) , if d is even.

T 0<e<d/2

deg(Zy) =

In [6, 7], Springer obtained two different proofs of this result. Also,
he found an integral representation and the asymptotic behavior for
Hilbert’s constants. For this purpose, Springer [7] derived an explicit
formula for the Poincaré series P(Zy, 2).

Let C4 be the algebra of the covariants of binary d-forms, i.e.,
Cq = C[V; @ V4]%L2. In the present paper, acting in the spirit of
Springer’s papers, we calculate deg(Cy) and t(Cq). The following
formulas hold:

-t £ ()4

and
P(Cq) = %deg(Cd).

Also, we calculate both an integral representation and the asymp-
totic behavior of the constants. For this purpose we use the explicit
formula for the Poincaré series P(Cq, z) derived by the first author in

[1].

2. Computation of deg(C4). The algebra of covariants Cy4 is a
finitely generated graded algebra
Ca=(Ca)o®Can @ ®(Ca)i®---,

where the subspaces (C4); of covariants of degree i are each finite-
dimensional, and (C4)o = C. The formal power series

P(Cd, Z) = Z dlm((Cd)z)zl,
=0
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is called the Poincaré series of the algebra of covariants C4. The finite
generation of C; implies that its Poincaré series is the power series
expansion of a rational function.

The following theorem shows an explicit form for this rational
function. Let ¢,, n € N, be the linear operator that transforms a
rational function f in z to a rational function ¢, (f) which is defined
on the power z" by

(@n( lz_: n :€2ﬂi/n.
7=0

3

Theorem 2.1 ([1]). The Poincaré series P(Cq,z) has the following

form:
(=1)7270+D(1 + 2)
Cd7 Z Pd— 27 < 22 )] (22, Zz)d_j >7

0<j<d/2

where (a,q), = (1 —a)(1 —aq) (1 —aq™ ') denotes the q-shifted
factorial.

It is well known that the transcendence degree of the quotient field
for the algebra of covariants C4 over C coincides with the order of pole
z = 1 for the rational function P(Cq4,2) and equals d. Therefore, the
first terms of the Laurent series for P(C4, z) at the point z =1 are

deg(Ca) n Y(Ca)
1—zd T =z

P(Cq,2) =

In order to calculate the rational coefficients deg(Cq) and 1 (C4) we
shall prove several auxiliary facts.

Lemma 2.2. The following statements hold:
(i) the first terms of the Taylor series for the function (2%,2%); at
z=1are (2%,2%); = 27j1(1 — 2)7 — 277151 52(1 — 2)9 ! 4.
(ii) the first terms of the Laurent series for the function
(1)1 270+ (1 + 2)
(22,2%); (2%, 2%)a—;

at z=1
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(=1 1 (—1)7(d+1) ‘ 1
20-151(d—j)! (1—z)4 23j1(d—j)! (d—2j-1) W + ...
Proof.
(i) We have

(22,2) (1—23)(1—=2%-- (1= 2%).

Let us expand the polynomial 1 — 2™ in a Taylor series about
z =1. We have

n(n—1)

1-2"=-n(z-1)— (z—=1)2 +---
n(n—1)

=n(l—-2)— 51 (1-2)2+0((1-2)*).

Therefore,

(
4 2§(1—2) + (14+3+5---+2j—1)
=2) T )
Il — 2)7 — 2971 52(1 — 2)P L 4
It follows that
(2%,2%);(2% 2%)a—j = (211 — 2)! = 27152 (1 = 2) T+ o)
x (2977(d = (1 = 2)* = 29777 Hd — j)!
X (d=5)*(L—2)"7" 4 )
=2%j1(d = UL - 2)? =277 1jl(d - j)!
X ((d=5)? + 7)1 —2)
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(ii) To find the first terms of the Laurent series for the function

(=1)7270+D(1 + 2)
(22,22); (22, 2%)a—;’

we expand the numerator in the Taylor series expressed in terms
of powers of (1 — z). We have:

1+z=2-(1-2),
A0 =1 G+ DA —2) 4,
(142)290+) =2 — (25 + 1)+ 1A —2) +--- .

It is easy to check that the following decomposition holds:

ag+aix+--- agp ai1bg — agby

dormt w90, W90 — @01 £ Q.

bo +b1x+--- b0+ b% T bo 7
Then

(—1)7270FD(1 + 2)
(22,22); (2%, 2%)a—;
B 2—(2j(j+1)+1)(1=2)+---
- 245(d =) (1—2) =291 j1(d—j)!((d— )2 +52) (1—2) 4+ 1+ - -
1 2—(2jG+H)+D)A—2)+---
(1= 2)¢ 2951(d— )1 =291 jl(d— ) (d—75)>+5%) (1= 2)+ -

! ! “d+)
(1=2)7 (lej!(dj)!+(2dj>!(dj)! (@=2j=1) (1=2)+- ) -

The following lemma shows how the function ¢,, acts on the negative
powers of 1 — z.

Lemma 2.3. For h € N,

() - Z ==h

where anp = n"~1 and Qph—1 = —n"=2(n —1)h/2.
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Proof. Using article [1, Lemma 4], we get

! Con (42422442
%<(1Z)h>_ (1—2)h '

Obviously, a,, is the remainder after the division of ¢, ((1 + z + 22 +
e 2"H) by (1 2).
Using the definition of the function ¢, we get

on (L4+z+22 4 +2"H)")

1 n—1 ' . | )
:ﬁZ(l‘i‘ 7]LZ+(<%)222+_|_( %)nflz(n,1)>
j=0

2=z

The remainder of division of this polynomial by (1 — z) is equal to

its value at the point z = 1. Thus,

Pn ((1 tr+22 4t Z"L—l)h)

z=1
n—1
= % S (G @+ (@) =n
§=0

Obviously, ap, p—1 is the coefficient of (1 — z) in the Taylor series

expansion for
n (L+2+22+-+2"HM)

at the point z = 1. Therefore,
— _ N 2 . n—1\h\\/
anp-1 == lim(pn (T4 242"+ +2"7H)"))"

We have
1n71 j j . I\
(TL Z (1 + ¢z + (C%)QZQ 4+t (C%)n_lz(n_l)) )
j=0
h'e
= — Z(l + C%Z + (CTJl)2Z2 4t (Ci;)n_lz("_l))h—l o
n
7=0

X (G +2(G) 2z 4+ (n—1)(G)" 2.
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It now follows that

n—1 l
iy (30 (1 et (627 4o (G0 0))

z—1
Jj=0

— nfll hfll . )
- (Z@;)’“) 2G4+ (- 1))

k=0

_hoh oy = L gy, a1

=—n"(1+24+...4+(n 1))f2h(n n"~.
n

By using the relation

lim (f(zn)‘Z":z> . hm F'E"),

z—1 n z—1

we get

Qn,h—1 = — ll_{q(son ((1 +z4224+ 4 Zn—l)h))/

n—1 /
= Liim (711 > (1 + 2+ ()22 4+ (Ci;)”lzml))h)

n z—1 =
L h—2
= —ih(n —1)n"7=. O
Now we can compute deg(Cq) and ¥(Cy).

Theorem 2.4.
deg(Cq) = lim (1-2)4P(C4, 2)
z—
1 A\ (d \!
-a, 2 cv(5)(5)
T 0<j<d/2 J

and
$(Ca) = lim (~(1 = 2)*P(Cs,2))’, = 5 deal(Ca).

Proof. Using Lemmas 1 and 2 we get

(=1)7270+D (1 + 2)
P(Ca,2) Z Pd— 2]< 2. 22), (2, )

0<j<d/2 Ja—j
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B (-1)/ 1
= 2 e (2 —1j1(d — j);(lz)ﬁ“')

0<j<d/2
Z (-1)/ ( 1 )
= oo Pd-2 | 7Ty
[ | —d
ooy 2 HNd =)} (1-2)
(—1)i(d+1) (1 1
Ly 2d-11(d j)!<2d_j_2)
0<j<d/2

1 1)7(d — 25)4-1
_ - Z (=1)( 7)

d—1 _
o<isae 2 Jid —j)!

1 1 (—1)7
T (1= )19 Z d=151(d — i)
(1—-2)4-12 o<i<d/2 24=1451(d — j)!

x (d—27)%"2(d—2j —1)(d—1)+ ﬁ% >

0<j<d/2
(1) d—2
X 2d—1j!(d—j)!(d+ D(d—25—1)(d—29) =+ -
Thus, the coefficient of e is
i (d — 2] d—1

acn = Y S 1( )

o 29-151(d — j)!

<j<d/2

1 (d\ (d -t

= — —1YJ - — 1
a 2 Y <j><2 ”) |

0<j<d/2

and the coefficient of W is

sea =g 3 o (f)(E-)"

T 0<j<d/2
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3. Asymptotic behavior of deg(C;). Let us establish an integral
representation for the degree deg(Cy4). We denote by

cg=deg(Ca)- d'= ) (1)J‘(j> <;Zj>d1.

0<j<d/2

The following statement holds:

Lemma 3.1.

o0

(i) ca=2r"1(d—1)! [ =272 dy,
0

(ii) deg(Cq) > 0.

Proof.
(i) We have:
w2 ()
) d—1
2 ()
d—1
- > v (5(-)
w2 ()30
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Then
meq = ;sz:(—nj (j) sign (;l _ j) (Z ) j) a1
= jz::)(_nj (j) (;l ) O/bln d/2 —j)x o

o0 d d—1
d\ [ d . . dx
— 27 J Z i(d/2—j)z | 2% 2
/Im<. (1)@(2 ") ‘ >x Tt
0

Jj=0

This follows by the same method as in [7, Lemma 3.4.7].

have:

g eiT/2 _ p—ix/2\ @
sin — = ———
2 ( 21 >
d—j J
(4) (emm) (eim)
J

(—1)’ <d> pia(d/2—)
— J

Differentiating d — 1 times with respect to x, we obtain

1
= 24

1
=24

d—1
azy@-n _ ittt (4. i(d/2— )
(sm 2) = Sa;d Z( 1) i 5 j e .
<j

Hence,

(S ()(¢-0) ) o)

We
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Integrating by parts d — 1 times, we obtain

F wind
2(d71)!/sin x
Cqd = a Z.
0 x
0
(ii) It is enough to prove that
> sin?
/ o dz > 0.
0 X

First of all, we prove that

the integral is absolutely convergent.

Let us split the integral into two parts:

1

do— |

0

d

sin® x

00
0
sin z

Since lim, ¢ *5*

= 1, the function (

sin? z
2

sin z
24

dsr:—|—/ dx

1

si%)p is continuous on [0, 1].

Thus, the first integral is convergent. Since

d

2d

then the second integral is
Now the integral can be

sin

1
2

x
)

absolutely convergent for d > 1.
represented in the form

oo A [i
sin®
/ o dx
0
o0 2+ o d 457 . d
_ (/ 51ndxdm+/ smdxdx)
=0 2jm T (2j+)r T
> (/(Qj"'l)7T sin? z d + /(2]-"'1)7T sin?(z 4 ) d )
= T g aT
im0 \Jajr x4 2jm (x +m)d
S i /(2j+1)7T sin? z sin? z d
- x
- =0/ 2m xd (z +m)d
2, p@IDT gind
d_ .d
= _— - dex >0, d>1.
Z/Qjﬁ oy (@) =) da
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For the case d = 1, we have

/Oosmxdx:f>o. 0
0 X 2

Condition deg(Cq) > 0 is equivalent to the statement that the
transcendence degree of the field of fractions of the algebra C; is equal
to d.

Interestingly, in the general case, the Wolstenholme formula holds:

[R5 5 coo-vr

p—27>0

if p— s is even, see [3, Problem 1033].

Finally, we deal with the asymptotic behavior of deg(Cy) as d tends
to infinity. By the previous lemma, it is enough to determine the
asymptotic behavior of

4
/ sin® x d
x.
2d
0

Theorem 3.2.

00 :d 1/2
lim d'/2 / ST =
d—o00 0 x 2

Proof. Write
oo :..d
[ = lim d1/2/ e
0

d—o0 .%‘d ’

and split the limit into two parts:

oo :.d
7= lim d1/2/ BT i
0

d— oo .’Ed
w/2 o d
sin® x
= lim d'/? = dx
d—oo 0 Jﬁd

oo _:.d
+ lim d1/2/ ST
/2

d—o0
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Since
b

00 P an!
S/ 2%z = lim
71_/2 b— oo ]. — d 71'/2

< sinz
7 dx
n/2 T

1
(d—1)zd1 ’

it follows that

d—o0 CIId

w/2 i d
I= lim dl/Q/ 2L
0
Fix ¢ > 0 sufficiently small. Since sinz/x is monotonically decreasing
as 0 <z < m/2, it follows that

sin:z:<sin5 5 €
x — e 3! 5!

as ¢ <z < 7/2. Tt readily follows that there exists a strictly positive
constant a such that

T/2 :od
/ smdx dr = O (e_a_dgz> ’
x
€

For 0 <z < ¢, we have

. d d
<smx> _ (1 B %xg —|—O(s4)> _ o 1/6dz*+O(de")

T

Hence,

€ ) eO(d54) ed!/? )
/ e—l/ﬁdw do = 7/ 6—1/613 dr.
0 d/? 0

Now choose € = Ind/v/d. Then the limit reduces to the Euler-Poisson
integral:

/2 i d [} /
7= lim dl/Q/ e xda::\/é/ e dr = % O
0 0

d—o0 xd

Thus, the asymptotic behavior of deg(Cy) as d — oo is as follows:

C 6 1
dex(Ca) = % S0
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