JOURNAL OF COMMUTATIVE ALGEBRA
Volume 2, Number 4, Winter 2010

NON-VANISHING FORMS
IN PROJECTIVE SPACE OVER FINITE FIELDS

SAMUEL LUNDQVIST

ABSTRACT. We consider a subset of projective space over
a finite field and give bounds on the minimal degree of a non-
vanishing form with respect to this subset. We also give an
algorithm to compute a non-vanishing form.

1. Introduction. Let X = {p1,...,pm} be a set of points in
P"(k), where k is a field. We say that a form f in k[z, ... ,z,] is non-
vanishing with respect to X if f(p;) # 0 for all ;. When k is an infinite
field, there is an infinite number of linear forms which are non-vanishing
on X. This is not always the case when k is a finite field. Consider
X ={(1:0),(0:1),(1:1)} C PY(F2), where F5 denotes the finite
field with two elements. There are three linear forms in Fo[zg, z1]: zo,
z1 and zg + 1. We have

2o((0:1)) =21((1:0)) = (zo +z1)((1:1)) = 0.

Thus, there is no linear non-vanishing form with respect to X.

When X C P"(k), let DegNz(X) > 1 denote the least degree of a
non-vanishing form f with respect to X. Denote by F, the field with
g elements. In this paper, we will give bounds on DegNz (X) when
X C P*(F,) and an algorithm to compute a non-vanishing form.

In the language of commutative algebra, a form f in k[zo,... ,z,]
is non-vanishing with respect to a set of projective points X if and
only if [f] is a non-zero divisor in the quotient ring k[zo, ... ,z,]/I(X),
where I(X) is the vanishing ideal with respect to X and [f] denotes
the equivalence class of f in ko, ... ,z,]/I(X). Hence, Deg Nz (X) is
the least degree of a non-zero divisor in k[zy,... ,z,]/I(X).

In Proposition 3.2 in [2], Kreuzer shows that when X C P"(F,)
and |X| < ¢, then DegNz(X) = 1 by using that an element [f] €
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F,[zo,... ,2,]/I(X) is a non-zero divisor if f does not belong to the
union of the associated primes of I(X). The same result using the
same method is given independently in [4]. In that paper, linear non-
zero divisors play an important role for computing varieties over one-
dimensional graded rings. In this paper we obtain the result as a special
case of Theorem 4.3.

The existence of a non-zero divisor can also be stated in terms of
the union of finite subspaces of k|[zo,...,z,]| as follows. Let X =
{p1,... ,Pm}, and let I(p;) be the set of all homogeneous polynomials
vanishing on p;. Let A = U;I(p;), and let d be the least positive degree
such that k[zg, ... ,zn]q is not contained in A. Then d = Deg Nz (X).

Finally, if X is the set of F, rational points of a hypersurface, given
by a form f in F[zo, ... ,z,], then Deg Nz (X) is the least degree of a
form g such that the variety determined by the ideal (f,g), has no F,
rational points.

2. Preliminaries. The results that we will present in this paper
rely upon Warning’s theorem (Satz 3 in [5]), which states that if the
equation f = 0, where f in Fy[zy,...,x,] is an element of degree
d < n, has a solution, then it has at least ¢"~¢ solutions. We give the
projective version of the result as a lemma.

Lemma 2.1. Let f be a non-constant form in Fy[xg,... ,z,] of
degree d < n + 1. Then there are at least 1 +q+ --- 4+ ¢"~¢ solutions
to f =01in P™"(F,).

Proof. By Warning’s theorem, there are at least ¢" ¢*! solutions

in F;“H. Removing the trivial solution, we are left with at least
g™ %1 — 1 zeroes. Thus, the number of projective solutions is at least
(@ -D/(g-)=1+q+-+¢"% @

The requirement on d in Warning’s theorem is sharp. Indeed, Lang
(Theorem 1 in [3]) gives a construction of a form of degree n + 1 in
F,[zo, ... ,z,] which is non-vanishing with respect to P"(F,)-it is the
norm of the element zgeq +- - - + zne,, where {eo, ... ,e,} is a basis for
an extension Fynt1 of Fy of degree n + 1. Recall that the norm of an
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element o in Fyni1 is defined as

Nm (o) = a - Fry(a) - Frg(a) - Fry(a),

where Fry is the Frobenius map

Fry: Fgnii = Fonpr,a — ol

Example 2.2. Suppose that we want to find a quadratic non-
vanishing form with respect to P*(F5). Since 1+ y + y? is irreducible
over Fy[y], a basis for the extension field F4 of Fy is {1,y}. We get

Nm (zo + z1y) = (zo + z1y) - Fra(zo + 71y)
(zo + 21y) + (Fra(zo) + Fra(z1)Fr2(y))
( )

)

Ty + r1y) - (Q?o + 1'1(]. + y))
xo + 1Y) (zo + 1 + 1Y)

2 2
Ty + Tor1 + T7.

The following lemma gives us our first bound on the least degree of
a non-vanishing form f with respect to X.

Lemma 2.3. Let X C P*(F,). Then DegNz (X) <n+1.
Proof. This is just a restatement of Theorem 1 in [3]. o

Some words about the notation. By saying that a subset Y of X is
isomorphic to Pd(Fq), we will mean linearly isomorphic. Hence, when
X contains an isomorphic copy of P4(F,), we can choose coordinates
so that (0 : «-+ : 0 : ag : -+ : ag) € X for all (ag,...,aq) €
Fg+1 \ (0,...,0). Likewise, when we write X C P"(F,) \ Y, with
Y = P4(F,), we mean that there is a linearly isomorphic copy of
P?(F,) which has empty intersection with X. In this situation it is
possible to choose coordinates such that (0:---:0:ag:---:aq) ¢ X
for all (ay, ... ,aq) € F&1\ (0,...,0).
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3. Geometric descriptions. In this section we give bounds on
DegNz (X) in terms of the geometric structure of X.

Lemma 3.1. Let Y C X C P*(F,), and suppose that Y = P4(F,).
Then DegNz (X) > d + 1.

Proof. Choose coordinates such that
(0:-+-:0:ap:---:aq) €X

for all (ag, ... ,aq) € FI*1\(0,...,0). Now consider a form f of degree
1 < d+ 1 with respect to these coordinates. Let

g:f(oa 70ay07"' ayd)‘

If g =0, then f(p) = 0 for any point p in Y. Otherwise, g is a form
of degree i. By Lemma 2.1 ¢ = 0 has at least one solution in Y.
Thus, in both cases, there is a point p € X such that f(p) = 0. Hence
DegNz (X) > d+1. O

In the following example we consider a subset X of P?(F3) for which
it holds that Deg Nz (X) = 2 although no isomorphic copy of P*(F3)
is contained in X. Thus, Lemma 3.1 is non-sharp.

Example 3.2. Let

X={(1:0:0),(0:1:0),(0:0:1),(1:1:0),(0:1:2),(1L:0:1)}
C P*(F3).

It is an easy exercise to show that Deg Nz (X) = 2. If there was an
isomorphic copy Y of P!(F3) contained in X, then there would be a
linear change yq,y1,y2 of coordinates such that Y is the zero locus of
the linear polynomial yo. Thus, to show that there is no isomorphic
copy of P1(F3) in X, it is enough to show that for an arbitrary linear
form f = apxog + a1x1 + azx2, there are at most three points from
X in the zero locus Z(f) of f. Clearly, if two of the a;’s are zero,
then |Z(f)| = 3. If only one of the a;’s is zero, then |Z(f)| < 3. For
the remaining values of (ag : a1 : az) we have |Z(zg + z1 + z2)| = 1,
|Z (2o + x1 4 222)| = 1 and |Z(xo + 221 + 222)| = 3.
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To get a sharp version of Lemma 3.1, we have to put some extra
requirements on the set X. We need two lemmas before we can prove
the sharp version in Proposition 3.6.

Lemma 3.3. Let X C P™(F,), and suppose that (1:0---:0) ¢ X.
Let m be the projection from X to P 1(F,) defined by sending (ay :

-tay) to (a1 : -+ :ay). Then Deg Nz (X) < Deg Nz (7(X)).

Proof. Since (1 : 0 : ---: 0) ¢ X, the projection is well defined.
Let f € F4[z1,... ,z,] be any non-vanishing form on 7(X). Then the
embedding of f into Fg[zg,... ,x,] gives a non-vanishing form with

respect to X. Hence Deg Nz (X) < Deg Nz (7(X)). o

Remark 3.4. When X C P"(F,), i.e., there exists a point p €
P"(F,) \ X, it is always possible to choose coordinates such that
p=(1:0:---:0), and hence, define a projection from X to P"1(F,)
by omitting the first coordinate.

Lemma 3.5. Let X C P™(F,), and suppose that there is a series
of linear projections X — X1 C P"’l(Fq),X(”’l) — X(n=2) C
P 2(F,),..., X0t s X&) C PYF,), all defined by omitting the
first coordinate after a suitable linear change of coordinates. Suppose
further that X =~ P4(F,). Then DegNz (X) < d + 1.

Proof. From successive use of Lemma 3.3, we obtain that Deg Nz (X) <
DegNz (X(®~1)) < ... < DegNz(X®). We have Deg Nz (P?4(X)) =

d+1, so the lemma follows by repeating the embedding argument from

Lemma 3.3. |

We now combine Lemma 3.1 and Lemma 3.5.

Proposition 3.6. Let X C P™(F,), and let d be the greatest integer
for which there ezists a Y C X, with Y = P4(F,). Suppose that there
is a series of linear projections X — X(~1) C P*~Y(F,), X1 sy
X(=2) C P"2(F,),... , XDy XD =Y qll defined by omitting
the first coordinate after a suitable linear change of coordinates. Then
DegNz(X)=d+1.
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Proof. By Lemma 3.1, DegNz(X) > d + 1, and by Lemma 3.5,
DegNz (X) <d+1. u]

We end the chapter by giving a “cutting out” description of Deg Nz (X).

Lemma 3.7. Let X C P*"(F,) \Y, where Y & P4(X). Then
DegNz (X) <n—d.

Proof. Choose coordinates such that
0:-:0tap: - :aq) ¢ X
for all (ag,...,aq) € FIt1\ (0,...,0).
With respect to these coordinates, the map X — P"~4~}(F,),

(ag:+-:ap)—(ag: - :ap—q—1)is well defined. By Lemma 2.3, there
is a non-vanishing form in F [z, ... ,Z_q—1] of degree n—d. This form
is naturally embedded into Fy[zo, ... , ] and is non-vanishing on X. O

4. Bounds on a non-vanishing form in terms of the number
of elements.

Lemma 4.1. Let X C P"™(F,), and let d be the least integer such
that |X| < g+ ---+q%. Then DegNz(X) < d.

Proof. If d > n, then DegNz(X) < d by Lemma 2.3. Suppose
instead that d < n. We claim that it is possible to construct a series
of linear projections X +— X(=1 C Pr~1(F,), X~ s X(=2) C
P"2(F,),...,X@  X(@-1) C PI-1(F,), all defined by omitting
the first coordinate after a suitable linear change of coordinates. Thus,
after proving the claim, the lemma follows from Lemma 3.5.

Since |X| < |[P™(F,)| it follows from Remark 3.4 that it is possible
to define a projection X — X~V If d > n—1, (e.g. d =n), then we
are done. Else, we have |X("~1| < |[P"~(F,)|, and we can repeat the
argument to finally obtain X(?~1) which proves the claim. a

The upper bound is sharp in the sense that for any n and any d, there
is a set X where d is the least integer such that |X| < ¢+ ---+ ¢ and
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Deg Nz (X) = d. Indeed, let X be the image of any linear embedding
of P4"1(F,) into P"(F,). Then we can apply Proposition 3.6 with
Y = P?1(F,), so it follows that Deg Nz (X) = d. Finally, d is easily
verified to be the least integer such that |X| < ¢+ --- + ¢%.

Lemma 4.2. Let X C P"(F,). If ¢ 42+ ... +¢" < |X|, then
DegNz (X) > d.

Proof. We can suppose that d > 2. Let f be a form of degree d — 1.
By Lemma 2.1, the number of projective solutions is at least 1+ ¢ +
-+ g 9L It follows that there are at most |P™(F,)| — (1 + ¢ +
cood gt = gnd+2 1 ... 1 g™ points where f is non-vanishing. By
assumption, ¢"~4t2 4 ... 4 ¢" < |X|. Thus, there is a point p € X such
that f(p) =0. Hence DegNz(X) >d—1. O

The bound in Lemma 4.2 is also sharp in the same sense as described
above. To see this, consider the set X = P"(F,) \ Y, where Y is any
isomorphic copy of P*~4(F,). By Lemma 3.7, we have Deg Nz (X) < d.
But |X| = ¢"4t! + ... +¢", so Deg Nz (X) > d by Lemma 4.1. Hence
Deg Nz (X) = d.

We can state the following theorem.

Theorem 4.3. Let X C P™(F,). If|X]| < ¢", let d1 = 1. Otheruwise,
let dy be the greatest integer such that " 42 +... 4 ¢" < |X|. Let dy
be the least integer such that |X| < q+---+q%. Then

d1 S DegNz (X) § dg.

The bounds are sharp in the sense that, for any n and any d, there
is a set X such that Deg Nz (X;) assumes the lower bound, and a set
X such that Deg Nz (X3) assumes the upper bound.

Proof. The first part of the theorem follows from Lemma 4.1 and
Lemma 4.2. The second part follows from the remarks after Lemma 4.1
and Lemma 4.2. ]

When |X| < ¢, then dy = d2 = 1, and we obtain Kreuzer’s
Proposition 3.2 [2] as a special case of Theorem 4.3.
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5. An algorithm to compute a non-vanishing form. To find
Deg Nz (X) is by no means an easy computational task, so in order to
get a fast method, we should not require that the degree of the returned
form is minimal. The algorithm that we present below use the ideas of
Lemma 4.1 and the degree of the returned form is bounded by d, where
d is the least integer such that |X| < g+ ---+ ¢%.

Algorithm 5.1.
1. If |X| = |P™(F,)|, return the norm form.

2. Else, there is a point p € P"(F,) \ X. Change coordinates so
that p=(0:---:0:1). Project X to X’ C P (F,) by omitting
the last coordinate. Let f be a form returned after performing step 1
with n = n — 1 and X = X’. Return f with respect to the original
coordinates.

Note that to actually construct a non-vanishing form, we have to
compute a norm form. Thus, our method relies on finding an irreducible
over F,[y]. We refer the reader to [1], where algorithms to construct
irreducibles are discussed.

Example 5.3. Consider P3(F5) and the point set X = {(1:1:1:
0),(0:0:0:1),(1:0:0:0),(0:1:0:0),(0:0:1:0),(1:1:1:1)}
with respect to some coordinates xg, i, 2, z3. We have 22 +2 = 6
and, hence, 1 < Deg Nz (X) < 2 by Theorem 4.3.

We will now perform Algorithm 5.1 on X. Pick the point (0 : 0 :
1:1) ¢ X. With respect to the linear change of coordinates yo = zy,
Y1 = 1, Y2 = 2+ 3 and y3 = x3, this point reads (0: 0: 0: 1). Thus,
with respect to the coordinates yo,y1,y2,ys, we get X = {(1:1:1:
0),(0:0:1:1),(1:0:0:0),(0:1:0:0),(0:0:1:0),(1:1:0:1)}
and (0:0:0:1) ¢ X.

We project down to P?(F3) and get the points m(X) = {(1:1: 1),
0:0:1,(1:0:0,0:1:0),1:1¢:0)} Notice that
7(0:0:1:1) =7x(0:0:1:0). Now we are looking for a non-
vanishing form with respect to these five points in P?(Fz). We notice
that the point p’ = (1:0: 1) is missing from 7(X), so we consider the
linear change of coordinates zg = yo + ¥2,21 = ¥1,22 = y2 for which
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pp=1(0:0:1). Then we get 7(X) = {(0:1:1),(1:0:1),(1L:
0:0),(0:1:0),(1:1:0)} with respect to these coordinates. We
project down to P'(F3) to get the points {(0 : 1),(1 : 0),(1 : 1)}.
From Example 2.2 we know that 22 + 27 + 2021 is non-vanishing. Hence
(yo +y2)? + (Yo + y2)y1 + ¥? is non-vanishing on 7(X), and we get the
following quadratic form which is non-vanishing on X:

(zo + o + 23)% + (z0 + 22 + 3)21 + 23

The non-vanishing form constructed by the algorithm in Example 5.2
is two, and is in fact equal to Deg Nz (X). We can verify this by showing
that there is an embedding of P!(F5) in X, since it then follows by
Lemma 3.1 that Deg Nz (X) > 2. Indeed, {(1:1:1:0),(0:0:0:
1),(1:1:1:1)} = PY(F2), which can be seen by changing coordinates
to xg + x2, w1 + T2, X2, T3.
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