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COHEN-MACAULAYNESS OF REES ALGEBRAS
OF DIAGONAL IDEALS

KUEI-NUAN LIN

ABSTRACT. Given two determinantal rings over a field
k, we consider the Rees algebra of the diagonal ideal, the
kernel of the multiplication map. The special fiber ring of
the diagonal ideal is the homogeneous coordinate ring of the
secant variety. When the Rees algebra and the symmetric
algebra coincide, we show that the Rees algebra is Cohen-
Macaulay.

1. Introduction. Determinantal rings and varieties have been a
central topic of commutative algebra and algebraic geometry. We
investigate blowups in the products of determinantal varieties, i.e.,
the Rees algebras of ideals in the determinantal rings. Rees algebras
correspond to the blowups of varieties along the subvarieties in algebraic
geometry. More precisely, we are interested in the Rees algebras of
diagonal ideals of the determinantal rings. In this particular case, the
special fiber rings of the diagonals are the homogeneous coordinate
rings of the secant varieties of the determinantal rings. Therefore
understanding this particular case not only lets us understand the
blowup but also the secant variety.

It turns out that, for some cases, the Rees algebras and the sym-
metric algebras of the diagonal ideals coincide [12]. It is natural to ask
if the Rees algebras are Cohen-Macaulay in those cases. In general,
for a given ideal, it is very difficult to show the Cohen-Macaulayness
if the ideal does not fulfill the needed hypotheses to apply the well-
known general criteria [1]. There have been various works on knowing
the Cohen-Macaulayness of an ideal. Showing Cohen-Macaulayness of
the Rees algebra of an ideal is even more difficult due to the general
complexity of the defining ideal of the Rees algebra. There are vari-
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ous techniques to see the Cohen-Macaulayness of Rees algebras such
as using the reducing number, the analytic spread, a-invariant and the
depth conditions of power of ideals [2, 5, 10, 7, 8, 9, 11]. In this
paper, we use the known defining equations of the Rees algebra in the
work of [12] to understand the Cohen-Macaulayness of Rees algebras.
The determinantal rings have nice structures; therefore, we are able to
prove the Cohen-Macaulayness by looking at its initial ideal then pass-
ing it to an Alexander dual ideal. This paper continues the work of
Simis and Ulrich [13], Sturmfels and Sullivant[14], and of the author
[12].

We describe the ground settings of this work and outline the proof
of the main theorem in Section 1. We will go through the detailed
settings of this work and some basic facts of our cases in Section 2. In
Section 3, we will recall some basic combinatorial properties and finish
the proof of the main theorem in Section 4.

Let k be a field, 2 ≤ m ≤ n integers, X = [xi,j ] an m × n matrix
of variables over k, and I1 = Iu1(X), I2 = Iu2(X) the ideals of k[X]
generated by the u1 × u1 minors of X and the u2 × u2 minors of X.
Let R1 = k[X]/I1 and R2 = k[X]/I2 be two determinantal rings. We
consider the diagonal ideal D of S = R1 ⊗k R2, defined via the exact
sequence

0 −→ D −→ S mult.−→ k[X]/(I1 + I2) −→ 0.

The diagonal ideal D is generated by the images of xi,j ⊗ 1 − 1 ⊗ xi,j

in S. Those elements are homogeneous of degree 1. The homogeneous
coordinate ring of the embedded join variety J (I1, I2) ⊆ Pmn−1

k of the

determinantal varieties V (I1), V (I2) in Pmn−1
k can be identified with

R(D) ⊗S k = F(D) regarding k as S/m where m is the homogeneous
maximal ideal of S.

The scheme Proj (F(D)) is the special fiber in the blowup Proj (R(D))
of Spec (S) along V (D). In this work, we study, more broadly, the
blowup rather than the special fiber.

Theorem 1.1. The Rees algebra R(D) is Cohen-Macaulay if I1 and
I2 are generated by the maximal minors of submatrices of X.

In [12], the defining ideals of Rees algebras of diagonal ideals have
been determined in the setting of Theorem 2.1. Let K be the defining
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ideal of the Rees algebra of D. By the proposition below, we deduce
that K is Cohen-Macaulay once we show in (K), the initial ideal of K
via a term order, is Cohen-Macaulay.

Proposition 1.2.

(a) [4, 15.15] Let R be a polynomial ring over a field k, > a
monomial order on R, I an ideal of R and in (I) the initial
ideal of I with respect to the term order >. Let a1, . . . , ar be
polynomials in R such that in (a1), . . . , in (ar) form a regular
sequence on R/in (I). Then a1, . . . , ar is a regular sequence on
R/I.

(b) [4, 15.16,15.17] If R/in(I) is Cohen-Macaulay, then so is R/I.

We use combinatorial commutative algebra to show in (K) is Cohen-
Macaulay. With respect to a suitable term order, in (K) is generated
by square-free monomials [12]. Square-free monomial ideals in a
polynomial ring are also known as Stanley–Reisner ideals. This leads
us to consider Alexander dual ideals:

Theorem 1.3 ([3]). Let J be a square-free monomial ideal in a
polynomial ring R. The ring R/J is Cohen-Macaulay if and only if
the Alexander dual ideal J∗ has a linear free resolution.

It is sufficient to show that (in (K))∗, the Alexander dual ideal of
in (K), has a linear free resolution. To do this, we find a suitable
filtration starting from the Alexander dual ideal of in (K).

2. Rees algebras of diagonal ideals. In this section, we start
with the notations and write down the generators of the initial ideal
of the defining ideal of diagonal ideal. Let k be a field, 2 ≤ m ≤ n
integers, Xm,n = [xi,j ], Ym,n = [yi,j ], Zm,n = [zi,j ], m × n matrices of
variables over k. Let si and ti be integers such that 2 ≤ si ≤ ti, i = 1, 2
and Xs1,t1 and Ys2,t2 are the submatrices of X and Y coming from the
first si rows and first ti columns. I1 = Is1(Xs1,t1) and I2 = Is2(Xs2,t2)
are the ideals of k[X] generated by the maximal minors of Xs1,t1 and
the maximal minors of Xs2,t2 . Let R1 = k[X]/I1 and R2 = k[X]/I2 be
two determinantal rings. We consider the diagonal ideal D of R1⊗kR2,
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defined via the exact sequence

0 −→ D −→ R1 ⊗k R2
mult.−→ k[X]/(I1 + I2) −→ 0.

The ideal D is generated by the images of xi,j⊗1−1⊗xi,j in R1⊗kR2.

We write the diagonal ideal D = ({xi,j − yi,j}) in

S = k[Xm,n, Ym,n]/(Is1(Xs1,t1), Is2(Ys2,t2))
∼= R1 ⊗k R2.

Let R(D) be the Rees algebra of D over S which is a subalgebra
of S[t]. There is a natural map from S[Zm,n] to R(D) ⊆ S[t] via
sending zi,j to (xi,j −yi,j)t. Let K be the kernel of this map, and write
R(D) = S[Zm,n]/K. We consider ϕ, a presentation matrix of D and
the following exact sequence:

Sl ϕ−→ Smn −→ D −→ 0

From this, we obtain a presentation of the symmetric algebra of D,

0 −→ (image(ϕ)) = J −→ Sym(Smn) = S[Zm,n] −→ Sym(D) −→ 0.

Here J is the ideal generated by the entries of the row vector
[z1,1, z1,2, . . . , z1,n, . . . , zm,n] · ϕ. Hence,

Sym (D) ∼= S[Zm,n]/J,

where J is generated by linear forms in the variables zi,j . It is clear that
J ⊂ K. In general, K is not generated by linear forms. If J = K, we say
D is an ideal of linear type. We can rewrite Sym (D) = S[Zm,n]/J =
k[Xm,n, Ym,n,Zm,n]/J and R(D) = k[Xm,n, Ym,n, Zm,n]/K.

Theorem 2.1. [12] Notation as above. Let X l,k
a1···as1

be the (k − l +
1)×s1 submatrix of X with rows l, l+1, . . . , k and columns a1, . . . , as1 ,
and similarly for Y and Z. Let

gi,j,l,k =

∣∣∣∣ zi,j zl,k
xi,j − yi,j xl,k − yl,k

∣∣∣∣
fa1,...,as1

=

s2∑
q=1

(−1)q+1

∣∣∣∣∣∣∣
 Zq,q

Y 1,q−1

Xq+1,m


a1···as1

∣∣∣∣∣∣∣ ,
where 1 ≤ a1 < a2 < · · · < as1 ≤ min(t1, t2) and 1 ≤ i ≤ m, 1 ≤ l ≤ m,
1 ≤ j ≤ n and 1 ≤ k ≤ n.
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(1) Then K = (Is1(Xs1,t1), Is2(Ys2,t2), gi,j,l,k
, fa1,...,as1

) = J , i.e.,
D is an ideal of linear type.

(2) The initial ideal of K with respect to lexicographic term or-
der and the variables ordered by zi,j > xl,k > yp,q for any
i, j, l, k, p, q and xi,j < xl,k, yi,j < yl,k if i > l or i = l and
j < k and zi,j < zl,k if i > l or if i = l and j > k is generated
by square-free monomials.

The generators of the Gröbner basis are collections of classes of
polynomials. Each class of polynomials is complicated, and it is a huge
collection. Since the main idea of this work is not about the defining
equations of Rees algebra, we refer the reader to the paper [12] for
detailed notation of polynomials. To simplify the notation, we write h∗
as the class of initial monomials of the class of polynomials “∗.” For
example, we write hX as the class of initial monomials of Is1(Xs1,t1)
and hf as the class of initial monomials of fa1,...,as1

.

Corollary 2.2. The initial ideal of

K = (hX + hY + hg + hf + hU + hW + hWp,q,l + hV +

hV l,k,w + hHl,k,q + hIl,k,q + hk,wIl,k,q ),

where

(1) hX = ({x1a1x2a2 · · ·xs1as1
| 1 ≤ as1 < as1−1 < · · · < a1 ≤ t1}),

(2) hY = ({y1a1y2a2 · · · ys2as2
| 1 ≤ as2 < as2−1 < · · · < a1 ≤ t2}),

(3) hg = ({zijxlk| i < l or i = l and j < k, }),
(4) hf =({zlqlzl+1ql+1

· · · zkqkx1a1 · · ·xl−1al−1
y1b1 · · · yk−1bk−1

yk+1bk+1

· · · ys1bs1 |1 ≤ ql < ql+1 < · · · < qk < bs1 < · · · < bk+1 < bk−1 <
· · · < b1 < al−1 < · · · < a1 ≤ t1, 1 ≤ l < k ≤ s2}),

(5) hU = ({zpqx1a1
· · ·xpap

yp+1ap+1
· · · ys1as1

|p = 1, . . . , s1−1, 1 ≤
q ≤ n, 1 ≤ as1 < as1−1 < · · · < a1 ≤ t1, ap ≤ q}),

(6) hW = ({zpqx1a1 · · ·xpapy1b1 · · · ys1bs1 | p = 1, . . . , s1 − 1, 1 ≤ i ≤
p, 1 ≤ bs1 < · · · < bs2+1 < ap < · · · < a1 ≤ t1, 1 ≤ bs1 <
bs1−1 < · · · < bp+2 < bp < bp−1 < · · · < bi+1 < bp+1 < bi <
· · · < b1 ≤ t2, 1 ≤ bs1 < · · · < bp+2 < bp < · · · < bi+1 < ap−1 <
· · · < a1 ≤ t1, bl ̸= ap, l = i+1, . . . , s1, ap−1 ≤ bp+1, ap ≤ q}),

(7) hWp,q,l = ({zpqx1a1· · ·xpapy1b1 · · · yp−1bp−1ypbp yp+1bp+1yp+1b
′
p+1

· · · yvbvyvb′vyv+1bv+1 · · · ys1bs1 |1 ≤ p ≤ m, 1 ≤ q ≤ n, v =
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p + 1, . . . , s2 − 1, 1 ≤ bs1 < · · · < bs2+1 < ap < · · · < a1 ≤
t1, ap ≤ q, bs2+1 < bs2 < · · · < bv+2 < b

′

v < · · · < b
′

p+1 <
bp−1 < · · · < bi+1 < ap−1 ≤ bp+1 < bi < · · · < b1 ≤ t2, 1 ≤ i ≤
p, b

′

l ̸= ap, l ≥ i + 1, b
′

v−1 ≤ bv+1, bs1 < · · · < bs2+1 < bs2 <
· · · < bv+2 < bv+1 < bv < bv−1 < · · · < bp+2 < bp+1 < ap <

ap−1 ≤ bp, b
′

r ≤ br+2 < br+1, r = p, . . . , v − 2}),
(8) hV = ({zlqlzl+1ql+1

· · · zkqkx1a1 · · ·xl−1al−1
y1b1 · · · yk−1bk−1

ykbk
yk+1bk+1

· · · ys1bs1 | 1 ≤ l < k ≤ s2, 1 ≤ ql < ql+1 < · · · <
qk < bs1 < · · · < bk+2 < bk < bk−1 < · · · < b1 < al−1 < · · · <
a1 ≤ t1, bk−1 ≤ bk+1 ≤ t2 − k + 1},

(9) hV l,k,w = ({zlql · · · zkqkx1a1 · · ·xl−1al−1
y1b1 · · · yk+1bk+1

yk+1b
′
k+1

· · · ywbwywb′w
yw+1bw+1 · · · ys1bs1 | 1 ≤ l ≤ k ≤ s2, 1 ≤ pl <

· · · < pk < bs1 < · · · < bs2+1 < · · · < bk+1 < bk−1 < bk <
bk−2 < · · · < b1 < al−1 < · · · < a1 ≤ t1, w = k, . . . , s2 − 1, 1 ≤
bs2 < · · · < bw+2 < b

′

w < b
′

w−1 < · · · < b
′

k < bk−1 < bk−2 · · · <
b1 ≤ t2, b

′

w−1 ≤ bw+1, b
′

r ≤ br+2 < br+1, r = k, . . . , l − 2}),
(10) hHl,k,q = ({zl−1,qzl,ql · · · zkqkx1a1 · · ·xl−2,al−1

y1b1 · · · yk−1bk−1

yk+1bk+1
· · · ys1bs1 | 1 ≤ l ≤ k ≤ s2, 1 ≤ q ≤ n, 1 ≤ ql <

· · · < qk < bs1 < · · · < bk+1 < bk−1 < · · · < b1 < al−2 < · · · <
a1 ≤ t1, ql < al−1 ≤ q < b1}),

(11) hIl,k,q = ({zl−1,qzl,ql · · · zkqkx1a1 · · ·xl−2,al−1
y1b1 · · · yk−1bk−1

ykbk
yk+1bk+1

· · · ys1bs1 | 1 ≤ l ≤ k ≤ s2, 1 ≤ q ≤ n, 1 ≤ ql < · · · <
qk < bs1 < · · · < bk+1 < bk−1 < bk < bk−2 < · · · < b1 < al−2 <
· · · < a1 ≤ t1, ql < al−1 ≤ q < b1}),

(12) hk,wIl,k,q = ({zl−1,qzl,ql · · · zkqkx1a1 · · ·xl−2,al−1
y1b1 · · · ykbkykb′k

· · · ywbwywb′w
yw+1bw+1 · · · ys1bs1 | 1 ≤ l ≤ k ≤ s2, 1 ≤ q ≤

n, 1 ≤ ql < · · · < qk < bs1 < · · · < bk+1 < bk−1 < bk < bk−2 <
· · · < b1 < al−2 < · · · < a1 ≤ t1, ql < al−1 ≤ q < b1, w =

k, · · · , s2 − 1, 1 ≤ bs2 < · · · < bw+2 < b
′

w < b
′

w−1 < · · · < b
′

k <

bk−1 < bk−2 · · · < b1 ≤ t2, b
′

w−1 ≤ bw+1, b
′

r ≤ br+2 < br+1, r =
k, · · · , l − 2}).

3. Alexander dual. We turn our focus on finding the Alexander
dual of given monomial ideals in this section. Also we show techniques
needed for the proof of the main lemma including how to use a filtration
of a square-free monomial ideal to show it has linear free resolution.
Notice, from Corollary 2.2, the initial ideal of K is generated by square-
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free monomials since each class of monomials is a product of variables
and those variables either coming from different rows or at the same
row with different column indices. We know that an ideal generated by
square-free monomials defines a Stanley-Reisner ring. Hence, we can
find the Alexander dual ideal of this ideal [1]. We recall the definition
of the Alexander dual ideal.

Definition 3.1. If I is an ideal of R = k[x1, . . . , xn] generated by
square-free monomials (f1, . . . , fl), then the Alexander dual ideal I∗

of I is ∩iPfi , where for any square-free monomial f = xi1 · · ·xir ,
Pf = (xi1 , . . . , xir ).

From Corollary 2.2, the initial ideal of K is generated by classes
of monomials having very similar forms as the ones in the following
lemma; hence, we find Alexander dual ideals of those kind first. Then
the Alexander dual ideal of in (K) is generated by the intersection of
similar forms by the definition of Alexander dual ideals.

Lemma 3.2. Let R = k[X], where X = [xi,j ], i = 1, . . . ,m, j =
1, . . . , n and 1 ≤ a0 ≤ l < m ≤ n. Let I be the ideal generated by
{x1,a1x2,a2x3,a3 · · ·xm,am} with 1 ≤ a0 ≤ a1 < a2 < · · · < al ≤ al+1 <
· · · < am ≤ n. Then I∗, the Alexander dual ideal of I, is generated by

{ k1∏
i1=a0

x1,i1

k2∏
i2=k1+2

x2,i2 · · ·

kl∏
il=kl−1+2

xl,il

kl+1∏
il+1=kl+1

xl+1,il+1

kl+2∏
il+2=kl+1+2

xl+2,il+2
· · ·

n∏
im=km−1+2

xm,im

}
,

where a0 − 1 ≤ k1 < k2 < k3 · · · < kl ≤ kl+1 < · · · < km−1 < n.

Proof. Without lost of generality, we may assume l = 1. Inducting
on m, we consider m = 2 and m = 3 first. When m = 2, I =
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({x1,a1x2,a2 | a0 ≤ a1 ≤ a2 ≤ n}). Now

I∗ =
∩

a0≤a1≤a2≤n

(x1,a1 , x2,a2)

=
∩

a0≤a1≤n

( ∩
a1≤a2≤n

(x1,a1 , x2,a2)

)

=
∩

a0≤a1≤n

(x1,a1 ,

n∏
i2=a1

x2,i2)

=

({ k1∏
i1=a0

x1,i1

n∏
i2=k1+1

x2,i2 | a0 − 1 ≤ k1 ≤ n

})
.

When m = 3, we have I = ({x1,a1x2,a2x3,a3 | a0 ≤ a1 ≤ a2 < a3 ≤ n}).
Now

I∗ =
∩

a0≤a1<n

( ∩
a1≤a2<n

( ∩
a2<a3≤n

(x1,a1 , x2,a2 , x3,a3)

))

=
∩

a0≤a1<n

( ∩
a1≤a2<n

(x1,a1 , x2,a2 ,

n∏
i3=a2+1

x3,i3)

)

=
∩

a0≤a1<n

(
x1,a1

,

{ k2∏
i2=a1

x2,i2

n∏
i3=k2+2

x3,i3 | a1 − 1 ≤ k2 < n

})

=

({ k1∏
i1=a0

x1,i1

k2∏
i2=k1+1

x2,i2

n∏
i3=k2+2

x3,i3 | a0 − 1 ≤ k1 ≤ k2 < n

})
.

When m > 3, we have

I∗ =
∩

a0≤a1≤a2<a3<···<am≤n( ∩
a1≤a2<a3<···<am≤n

(x1,a1 , x2,a2 , . . . , xm,am)

)
=

∩
a0≤a1≤a2<a3<···<am≤n(
x1,a1 ,

{ k2∏
i2=a1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n∏

im=km−1+2

xm,im |
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a1 − 1 ≤ k2 < k3 < · · · < km−1 < n

})
=

({ k1∏
i1=a0

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n∏

im=km−1+2

xm,im |

a0 − 1 ≤ k1 ≤ k2 < k3 < · · · < km−1 < n

})
where the second equality comes from the induction. �

Having the Alexander dual ideal of in (K), we can use Theorem 1.3 to
show that in (K) is Cohen-Macaulay once we show that the Alexander
dual ideal has a linear free resolution. We recall the definition of a
linear free resolution and the regularity of an ideal.

Definition 3.3.

(a) Let
F : · · · −→ Fi −→ Fi−1 −→ · · · −→ F0

be a minimal homogeneous free resolution of an ideal I in a
ring R = k[x1, . . . , xn] with Fi = ⊕jR(−aij). We say I has a
linear free resolution if aij = ai and ai+1 = ai + 1.

(b) The regularity of I is defined as reg (I) = maxi,j{aij − i}.

Fact 3.4. If all the minimal homogeneous generators of I have the same
degree, d, then I has a linear free resolution if and only if reg (I) = d.

We will show that (in (K))∗ is generated in the same degree as d
and reg (in(K))∗ = d. The structure of (in (K))∗ is very similar to the
one in the following proposition, and we show its Alexander dual has
a linear free resolution. Later, we will use the same technique again
and again to show (in (K))∗ is generated in the same degree d and
reg (in (K))∗ = d. In this way, we can reduce the confusion of complex
notations from (in (K))∗.

Proposition 3.5. Let R = k[X], where X = [xi,j ], i = 1, . . . ,m,
j = 1, . . . , n. Let I be the ideal generated by {x1,a1x2,a2x3,a3 · · ·xm,am}
with 1 ≤ a1 < a2 < · · · < al ≤ al+1 < · · · < am < n for some
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1 ≤ l ≤ m− 1. Then I∗, the Alexander dual ideal of I has a linear free
resolution.

Proof. From Lemma 3.2, we see that I∗ is generated by elements of
degree n− (m− 2), denoted by deg (I∗). Using Fact 3.4, it’s sufficient
to show that reg (I∗) = deg (I∗) = n− (m− 2). We will induct on n to
show that there is a filtration on I∗ such that the quotient is linear up
to degree shifting.

We write down I∗ first,

I∗ =

({ k1∏
i1=1

x1,i1

k2∏
i2=k1+2

x2,i2 ...

kl∏
il=kl−1+2

xi,il

kl+1∏
il+1=kl+1

xi,il+1

· · ·
n∏

im=km−1+2

xm,im

})
with 0 ≤ k1 < k2 < · · · < kl ≤ kl+1 < · · · < km−1 < n.

When m = n, we have 0 ≤ k1 < k2 < · · ·< kl ≤ kl+1 < · · ·< km−1 <
m. Without lost of generality, we assume l = 1. Hence,

I∗ = (x1,1x1,2, {x1,1xi,i | i = 2, . . . ,m},

{xi,i−1xj,j | i = 2, . . . ,m, j = i, . . . ,m

})
.

Now look at xm,m; the terms xi,i−1xm,m for i = 2, . . . ,m − 1 and
x1,1xm,m are multiples of xm,m. Also, xi,i−1xj,j for i = 2, . . . ,m − 1,
j = i, . . . ,m − 1 is divisible by xi,i−1 and x1,1x1,2 and x1,1xi,i for
i = 2, . . . ,m− 1 is divisible by x1,1. We can rewrite

I∗ = ({xi,i−1(xi,i, . . . , xm,m) | i = 2, . . . ,m− 1},
x1,1(x1,2, x2,2, . . . , xm,m)).

Let Jl = ({xi,i−1(xi,i, . . . , xm,m) | i = l, . . . ,m− 1}, x1,1, x2,1, x3,2, . . . ,
xl−1,l−2) where l = 1, . . . ,m and I∗ = J1. One can see that Jm =
({xi,i−1 | i = 2, . . . ,m − 1}, x1,1) is generated by a regular sequence
of degree 1; hence, it has reg Jm = 1. Furthermore, Jl ⊇ Jl+1 for
l = 2, . . . ,m− 1.
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We claim that those Ji’s are the filtrations we need and show
reg (Jl+1/Jl) = 1 for l = 1, . . . ,m − 1. Therefore, reg (Jl) = 2 =
m− (m− 2) for l = 1, . . . ,m− 1. Notice Jl can be rewritten as

Jl = ({xi,i−1(xi,i, . . . , xm,m)| | i = l, . . . ,m− 1},
x1,1, x2,1, x3,2, . . . , xl−1,l−2)

= ({xi,i−1(xi,i, . . . , xm,m) | i = l + 1, . . . ,m− 1},
xl,l−1(xl,l, . . . , xm,m),

x1,1, x2,1, x3,2, . . . , xl−1,l−2).

Then

Jl+1/Jl=(xl,l−1)/(xl,l−1∩({xi,i−1(xi,i, . . . , xm,m) | i= l+1, . . . ,m−1}),
xl,l−1∩(x1,1, x2,1, x3,2, . . . , xl−1,l−2), xl,l−1(xl,l, . . . , xm,m))

=(xl,l−1)/xl,l−1(xl,l, . . . , xm,m, x1,1, x2,1, x3,2, . . . , xl−1,l−2).

Since xl,l−1 is regular over

R/(xl,l, . . . , xm,m, x1,1, x2,1, x3,2, . . . , xl−1,l−2),

we obtain

reg ((xl,l−1)/xl,l−1(xl,l, . . . , xm,m, x1,1, x2,1, x3,2, . . . , xl−1,l−2))

= reg (R/(xl,l, . . . , xm,m, x1,1, x2,1, x3,2, . . . , xl−1,l−2)) + 1 = 1,

and therefore reg (Jl+1/Jl) = 1 for all l = 1, . . . ,m − 1. We are now
done with the case m = n.

For the induction part, we write I∗ := I∗n when X is an m × n
matrix. We assume reg (I∗n−1) = n − 1 − (m − 2) = deg (I∗n−1) and
m < n. Before we write down the filtration, we state some facts of
relations of generators of I∗n,

{ k1∏
i1=1

x1,i1

k2∏
i2=k1+2

x2,i2 · · ·
kl∏

il=kl−1+2

xi,il

kl+1∏
il+1=kl+1

xi,il+1

· · ·
n∏

im=km−1+2

xm,im

}
.
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Those relations will help us show quotients of the filtration are what
we need. Let’s consider the variable xm,n. When km−1 = n− 2,{ k1∏

i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
km−1=n−2∏

im−1=km−2+2

xm−1,im−1xm,n

}
is divisible by xm,n, and we write

A =

{( k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3

· · ·
n−2∏

im−1=km−2+2

xm−1,im−1)xm,n

}
= A′xm,n,

where 0 ≤ k1 ≤ k2 < k3 < · · · < km−1 = n− 2. When km−1 = n− 1,

k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n∏

im=km−1+2

xm,im

is not divisible by xm,n, we write

B =

{ k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n−1∏

im=km−2+2

xm−1,im−1

}
,

where 0 ≤ k1 ≤ k2 < k3 < ... < km−2 < km−1 = n− 1. One can see

B = A′({xj,j−1+(n−1−(m−2)) | 1 < j < m}, x1,n−1−(m−2)).

When km−1 ≤ n− 3, we write

C =

{ k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n−1∏

im=km−1+2

xm,im)xm,n

}
= C ′xm,n,

where 0 ≤ k1 ≤ k2 < k3 < · · · < km−2 < km−1 ≤ n − 3. Hence,
I∗n = (A,B,C). Let

C ′′ =

{ k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n−1∏

im=km−1+2

xm,im

}
,
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where 0 ≤ k1 ≤ k2 < k3 < · · · < km−2 < km−1 < n− 3; then C can be
written as

C = C ′′xm,n({xj,j−1+(n−1−(m−2))−1 | 1 < j < m}, x1,n−1−(m−2)).

Notice I∗n−1 = (A
′
, C ′) and the elements of A′ and C ′ have the same

degree. Let

A′′ =

{ k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3 · · ·
n−2∏

im=km−2+2

xm−1,im−1

}
,

where 0 ≤ k1 ≤ k2 < k3 < · · · < km−2 < km−1 = n− 3. Then we write

A′ = A′′({xj,j−1+n−m−1 | 1 < j < m}, x1,n−2−(m−2)).

Now, looking at C ′, we obtain

C ′ =

({( k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3

· · ·
n−2∏

im=km−1+2

xm,im

)
xm,n−1

}
, A′′xm,n−1

)
,

where 0 ≤ k1 ≤ k2 < k3 < · · · < km−2 < km−1 < n− 3. Hence,

(A′) ∩ (C ′) = (A′′({xj,j−1+n−m−1 | 1 < j < m}, x1,n−2−(m−2)))∩{( k1∏
i1=1

x1,i1

k2∏
i2=k1+1

x2,i2

k3∏
i3=k2+2

x3,i3

· · ·
n−2∏

im=km−1+2

xm,im

)
xm,n−1

}
,

A′′({xj,j−1+n−m−1 | 1 < j < m}, x1,n−2−(m−2))

∩ (A′′xm,n−1)

= (A′xm,n−1)

= (C ′({xj,j−1+n−m−1 | 1 < j < m}, x1,n−2−(m−2))).
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On the other hand, we have

(A′) ∩ (C ′xm,n) = (A′) ∩ (C ′′xm,n({xj,j−1+n−m| |
1 < j < m}, x1,n−1−(m−2)))

⊂ (A′({xj,j−1+n−m | 1 < j < m}, x1,n−m+1)).

Consider the following filtration:

I∗n = (C,B,A) = (C ′xm,n, A
′({xj,j−1+n−m

| 1 < j < m}, x1,n−m+1), A
′xm,n)

⊂ (C ′xm,n, A
′)

⊂ (C ′, A′) = I∗n−1.

By using the intersections we obtain above, the relations of regularity
follow:

reg ((C ′, A′)/(C ′xm,n, A
′))

= reg ((C ′)/((C ′) ∩ (A′), C ′xm,n))

= reg ((C ′)/(C ′({xj,j−1+n−m−1

| 1 < j < m}, x1,n−2−(m−2), xm,n))

= reg (R/({xj,j−1+n−m−1 |1<j<m}, x1,n−2−(m−2), xm,n)

+ deg (C ′)

= deg (C ′)

= n− (m− 2)− 1.

Since reg (C ′, A′) = reg (I∗n−1) = n − 1 − (m − 2), by the induction
hypothesis, we use the short exact sequence of regularity to obtain
reg (C ′xm,n, A

′) = n− (m− 2). Similarly,

reg ((C ′xm,n, A
′)/(C ′xm,n, A

′({xj,j−1+n−m |
1 < j < m}, x1,n−m+1), A

′xm,n))

= reg ((A′)/((A′) ∩ (C ′xm,n), A
′({xj,j−1+n−m |

1 < j < m}, x1,n−m+1), A
′xm,n))

= reg ((A′)/(A′({xj,j−1+n−m | 1 < j < m},
x1,n−m+1, xm,n))

= reg (R/(A′({xj,j−1+n−m | 1 < j < m}, x1,nm+1,
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xm,n))) + deg (A′)

= deg (A′) = n− (m− 2)− 1.

Hence reg (I∗n) = n− (m− 2). �

4. Proof of the main theorem. In this section, we find the
Alexander dual ideal of in (K), and we find the regularity of the
Alexander dual in Lemma 4.2. Then we finish the proof of the
Theorem 1.1 and end this section by Example 4.3. In order to simplify
the notations of the Alexander dual ideal of in (K) which comes from
several intersections of ideals, we define the following notation.

Definition 4.1. If we have (1, 1) > (1, 2) > · · · > (1, n) > (2, 1) >
(2, 2) > · · · > (2, n) > · · · > (m,n− 1) > (m,n), we write

(a1, a2) ⊎ 1 =

{
(a1, a2 + 1) if a2 < n
(a1 + 1, 1) if a2 = n

,

and similarly,

(a1, a2) ⊎ 2 =

 (a1, a2 + 2) if a2 < n− 1
(a1 + 1, 1) if a2 = n− 1
(a1 + 1, 2) if a2 = n.

We are now ready to show (in (K))∗ is generated in the same degree d
and reg (in (K))∗ = d as the main lemma of this paper.

Lemma 4.2. The Alexander dual of in (K), (in (K))∗, is generated by
square-free monomials with degree mn− 1+ t2− (s2− 1)+ t1− (s1− 1)
and reg (in (K))∗ = mn− 1 + t2 − (s2 − 1) + t1 − (s1 − 1).

Proof. We prove this lemma by inducting on n. Since the proof
is long, we state the steps of the proof here. We will show the case
of m = n first. We list the Alexander dual ideal then use the same
technique as Lemma 3.5 to show it has the right regularity. Then
assume the statement is true for the case of m× (n−1) size matrix and
find a filtration starting from the Alexander dual of the case m × n
ending at the Alexander dual of the case m × (n − 1). Using the
fact that this filtration has good quotients, we show the Alexander
dual has the right regularity. One key point is to find the filtration;
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therefore, the proof will emphasize picking the right filtration. We may
assume s1 ≥ s2; then the generators of the ideal (in (K))∗ do not involve
variables xi,j , yl,k, zp,q when i, l, p > s1. Hence, we can further assume
s1 = m.

When m = n, we have m = s1 ≤ t1 ≤ m. We list the generators of
(in (K))∗ here. It is easy to see there is a pattern, and it makes sense to
find a filtration of (in (K))∗. Let B = (B2, B3, . . . , Bs2) be such that 0 ≤
Bs2 < · · · < B2 < t2, and write y

B
=

∏t2
b1=B2+2 y1,b1 · · ·

∏Bs2

bs2=1 ys2,bs2 .

Then

(in (K))∗ =

({ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBxq,m−q+1 |

(u1, u2) < (m− 1,m− 1), 1 ≤ q ≤ m

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBxq,m−q+1|

(m− 1,m− 1) ≤ (u1, u2) ≤ (m− 1, 1), 1 ≤ q ≤ m− 1

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBym,1 |

(m− 1,m− 1) ≤ (u1, u2) ≤ (m− 1, 1), s2 < m

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBym,2|

(m− 1,m− 1) ≤ (u1, u2) ≤ (m− 1, 1), s2 = m

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBxq,m−q+1 |

(p+ 1,m− p+ 2) ≤ (u1, u2) ≤ (p,m− p),

1 ≤ q ≤ p ≤ m− 2

}
,
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{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBx(u1,u2)⊎1 |

(p+ 1,m− p+ 2) ≤ (u1, u2) ≤ (p,m− p),

1 ≤ p ≤ m− 2

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBym−q+1,q |

(p+ 1,m− p+ 2) ≤ (u1, u2) ≤ (p,m− p),

1 ≤ p ≤ m− 2, 1 ≤ q ≤ m− p, s2 < m

}
,

{ (u1,u2)∏
(i,j)=(1,1)

zi,j

(m,n)∏
(l,k)=(u1,u2)⊎2

xl,kyBym−q+1,q+1 |

(p+ 1,m− p+ 2) ≤ (u1, u2) ≤ (p,m− p),

1 ≤ p ≤ m− 2, 1 ≤ q ≤ m− p, s2 = m

})
Notice that all the elements are in the same degree mm− 1 + 1 + t2 −
(s2 − 1). We find a filtration starting from (in (K))∗ and ending at
(xm,1, xm−1,2, . . . , x1,m). Each quotient of this filtration will have the
form P/PL, where P is an ideal generated in the same degree and L is
an ideal generated by variables such that those variables form a regular
sequence modulo P . Then we use the same technique in the Lemma 3.5
to find the regularity of the Alexander dual ideal.

We look at the variable ys2,1. The elements in (in (K))∗ that are di-
visible by ys2,1 must have Bs2 > 0. The elements in (in (K))∗ that
are not divisible by ys2,1 must have Bs2 = 0. Hence (in (K)∗) =
(A1(ys2,1, . . . , ys2−1,2, · · · y1,s2)), C1ys2,1), where the elements in C1

have Bs2 > 1. Also, all the elements of A1 and C1 are in the same
degree. Furthermore, A1 ∩ C1 = C1({a1,i}), (ys2,1, . . . , y1,s2) is a regu-
lar sequence modulo A1 and (ys2,1, {a1,i}) is a regular sequence modulo
C1. We look at the following filtration

(in (K))∗ ⊂ (A1, C1ys2,1) ⊂ (A1, C1).

Using the proof of Lemma 3.5, one can see that the quotients are:
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A1/A1(ys2,1, . . . , y1,s2) and C1/C1({a1,i}, ys2,1). Notice the following
equalities: reg (A1/A1(ys2,1, . . . , y1,s2)) = reg (A1) and reg(C1/C1({a1,i},
ys2,1) = reg (C1).

Next, we look at ys2,2 and write

(A1, C1) = (A2(ys2,2, . . . , y1,s2+1), C2ys2,2).

As before, we have the filtration

(A1, C1) ⊂ (A2, C2ys2,2) ⊂ (A2, C2),

and the quotients areA2/A2(ys2,2, . . . , y1,s2+1) and C2/C2({a2,i}, ys2,2).
We can continue with ys2,3 . . . until ys2,t2−(s2−1); we will reduce
(in (K))∗ to an ideal J1 which is generated in the same degreemm−1+1.

Now we look at the variable z1,1. When an element has (u1, u2) =
(0, 0), z1,1 is not a factor of this element. When (u1, u2) ≤ (1, 1), then
z1,1 is a factor. The ideal J1 can be written as (D1,1(z1,1,{d1,1,i}),E1,1z1,1)
where {d1,1,i} is a set of variables and is a regular sequence modulo
D1,1. Hence, we have the filtration

J1 ⊂ (D1,1, E1,1z1,1) ⊂ (D1,1, E1,1)

with quotients D1,1/D1,1(z1,1, {d1,1,i}) and E1,1/E1,1({e1,1,i}, z1,1).
We look at z1,2 next and reduce J1 to an ideal (D1,2, E1,2); we continue
with zm,m−1. We can find a filtration from J1 to (Dm,m−1, Em,m−1) =
(xm,1, . . . , x1m).

Since reg (xm,1, . . . , x1,m) = reg (Dm,m−1, Em,m−1) = 1, it follows
that reg (Dm,m−1) and reg (Em,m−1) are equal to 1. Also, the final
quotient

(Dm,m−1, Em,m−1)/(Dm,m−1, Em,m−1zm,m−1)

has regularity equal to the regularity of Em,m−1. It follows that

reg (Dm,m−1, Em,m−1zm,m−1) = 2.

Since the quotient (Dm,m−1, Em,m−1zm,m−1)/(Dm,m−2, Em,m−2) has
regularity equal to the regularity of Dm,m−1, which is 1, we have
reg (Dm,m−2, Em,m−2) = 2. Continuing the same argument, we obtain
reg (J1) = 1+mm−1. Hence, reg ((inK)∗) = 1+mm−1+t2−(s2−1).
This finishes the case of an m×m size matrix.
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For the induction steps, we write In for the Alexander dual ideal
(in (K))∗ in them×nmatrix case. We assume, by induction hypothesis,
that reg (In−1) = deg (In−1) = m(n−1)−1+t1−(s1−1)+t2−(s2−1).
We will show that we can build a filtration from In to In−1 such that
the quotients are in the form P/PL where P is an ideal and L is an ideal
generated by variables such that they are a regular sequence modulo P .

We know that each summand of in (K) is generated by mono-
mials satisfying the assumption of Lemma 3.2. For a fixed vari-
able yi,j , we can write (hY )

∗ = (AY yi,j , A
Y ({aYl }), BY yi,j). Also,

AY ∩BY = BY ({bYi }), where {bYi } are variables such that (yi,j , {bYi })
is a regular sequence modulo BY and (yi,j , {aYl }) is a regular se-
quence modulo AY . Similarly, (hU )

∗ = (AUyij , A
U ({aUl }), BUyij),

(hW )∗ = (AW yi,j , A
W ({aWl }), BW yi,j), and all other components of

(in (K))∗ involving yi,j . For (hX)∗ that does not involve yi,j , we leave
as it is and similarly for others that do not involve yi,j .

Claim. Let Iyi,j be the ideal coming from (in (K))∗ deleting the
variable yij. Then Iyi,j contains (in (K))∗. Assume reg (Iyi,j ) =
deg (Iyi,j ). Then there is a filtration from in (K)∗ to the ideal

Iyi,j = (hX)∗ ∩ (AY , BY ) ∩ (hg)
∗ ∩ (AU , BU ) ∩ · · · ∩ (AW , BW )

such that the quotients are the form P/PL where P is an ideal and L
is an ideal generated by variables such that they are a regular sequence
modulo P . Moreover, the relation of the regularity is reg (in (K)∗) =
reg (Iyi,j ) + 1 = deg (Iyi,j ) + 1.

With this claim, we can continue picking another variable and reduce
(in (K))∗ to a bigger ideal that does not involve the new variable. By
picking the right variables at each step, we reach an ideal that does
not involve any zi,n, xi,n or yi,n. This ideal is In−1, and we can use
induction to show the lemma. We prove this claim first then find the
right variables such that the filtration has quotients we need.

Proof of the claim. Without loss of generality, we just need
to show that there is a filtration from (AY (yi,j , {aYl }), BY yi,j) ∩
(AU (yi,j , {aUl }), BUyi,j)) to (AY , BY )∩(AU , BU ) with quotients in the
form P/PL as above. For convenience, we write AY ({aYl }) = AY C
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and AU ({aUl }) = AUD. Consider the following filtration:

(AY yi,j , A
Y C,BY yi,j) ∩ (AUyi,j , A

UD,BUyi,j) =: J0

⊂ ((AY ∩AU )yi,j , (A
Y ∩AU )C, (BY ∩AU )yi,j , (A

Y ∩BU )yi,j ,

(BY ∩BU )yi,j) =: J1

⊂ ((AY ∩AU ), (BY ∩AU )yi,j , (A
Y ∩BU )yi,j , (B

Y ∩BU )yi,j) =: J2

⊂ ((AY ∩AU ), (BY ∩AU ), (AY ∩BU )yi,j , (B
Y ∩BU )yi,j) =: J3

⊂ ((AY ∩AU ), (BY ∩AU ), (AY ∩BU ), (BY ∩BU )yi,j) =: J4

⊂ ((AY ∩AU ), (BY ∩AU ), (AY ∩BU ), (BY ∩BU ))

= (AY , BY ) ∩ (AU , BU ) =: J5.

The quotient

J1/J0 = (AY ∩AU )C/((AY ∩AU )C(D, yi,j), (A
Y ∩BY )

∩AUCyi,j , (A
Y ∩AU ∩BU )Cyi,j ,

(AY ∩BY ) ∩ (AU ∩BU )Cyi,j)

= (AY ∩AU )C/((AY ∩AU )C(D, yi,j)).

Similarly, Jl+1/Jl has the form Pl/PlLl with Ll variables that form a
regular sequence modulo Pl for l = 1, 2, 3, 4. For l = 1,

J2/J1 = (AY ∩AU )/((AY ∩AU )(C, yij), (A
Y ∩BY ∩AU )yij ,

(AY ∩AU ∩BU )yij ,

(AY ∩BY ) ∩ (AU ∩BU )yij)

= (AY ∩AU )/((AY ∩AU )(C, yij)).

Hence, reg (J2/J1) = reg (AY ∩AU ). For l = 2,

J3/J2 = (BY ∩AU )/((BY ∩AU )yij , (B
Y ∩AY ∩AU ),

(BY ∩AY ) ∩ (AU ∩BU )yij ,

(BY ∩AU ∩BU )yij)

= (BY ∩AU )/((BY ∩AU )({bYi }, yij)).

Thus, reg (J3/J2) = reg (BY ∩AU ). For l = 3,

J4/J3 = (AY ∩BU )/((AY ∩BU )(yij , {bYi })).
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Therefore, reg (J4/J3) = reg (AY ∩BU ). Finally, for l = 4,

J5/J4 = (BY ∩BU )/((BY ∩BU )(yij , {bYi }, {bUi }).

We obtain reg (J5/J4) = reg (BY ∩BU ). By assumption,

reg (AY , BY ) ∩ (AU , BU ) = d = deg (AY , BY ) ∩ (AU , BU ),

it follows that

deg (AY ∩AU ) = deg (BY ∩AU )

= deg (AY ∩BU ) = deg (BY ∩BU ) = d

and

reg (AY ∩AU ) = reg (BY ∩AU )

= reg (AY ∩BU ) = reg (BY ∩BU ) = d.

Also notice that reg (AY ∩AU )C ≥ deg (AY ∩AU )C ≥ d+1. We use
the regularity of the quotients of the filtration to obtain the regularity
of J0. From the short exact sequence of regularity, we obtain regJ4 =
reg (J5)+1 = d+1 and reg J3 = d+1 = reg J2 = d+1 = reg J1 = d+1.
Notice reg J0 ≥ deg J0 ≥ degJ1 + 1 = d + 1. Assume reg J0 ≥ d + 2.
Then reg J1 = max{reg J0, reg J1/J0 = reg (AY ∩ AU )C} ≥ d + 2, a
contradiction. Hence reg J0 = deg J0 = d+1. This completes the proof
of the claim.

We now focus on finding the right variables for the filtration. Since
s1 ≥ s2, we assume s1 = m and observe that (in (K))∗ does not involve
zm,n. If t2 = n, by using the claim above, we can find a filtration
starting from (in (K))∗ to an ideal Jy1,n , where y1,n is not a factor of
the minimal monomial generators of Jy1n ; otherwise, we find a filtration
to an ideal Jy2n such that y2,n is not a factor of the minimal monomial
generators of Jy2,n . The next step is to look at zm−1,n and find a
filtration until an ideal Jzm−1,n such that zm−1,n is not a factor of
Jzm−1,n . Next we consider zm−2,n and continue to zm−3,n . . . until z1n.
Finally, we consider x1,n. Then we will get the ideal In−1 if t2 = n;
otherwise, we continue with x2,n and get the ideal In−1. We will have
a filtration as the following:

In ⊂ Jy1,n ⊂ Jy2,n ⊂ Jzm−1,n ⊂ Jzm−2,n ⊂ · · · ⊂ Jz1,n ⊂ Jx1,n = In−1
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or

In ⊂ Jy2,n ⊂ Jzm−1,n ⊂ Jzm−2,n ⊂ · · · ⊂ Jz1,n ⊂ Jx1,n ⊂ Jx2,n = In−1.

Assume that {Jl}k1

l=1 is the sub-filtration from Jk1 = In−1 to
Jx1,n = J1 and Jl+1/Jl has the form Pl/PlLl with Ll variables that form
a regular sequence modulo Pl for all l. Hence, reg (Jl+1/Jl) = regPl

for all l = 1, . . . , k1 − 1. In particular, we obtain reg (In−1/Jk1−1) =
reg (In−1) = deg (In−1) where the last equality coming from the induc-
tion hypothesis. It follows that

reg (Pl) = deg (Pl) = reg (In−1)

for all l.

By using a similar argument as in the proof of the claim, we have
reg (Jx1,n) = deg (Jx1,n) = reg (In−1) + 1. By induction again, we
obtain

reg In = reg In−1 + 2 +m− 1 + 1

= m(n− 1)− 1 + t1 − 1− (s1 − 1) + t2 − 1− (s2 − 1) +m+ 2

= mn− 1 + t1 − (s1 − 1) + t2 − (s2 − 1)

= deg In−1 + 2 +m− 1 + 1

= deg In.

The proof of Lemma 4.2 is now complete. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We know that k[X,Y, Z]/(in (K)) is Cohen-
Macaulay by Lemma 4.2 and Theorem 1.3. Hence,R(D) = k[X,Y, Z]/K
is Cohen-Macaulay [4]. �

The following example is computed by [6], and it shows how the
filtration of the Alexander dual ideal looks.

Example 4.3. Let X, Y , Z be a 2 × 3 matrices, X2,3, Y2,2 are 2 × 3
and 2×2 submatrices of X and Y , and let K be the defining ideal of the
R(D) in the ring k[X,Y, Z]. The initial ideal of K via the lexicographic
order with zi,j > xl,k > yp,q for any i, j, l, k, p, q, zi,j > zl,k if i < l or
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i = l and j < k, and xi,j > xl,k and yi,j > yl,k if i < l or i = l and
j > k is generated by

{z22x23, z21x22, z21x23, z21x13y22, z13x21, z13x22, z13x23,

z13x12y21, z13x12y11y22, z13x12y11y23, z13x13y21,

z13x13y22, z12x21, z12x22, z12x23, z12x11y23, z12x12y21,

z12x12y23, z12x12y11y22, z12x13, z11y22, z11y12y23,

z11x21, z11x22, z11x23, z11x11y23, z11x12, z11x13,

y12y21, x12x21, x13x21, x13x22}.

The Alexander dual ideal is I3, and I3 is minimally generated by
square-free monomials in degree 8. The generators are:

{z11z12z13z21z22x13x12y12, z11z12z13z21x13x12x23y12,

z11z12z13x13x12x23x22y12, z11z12z13z21z22x13x21y12,

z11z12z13z21x13x23x21y12, z11z12z13z21z22x22x21y12,

z11z12z13z21x23x22x21y12, z11z12z13x13x23x22x21y12,

z11z12x13x12x23x22x21y12, z11x13x12x11x23x22x21y12,

z11x13x12x23x22x21y12y23, z11z12z13x23x22x21y12y22,

x13x12x11x23x22x21y12y22, x13x12x23x22x21y12y23y22,

z11z12z13z21z22x13x12y21, z11z12z13z21x13x12x23y21,

z11z12z13x13x12x23x22y21, , z11z12z13z21z22x13x21y21,

z11z12z13z21x13x23x21y21, z11z12z13z21z22x22x21y21,

z11z12z13z21x23x22x21y21, z11z12z13x13x23x22x21y21,

z11z12x13x12x23x22x21y21, z11x13x12x11x23x22x21y21,

z11z12x13x23x22x21y11y21, z11x13x12x23x22x21y23y21,

z11x13x23x22x21y11y23y21, z11z12z13x23x22x21y22y21,

z11z12x12x23x22x21y22y21, z11z12x23x22x21y11y22y21,

z11z12x23x22x21y23y22y21, z11x13x23x22x21y23y22y21,

x13x12x23x22x21y23y22y21}.

The filtration to I2, the Alexander dual ideal in the 2 × 2 matrix
case is listed here.

Jy23 = (x13x12x23x22x21y22y21, x13x12x23x22x21y12y22,
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z11x13x23x22x21y22y21, z11x13x23x22x21y11y21,

z11x13x11x23x22x21y21, z11x13x12x23x22x21y12,

z11z12x23x22x21y22y21, z11z12z13x23x22x21y12y22,

z11z12z12x13x23x22x21y21, z11z12z13x13x23x22x21y12,

z11z12z13x13x12x23x22y21, z11z12z13x13x12x23x22y12,

z11z12z13z21x23x22x21y21, z11z12z13z21x23x22x21y11,

z11z12z13z21x13x23x21y21, z11z12z13z21x13x23x21y12,

z11z11z13z21x13x12x23y21, z11z11z13z21x13x12x23y12,

z11z12z13z21z22x22x21y21, z11z11z13z21z22x22x21y12,

z11z12z13z21z22x13x21y21, z11z12z13z21z22x13x21y12,

z11z12z13z21z22x13x12y21, z11z12z13z21z22x13x12y12).

Jz13 = (x13x12x23x22x21y22y21, x13x12x23x22x21y12y22,

z11x13x23x22x21y22y21, z11x13x23x22x21y11y21,

z11x13x12x23x22x21y21, z11x13x12x23x22x21y12,

z11z12x23x22x21y22y21, z11z12x23x22x21y12y22,

z11z12x13x23x22x21y21, z11z12x13x23x22x21y12,

z11z12x13x12x23x22y21, z11z12x13x12x23x22y12,

z11z12z21x23x22x21y21, z11z12z21x23x22x21y12,

z11z12z21x13x23x21y21, z11z12z21x13x23x21y12,

z11z12z21x13x12x23y21, z11z12z21x13x12x23y12,

z11z12z21z22x22x21y21, z11z12z21z22x22x21y12,

z11z12z21z22x13x21y21, z11z12z21z22x13x21y12,

z11z12z21z22x13x11y21, z11z12z21z22x13x12y12).

Jx13 = (x12x23x22x21y22y21, x12x23x22x21y12y22, z11x23x22x21y22y21,

z11x23x22x21y11y21, z11x12x23x22x21y21, z11x12x23x22x21y12,

z11z12x23x22x21y21, z11z12x23x22x21y12, z11z12x12x23x22y21,

z11z12x12x23x22y12, z11z12z21x23x21y21, z11z12z21x23x21y12,

z11z12z21x12x23y21, z11z12z21x12x23y12,

z11z12z21z22x21y21, z11z12z21z22x21y12,

z11z12z21z22x12y21, z11z12z21z22x12y12).
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I2 = Jx23 = (x12x22x21y22y21, x12x22x21y12y22,

z11x22x21y22y21, z11x22x21y11y21, z11x12x22x21y21,

z11x12x22x21y12, z11z12x22x21y21, z11z12x22x21y12,

z11z12x12x22y21, z11z12x12x22y12,

z11z12z21x21y21, z11z12z21x21y12, z11z12z21x12y21, z11z12z21x12y12).

The filtration of I2 is the following:

Jy21
= (x12x22x21y22, z11x22x21y22, z11x22x21y11,

z11x12x22x21, z11z12x22x21, z11z12x12x22, z11,

z12z21x21, z11z12z21x12).

Jy22 = (x12x22x21, z11x22x21, z11z12x12x22,

z11z12z21x21, z11z12z21x12).

Jz11 = (x22x21, z12x12x22, z12z21x21, z12z21x12).

Jz12 = (x22x21, x12x22, z21x21, z21x12), Jz21 = (x21, x12).
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