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A CHARACTERIZATION OF COFINITE COMPLEXES
OVER COMPLETE GORENSTEIN DOMAINS

KAZUFUMI ETO AND KEN-ICHIROH KAWASAKI

ABSTRACT. Let R be a complete Gorenstein local domain,
J an ideal of R of dimension one, and N® a complex of R-
modules bounded below. In this paper, we prove that N°®
is a J-cofinite complex if and only if H*(N®) is a J-cofinite
module for all i. Consequently, this assertion affirmatively
answers the fourth question in [4, page 149] for an ideal of
dimension one over a complete Gorenstein local domain.

1. Introduction. We assume that all rings are commutative and
Noetherian with identity throughout this paper.

In this paper, we shall prove the following theorem.

Theorem 1. Let R be a complete Gorenstein local domain of
dimension d, and let J be an ideal of R of dimension one. Let N°®
be a complex of R-modules in DT (R), where DY (R) is the derived
category consisting of complezes bounded below. Then N°® s J-cofinite
if and only if HY(N*®) is in M(R,J)cor for all i, where M(R, J)cof 18
a category of J-cofinite modules (see Definition 3 below).

The following question is proposed in the paper [4, Section 2]:

Question 1. Let R be a regular ring of dimension d and J an ideal
of R. Suppose that R is complete with respect to the J-adic topology.
Then does there exist an abelian category Mos consisting of R-
modules, such that elements N* € D(R, J)or are characterized by the
property “H*(N®) € M.of” for all i? Here we denote D(R, J)cof is the
essential image of Dy;(R) by the J-dualizing functor (see Definition 1
below for the definition of the dualizing functor).
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In [9, Theorem 2], the following result was proved:

Theorem 2 (cf. [9]). Let R be a regular local ring complete with
respect to the J-adic topology, J an ideal of R. Let N*® be in the
derived category Dt (R). Suppose that J is of dimension one. Then
N*® is J-cofinite if and only if H'(N*®) is in M(R,J)cor for all i.

In this paper, we shall extend this result to that over a complete
Gorenstein domain. The method adopted in the proof of Theorem 1
is different from that of Theorem 2 in [9]. In [9, Theorem 2 |, the
lemma due to Melkersson was used (see [13, Lemma 1-7, page 420]
for Melkersson’s result). On the other hand, Theorem 1 is proved
by refining the lemmas due to Huneke and Koh (cf. [7, Lemma 4-3]
and [7, Lemma 4-7]). Consequently, Theorem 1 affirmatively answers
Question 1 for an ideal of dimension one over a complete Gorenstein
domain.

2. Preliminaries. In this section, we recall the basic definitions.
Let R be a ring and A an abelian category.

First we introduce definitions on derived categories. In this paper we
mainly follow the notations like those of [5] (see also [1, 10]):
M(R) : the category of R-modules,

*

the category of complexes consisting of objects in A,

the homotopic category,

(R):
(A) :
(A :
(A):

¥R Q
R

*

the derived category,

where * stands for +, —, b or @.

Now let A’ be a thick abelian subcategory of A (that is, any extension
in A of two objects of A" is in A"). We define K%, (A) (respectively
D}, (A) ) to be the full subcategory of K*(A) (respectively D*(A))
consisting of these complexes X * whose cohomology objects H*(X*) are
all in A’. According to the notation in [4, page 149], we denote K}, (R)
(respectively D}, (R)) for K}, (R) (respectively D}, (R)) in the case that
A’ is the category consisting of all R-modules of finite type. Further,
we simply write K%, (R) (respectively D%,(R)) in place of K%, (M(R))
(respectively D%, (M(R))).
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Next we explain the derived functor RHom® under these notations
(cf. [5, page 65]). Suppose that A has enough injectives, and let
L C K*(A) be the triangulated subcategory of complexes of injective
objects. Then we see that for each X* € Ob K (A), L satisfies the
hypotheses of [5, Theorem 5.1, page 53] for the functor

Hom®(X*®, o) : K1(A) — K(Ab),

where (Ab) is the category of abelian groups. Hence this functor has a
right derived functor RpyHom®*(X*, o) : Dt (A) — D(Ab). Since it is
functorial in X*, we have a bi-0d-functor

Ry Hom® : K(A)° x DF(A) — D(Ab).

Here we find that in the first variable this functor takes acyclic com-
plexes into acyclic complexes, and hence passes to the quotient, giving
a right derived functor

R[RHHOIII. : D(A)O X D+ (A) — D(Ab)

Moreover, suppose that A has enough projectives. Then, by the usual
process of “reversing the arrows,” we see that there is also a functor

R[1R1H0m° : Di(.A)O X D(A) — D(Ab)

Now M(R) has both enough injectives and enough projectives. So the
two functors RyRyHom® and RyRHom® are defined on D~ (R)°® X
DT (R), which are canonically isomorphic by [5, Lemma 6.3, page 66].
Thus we are justified in using the ambiguous notation RHom®.

For related results and detailed proofs on derived categories and
derived functors, we recommend the readers to consult [5].

Before defining the J-cofiniteness on complexes, we introduce the
following definition (cf. [10, subsection 4.3, page 70]):

Definition 1. Let R be a homomorphic image of a finite dimensional
Gorenstein ring, J an ideal of R, and D*® a dualizing complex over
R. We denote by D;(—) the functor RHom®(—, RI';(D*)) on the
derived category D(R). In this paper, we call this functor Dj(—) the
J-dualizing functor (or the dualizing functor on J). Further, we often
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denote the ith cohomology module H'(D;( —)) by D%(—) for some i,
according to the notation in [4, page 160].

The J-cofiniteness on complezes is defined as follows (see [4, Section
2, page 149] for the definition over regular rings):

Definition 2. Let R be a homomorphic image of a finite dimensional
Gorenstein ring, and let J be an ideal of R. Let N*® be an object of the
derived category D(R). We say N*® is J-cofinite, or for short cofinite,
if there exists M*® € Dy (R), such that N* ~ D;(M*®) in D(R). Here
D;(—) is the J-dualizing functor on D(R) defined as above.

The J-cofiniteness on modules is defined as follows (cf. [4, pages 148,
159)):

Definition 3. Let R be a ring and J an ideal of R. We denote
by M(R, J)cor the full subcategory of all R-modules N satisfying the
conditions

(%) Suppgr(N) CV(J) and

Extg(R/J, N) is of finite type, for all j.
An object in the category M(R, J)cof is called J-cofinite in this paper.

Here the readers should notice that the concept of J-cofiniteness for
complexes does not always agree with that for modules. On the other
hand, if N is an R-module and J-cofinite, then N°® is a J-cofinite
complex, provided that R is a regular ring complete with respect to
the J-adic topology (cf. [4, Theorem 5.1]). Here N*® is a complex such
that N = N and N? = 0if i # 0. So the definition of the J-cofiniteness
on complezes is considered to be a generalization of that on modules
under the assumption above.

3. Refinement of lemmas by Huneke and Koh. In this section,
we shall prove several lemmas.

Lemma 3. Let R be a ring. Suppose that there is a convergent
spectral sequence of R-modules:

Equ — [gprta

in the first quadrant. If ES? is a finitely generated R-module for all
p,q > 0, then the abutment term H™ is a finitely generated R-module
for alln > 0.
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Proof. Suppose that E5? is a finitely generated R-module for all
p,q > 0. Now there exists a spectral sequence of R-modules:

P,q +
EyY = HPT,

which is in the first quadrant. Further it is convergent, so there is a
finite filtration as follows:

H' =HY>H!>H,> - D H > Hl,, =0,

for each I > 0 satisfied with the following conditions:
(a) For all integers s with 0 < s <[, H./H. | ~ E3~*.

(b) There is an integer r > 2 such that EP*? ~ EP:? for all integers
p,q=0.

Now EN? is a finitely generated R-module for all p,g > 0, so is
EP9 ~ EP4. Hence we have that Hg/Hé_|r1 ~ E%=¢% is a finitely
generated R-module for all 0 < s < [. By descending induction on s,
one can find that H! is a finitely generated R-module for each [ > 0,
as required. ]

Lemma 4. Let R be a complete Cohen-Macaulay local domain of
dimension d and J an ideal of R. If the ideal J is of dimension one,
then the local cohomology module H4 ' (R) is J-cofinite.

Proof. First we notice that H4(R) = 0 by the local Lichenbaum-
Hartshorne vanishing theorem, since R is a complete local domain.
Further the ideal J has height d — 1. So we see that H’(R) = 0 if
J < d—1 by the assumption that R is a Cohen-Macaulay local ring.
Hence we have that H’(R) = 0if j # d—1, namely, R is a cohomological
complete intersection. Then the spectral sequence

By = Exty(R)J, HY(R)) — H™7 = Ext}y""(R/J, R)

degenerates as follows: Exth(R/J,HI™'(R)) =~ Extf;rd_l(R/J, R),
which is of finite type for all p > 0, as required. u]

Now we refine the lemmas due to Huneke and Koh (cf. [7, Lemma
4-3] and [7, Lemma 4-7]). The finitely generated module C is arbitrary
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in part (iii) of the lemma below, although the module was assumed to
be the first syzygy in part (iii) of [7, Lemma 4-3].

Lemma 5. Let (R,m) be a complete Gorenstein local domain of
dimension d and J an ideal of R of dimension one. Let Q be a prime
tdeal of R. Then we have the following assertions:

(i) if J + Q is not m-primary, then ExtL(R/Q, H4 ' (R)) =0, and
Exth (R/J, Homp(R/Q, Hj_l(R))) is a finitely generated R-module for
all 1 > 0;

(i) if J + Q is m-primary, then HomR(R/Q,Hff*l(R)) =0, and
Exth(R/J,ExtL(R/Q, HY 1 (R))) is a finitely generated R-module for
all I > 0;

(iii) if C is an arbitrary finitely generated R-module, then Extl(R/J,
Hompg(C, H ' (R))) and Exty(R/J,Exth(C, H ' (R))) are finitely
generated R-modules for all I > 0. Consequently, Exth(R/J, Ext%(C,
HYY(R))) is a finitely generated R-module for all 1 > 0 and all j > 0.

Proof. We may assume that J is a radical ideal. Let J = p; Npa N
--+Np, be a primary decomposition.

(i) Assume that J + Q is not m-primary. Then some prime p;
contains Q. So we may assume that p; 2O Q.

First we show that Exty(R/Q, H '(R)) = 0 for I > 1 by induction
on r, the number of prime ideals appearing in the primary decomposi-
tion of J. For the case that r = 1, we have Extl,(R/Q, H& ' (R)) = 0
by [7, Lemma 4-4, page 427], for p; 2 Q. Now assume that r > 1. Pick
up y € ﬁlgigr,lpi\pr, so we have the natural injection R, — R, _asa
ring homomorphism, hence as a homomorphism between R,-modules.
Now let T' be an R-module with Supp (T},) = {p,R,} (= V(p,Ry)).
Here we note that p,.R, is a maximal ideal of R,. Consider R,-
homomorphisms among R,-modules:

0 — K —T, —1T, — C—0,

which is exact, where K and C are the kernel and cokernel of T, — T}, ,
respectively. Then the R,-module T, has only support in V(p,R,),
so do both K and C. On the other hand, we have K, = 0 and
Cy, = 0, since the natural map T, — T, is an isomorphism after

[l
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being localized by p,. So we must have K = C = 0. Therefore the
natural map T, — T}, is an isomorphism. Apply the above argument
to H{‘f*l(R) in place of T, so we can obtain an R,-isomorphism
HYY(R), ~ H3 *(R)y,, since the support of H4™1(R), is just {p, R, }-

Now by virtue of [3, Proposition 1.9, page 9], there is an exact
sequence:

0—s Hf};;R(R) — HYY(R) — HY'(R), — 0.

Here we have H4'(R), ~ H%™ ' (R),, ~FEg, (Rp,/prRp,.)~Er(R/p,),
which is an injective R-module. So we have Exth(R/Q, H} (R),) =
0. Further, it follows from inductive hypothesis that Exth(R/Q,
H;l;%y)(R)) = 0, since \/J+(y) = p1Np2N---Np,_1. Hence we
conclude that Exth(R/Q, H4 *(R)) = 0.

Consider the following two spectral sequences which have the same
abutment term:

()1 Ext? (R/J,ExtL(R/Q, HY ' (R))) = HP™,

(#)2
Extf (Tor(R/J,R/Q), H} *(R)) = H"*9,

so the spectral sequence (f); degenerates, since Ext%(R/Q, HY *(R)) =
0 for ¢ > 0. Two spectral sequences (#); and (#)2 are combined as fol-
lows:

EPY = Extly(Tor®(R/J, R/Q), H ' (R))
= Ext}; /(R/J, Homg(R/Q, HY '(R))).

For an ideal J of dimension one, the local cohomology module H gil(R)
is J-cofinite by Lemma 4. Since the support of Torf(R/J,R/Q)
is contained in V(J) for all ¢ > 0, it follows from [7, Lemma
4-2] that Extf,(Tor(R/J, R/Q),H} *(R)) is a finitely generated R-
module for all p > 0 and ¢ > 0. So all the Es-terms are finitely
generated R-modules. Therefore from Lemma 3, it follows that
Extl, (R/J, Homg(R/Q, H} ' (R))) is a finitely generated R-module for
all [ > 0, as required.

(i) We shall show that if J + Q is m-primary, then Extl(R/J,
Exth(R/Q, H4 1 (R))) is a finitely generated R-module for all [ > 0.
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First we notice that Q Z Ui<i<,p;, since J + Q is m-primary. Pick
up z € Q\Ui<i<,P;, so J+zR is m-primary. Now since the ring (R, m)
is a domain by assumption, we can consider the exact sequence:

0— R R— R/zR — 0.

Then we have the short exact sequence
0 — HYY(R) - HY *(R) — HY '(R/zR) — 0.

We note that H§™'(R/zR) = Hj p(R/zR) = Hy  ,(R/zR) =
ERr/:r(R/m), for R/xR is a Gorenstein local ring. Since z is contained
in Q, we have Homg(R/Q, Hf}lil(R)) = 0 and isomorphisms:

Extz(R/Q, Hj '(R)) ~ Homg(R/Q, H] *(R/xR))
~ Homg(R/Q, Er/er(R/m)).

Eventually we conclude that Ext%(R/Q,H$ '(R)) = 0 for ¢ # 1.
Hence two spectral sequences (f); and ()2 are combined as follows:

ED? = Exth(TorX(R/J,R/Q), H} " (R))
= Ext}(R/J,Exth(R/Q, HY 1 (R))).

Then we have that Ext? (R/J, Exth(R/Q, HY ' (R))) is finitely gener-
ated for all p > 0 by repeating the same argument as in the proof of
(i), as required.

(iil) Before proving part (iii) of the lemma, we notice that the injective
dimension of H4™'(R) is not greater than one. So it is enough to
show that the extension R-modules Ext?,(R/J, ExtL(C, H3 *(R))) and
Ext(R/J,Hompg(C, HY ' (R))) are finitely generated for all p > 0, in
order to prove the assertion.

Let C be an arbitrary finitely generated R-module, and take a prime
filtration of C:

OZNSJ,_lCNSCNS_1C"'CN1CN0:C,

with short exact sequences 0 — N;11 — N; — R/Q; — 0 for each ¢
(0 <7 < s). To prove part (iii) of the lemma, we proceed by descending
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induction on 4. If i = s, the assertion follows from parts (i) and (ii)
of this lemma. Now suppose that Ext?(R/J, Extl (N1, H3 *(R))) is
finitely generated for all p > 0 and [ > 0. From the above short exact
sequence, we have the long exact sequence:

0 — Hom (R/Qi, HY ' (R)) — Hom (N;, H3™*(R))
— Hom (N;y1, HIH(R)) — Exth(R/Qi, HI (R))
— Exth(N;, HYY(R)) — Exth(Nip1, H7H(R))
— 0,

for each i > 0. We must show that Ext}(R/J, Exth (N;, H} *(R))) is
finitely generated for all p > 0 and [ > 0. To do so, we divide the proof
into two cases.

Case 1. If J +Q; is not m-primary, then Extl(R/Q;, H ' (R)) =0
and an R-module Homp(R/Q;, H}"'(R)) is J-cofinite by part (i).
Then we obtain a short exact sequence and an isomorphism from the
above exact sequence:

0 — Hom (R/Q;, H} *(R)) — Hom (N;, H3 *(R))
— Hom (N1, HIH(R)) — 0,
Exth(N;, HIY(R)) ~ Exth(Niy1, HI Y (R)).

Now Exth(Niy1, H3 *(R)) is J-cofinite for all I > 0. So Exth (N,
H%Y(R)) is also J-cofinite for all I > 0. Therefore, it follows from
part (i) that Ext? (R/J, Exty(N;, HY ' (R))) is finitely generated for
allp>0and ! >0.

Case 2. If J + Q; is m-primary, then it holds that Hompg(R/Q;,
H%'(R)) = 0 and ExtL(R/Qi, Hf ' (R)) is J-cofinite by part (ii). In
this case, we have that Q; Z p1 Upa U --- U p,. Further we see that
Extk(R/Qi, H3'(R)) is artinian, since its support is in V(m) and J-
cofinite (hence all the Bass numbers of this module are finite by [7,
Lemma 4-1, page 426]).
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Now we divide the sequence () into kernels and cokernels:

(1)1
0 — Hompg(N;, HY ' (R)) — Hompg(N;11, HYH(R)) — X — 0,

()2
0— X' — Exth(R/Q;, H *(R)) —» Y — 0,

(B)s
0— Y' — Exth(N;, Hi H(R)) — Exth(Niy1, HY H(R)) — 0,

since Homg(R/Qi, H} 1(R)) = 0 by part (ii). Here Exth(R/Qi,
HY% '(R)) is artinian, as are both X! and Y'! in the sequence (7). Since
Q: & p1UpsU- - -Up,., we can pick up an element w € Q;\pyUpaU- - -Up,..
Then there is a short exact sequence:

0— R/J - R/J— R/J+ (w) — 0,
from which we obtain a long exact sequence:

oo —— Exth(R/J + (w), X1) — Exth(R/J, X1)
= Extip(R/J, XY) — - .

We note that the element w annihilates Extk(R/Q;, H3 *(R)), as
w € Q;. So it follows from the sequence (k)2 that the element w
annihilates X!, that is, wX! = 0. Hence the above long exact sequence
collapses to the short exact sequence:

(b) 0 — Ext'y ' (R/J,X') — Exth(R/J + (w), X*')
— BExth(R/J, X' — 0,

for each [ > 1 and the isomorphism Hompg(R/J, X') ~ Homg(R/J +
(w), X'). Since X! is artinian and Supp(R/J + (w)) C V(m),
Exth(R/J + (w),X') is finitely generated for all I > 0. Hence
Exth(R/J, X1!) is finitely generated for all [ > 0 by the sequence (b),
namely, X' is J-cofinite. Since both X' and Exth(R/Q;, H *(R))
are J-cofinite, Y'! is J-cofinite by the sequence (f)2. Then by the
sequence ()3, we deduce that Ext}(Nii1, HY'(R)) is J-cofinite
if and only if Ext}z(Ni,H?_l(R)) is J-cofinite.  Similarly, since
X' is J-cofinite, Hompg(Niy1, H 1(R)) is J-cofinite if and only if
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Hompg(N;, H3 *(R)) is J-cofinite by the sequence (f);. Therefore,
Ext?, (R/J, Exthy (N;, H™'(R))) is finitely generated for all p > 0 and
I > 0. The proof of part (iii) is completed. O

Remark 1. In the proof of part (i) of Lemma 5, we find the following.
For r > 1, there is an exact sequence:

() 0= Hynnp,_,(B) = Hyopanp, (R) = Er(R/p;) = 0.

One might expect that HE, '(R) ~ Er(R/p;) from the above exact
sequence, which is the case that » = 1, but we can never obtain that
from the sequence (}). There is an exact sequence:

0 — HI"'(R) — Eg(R/p1) — Er(R/m) — 0.

Lemma 6. Let R and J be as in Theorem 1. Let M be an R-module.
Then we have the following equalities:

(i) DY (M) = Homp (M, H} ™ (R));
(i) D(M) = Extly(M, H{\(R)).

Proof. Let E* be an injective resolution of R. We note that I';(E*®)
is an injective resolution of kerI';(d%~!) = H$ '(R). Then we have
commutative diagrams:

0 ——— Homp (M, ker T';(d*~!)) ——— Homp(M, T ;(E4™")) ——— Hompg (M, T ;(EY))

J |

0 — ker Hompg(1a7, T 7(d*™)) ——— Homp(M, T 7(E?~')) —— Hompg (M, T ;(E%)),

and

Homp(M,T;(E*")) ——— Hompg(M,T;(E%)) ———— Exth(M, kerT;(d*')) ——— 0

| |

Homp(M,T;(E*"")) —— Hompg(M,T ;(E")) —— Coker Hompg (1, T 5(d?™")) —— 0.

By chasing the diagrams, we have D% (M) = H%Y(D;(M)) =
Hompg (M, H3 *(R)) and D4(M) = HY(D;(M)) = Exth(M, H4*(R)),
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since it holds that H? '(Dj(M)) = ker Homg(1as,'7(d? 1)) and
H%(D;(M)) = Coker Hompg(1ss,T7(d%"1)) by definition. The proof
is completed. ]

4. Proof of the main theorem. Now we prove the main theorem.

Proof of Theorem 1. Suppose that N* (¢ DT(R)) is a J-cofinite
complex. Then there is a complex M* € D (R) such that N* =~
D;(M?*) by definition. Now there is a spectral sequence:

EYT = HP(D;(H *(M*))) = H" = H"(D;(M*)),

which is obtained by the double complex Hom (M*®,I';(E*®)). Then
there is a finite filtration:

(%) H"=HyD>DHD>DHyD>---DH}DH}, =0,

satisfied with the following conditions for each n > 0: (a) For an integer
s with 0 < s <n, H} /H},, ~ E3"°. (b) There is an integer r > 2
such that EP? ~ EP? for all integers p,q > 0. Since EY'? = 0 for
p# d—1,d and all ¢, we have EP9 =0 for p # d—1,d and all g and all
7 > 2. Hence all the differentials that come into and go out of E4~1"
and E%" are zero for all » > 2. So we have, for all ¢, E$9 ~ E34,
which is zero for s # d,d — 1. Further, H} /H? | ~ E3"™* = 0 for
s#d—1,d, that is, H} = H}, | for s #d — 1,d.

Case s = d — 1. Now we have isomorphisms HY} ,/HY =~

e d—1,n—d+1 .
E&tn—dtl ~ pd=br=dtl Hence there is an exact sequence

0— H} — H} | — B3I dtl 0,

Further there are isomorphisms H}} | ~---~ Hg = H". So we obtain
the exact sequence

(d-1) 0— H} — H* — B b4 0,

Case s = d. Next we have that H}/H}, | ~ EL" % ~ E$™1 So
there is an exact sequence

0— Hj., — H} — E3"* —0.
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Further there are isomorphisms Hjy, | ~---~ Hp ~ Hp ; = 0. Hence

we have the equality H? = E;l m—d, Therefore, we obtain the following
exact sequence:

() 0— B4 5 gn — pi-tnmdtl o

for each n, combining the sequences (d-1) with the above equality.

In order to prove that H" = H"(D;(M*®)) € M(R, J)cof, it suffices
to show that EY? = HP(Dj(H 9(M?*®))) € M(R, J)cor for all p and q
by the short exact sequence (f). We can consider a single R-module N
as a complex N® such that N = N and N* = 0 if i # 0. Replacing
H~9(M?*) with M, we shall prove the theorem for the case where the
complex M*® consists of a single module M of finite type over R, since
H~%(M?*) is an R-module of finite type by definition.

Now suppose that M is a finitely generated R-module. Then we have
D% Y (M) = Homp(M, HY*(R)) and D4(M) = Exth(M, H4 *(R))
by Lemma 6. It follows from part (iii) of Lemma 5 that R-modules
Hompg (M, H3™*(R)) and Exth(M, H ' (R)) are J-cofinite. So D4~
(M) and D% (M) are in M(R, J)cof. Therefore, D% (M) is in M(R, J)cof
for all j.

Conversely, let N*® be an object of DV (R), satisfying H'(N®) €
M(R, J)cot for all i. Then Ext/(R/J, HI(N*®)) is of finite type for
all j. From the spectral sequence

BY = Bxt?(R/J, H(N*)) = HP = Bxt?"9(R/J,N"),

we deduce that the abutment terms H™ are also of finite type for all n
by Lemma 3. Therefore it follows from [4, Theorem 5.1, page 154] that
N°* is a cofinite complex. The proof of Theorem 1 is completed. u]

Acknowledgments. Finally the authors are grateful to the referee
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