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1. Introduction. Recently Z. Nehari® has, by means of
Dirichlet principle, obtained various inequalities of function theory
and potential theory which may be reduced to statements regarding
the properties of harmonic functions with constant boundary values,
that is, functions obtainable from the Green’s function. While his
method is very useful to deduce some inequalities important in the
theory of conformal maps, it seems difficuit to derive, by this method,
several inequalities which may be reduced to statements regarding
the properties of harmonic functions with a vanishing normal
derivative on some of boundary components of a given domain.

It is the aim of the present paper to show that the inequalities
of this type can be deduced from the classical Kelvin principle”:'®.
Although some of results obtained in this paper are not new, the
method used there will suggest a more or less systematic treatment
of the inequalities of this type.

2. Kelvin principle and a monotonic functional. Let ¢ be
any vector function defined in a given domain D, satisfying the
following conditions ;

divg=0 in D
gn=f(s) on C (boundary of D),

n being the unit vector in the direction of outward normal and
f(s) a function of arc-length s defined on C satisfying the condition
S J()ds=0. Under the latter condition there exists a harmonic
function ¢ in D, satisfying the condition

D

% _fs) onC,
on
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only up to an additive constant. We have then
) HJgradgﬁeré”Jq]%r (de=dxdy).

This is the result of Kelvin (Thomson) principle.

Remark."” The minimum property of ¢ in question holds good
allowing a more general class of vector functions ¢. They satisfy
(1) except along a closed or open curve in the domain D along which
q and ¢gn must have one-sided limits and ¢7 must be continuous.

The domain we shall consider will be assumed to be bounded
by a finite number of closed analytic curves and they will be
embedded in a given closed Riemann surface R of finite genus. The
symbol S(z) wiil be used to denote a singularity function with the
following properties: S(2) is real, harmonic, and single-valued on
R, with the possible exception of a finite number of points at which
S(2) has specified singularities.

The following result indicates a monotonic functional associated
with S(z2).

THEOREM 1. Let D and D, be two domains embedded in R
such that DC D, and that D,—D contains no singularities of S(2),
and let C and C, denote the boundaries of D and D,, respectively.
Let further p(z) denote the function which has a vanishing normal
derivative on C and is such that p(z) +S(2) is harmonic in D. If
p.(2) denoles the corresponding function associated with D,, then

3) |22 25 ds=[ pi2 2 as,
P on ¢, on
where the differentiation is performed with respect to the outer normal.
Proof. In the above principle we put

_| 2(p+S) 3(p+S) :
([[ ox ' 3y :l in D

=[—a—sf, iS_] in D—D,
0x a9y

and
¢=P,+S in D,.
Using the fact that

divg=0 in D and in D,—D, qn=

a§~: 94 on C,

n on
and
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_Qp‘zo on C’
on

and considering the additional remark, we can apply the above
principle in this case. Therefore it holds that

(4) (p1+Sy pl+S)D1§(p+Ss p+S) I)+(S, S)D.—l)y

where (u, u),,zggh(u,f-'+u,f’)dr.
From the Green’s theorem and the assumptions, the left-hand
side of (4) equals to

[pr+9) 2545
o on
and the right-hand side of (4) equals to

aS 3S ;. (c0dS
j(gp+s> 55 ds+j(;?‘ > s Ls 25 gs.

Thus we obtain the required result

jmﬁdsg(pé‘id& QE.D.
¢, on Je on )

3. Conformal mapping on radial slit domain. As the first
application of Theorem I, consider the Neumann function N(z, 7
of a finite plane domain D defined by the following properties:

(i) N(z ¢) is harmonic in D, except at the point z2=2¢€¢ D;

(iil) N(z ¢)+log|z—¢]| is harmonic at z2=¢;

(i) ON(z ¢)/on=—2n/L for z e C, L=total length of C.
In the Theorem I we put

p()=N(2,)—Nz 7 (% 5eD)
and
S(2) =log|z—{|—log|z—7]|.

Obviously p(z) and S(z) satisfy the assumptions of Theorem I
in the case where R is the whole plane. And further consider the
analytic functions ¢(z) and o(z) such that

p(2)=Re{q(2)} and S(2)=Rel{c(2)}.

From the relation

_a,(j?j'_g) ds= Re {l (@' (@) +0'(2)) dz} on C
on 1
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and Imi{q(2)} =const. on each boundary component of C because
of 3p/n=0 on C, it follows that

jp_aids=jpi(_i’+‘slds

¢ On on

=Re[1j pi{g(z)+d'(2)} dz]

5B) =R

)

L4 @@+ @) d]

)

=R r—%l—j q (2) {q(2) +0(2)} dz:l, (by integration by parts)
- c

=2nRe[q({)+0() —q(3) —0c(y)], (by residue theorem).
It is well known" that the analytic function
(6) Q(z) =exp {—q(2)}

conformally maps the domain D onto the whole plane slit along
radial segments directed towards the origin such that the point 2=¢
corresponds to the origin and the point z=y to infinity. Thus,
putting ,
RQ(2)=A,z—=0)+ - in the vicinity of z=¢

=A.(z—7)""4 --- in the vicinity of z=y,

the above integral equals to

27 Re [log(

Q(2) (z—/) - Z}(z)(z—r) ]
ol

Hence we obtain from Theorem I the following
COROLLARY 1. Let Q(z) be an analytic function which maps
a finite domain D onto the whole plane slit along the radial segmenis
directed towards the origin, and Q(Z)=0 (£ € D) and has the ex-
pansion in the vicinity of z=v (y € D)
1

Q= "+
2—y

Then |Q' ()| is a monotone increasing domain functional.
In the special case® where the domain D is the circle |z] <R,
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- 1 —|7/R|* 2—f 1-(Z2/R?)
7 = .
el i ) i 3
Using Corollary 1 and con51dermg the llmltmg case R— « in (7),
we obtain the following

COROLLARY 2. Let Q(2) (Q()= 0) be a normalized radial slit
mapping function. Then it holds that

(8) IQ’(C)Is—--~
(=7
By means of a linear transformation z'=(z—2)/(z—7), we
easily obtain from Corollary 2 the following well known results®”.
COROLLARY 3. Let D be a domain containing 2=0 and 2=
and Q(2) be a radial slit mapping function such that Q((0)=0 and
lim Q(z) /z=1. Then it holds that

9 1Q"(0)| =1

and is a monotone increasing domain functional.

In the special case where the domain D is the whole plane,
Q(2)=2 and @' (0)=1. Therefore (9) is easily obtained.

This Corollary is equivalent to the following result:

Let f(2) (f(¢)=0) be univalent in a plane domain D and f(2)
=(2—7) "4+ in the vicinity of 2=v (y € D). And further let Q(2)
be the normalized vadial slit mapping function of Covollary 1. Then
it follows that ‘

(10) I/ O1=1Q (O

4. Bergman kernel function. The second application of
Theorem I concerns the Bergman kernel function K,(z, £) of a plane
domain D associated with the class of functions f(z) which are
regular analytic, SSDI f(2)|°dr <« and have single-valued integrals
) f(2)dz. 1t is well known® that

(i1) K(o=2N&O,
T 0297

N(z, &) being the Neumann function of D and the differential
operators 9/dz and 93,/3z are defined by

100 ;0
'a'z 2( 73_;_2(~8x+lay

Further we introduce the function

, 2=x+1y.
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_2 N0 _ 1
12 Lz, 0)=—2"""22%) (2,
12)  LeO=-_ 7780 = T e
which plays an important role in the theory of conformal mapping.
Both K,(z,Z) and the function [,(z, ¢) defined in (12) are regular
in D.
If «, -, 4, are complex numbers, then

p— 'n‘ aN(Z, Cv)
(13) p2)=Re{3: —é—}
has a vanishing normal derivative on C by the property of the
Neumann function and may be identified with p(z) of Theorem I
The corresponding singularity function is

(14)  S(z2)= Re{zu dlogla— 5”'}=I§1Re{i " }

v=1 oz, Vvl 2—

and p(z) +S(z) is harmonic in D. If g(z, ¢) denotes the analytic
function of z for which Re{q(z, )} =N(z, ), we easily obtain

(15)  p(2)=—1Re{S [/ 20(z2) 47, ?E(ﬁ’,—:”l]}.
2 v=1l 9%, 97, !
The expression in brackets of (15) has the following properties :
(i) it is single-valued in D, since the periods of ¢(z, {) are pure
imaginary, (ii) it has a constant imaginary part on each boundary
component by the properties of Neumann function, (iii) its partial
derivative 3/4z has the principal part such as —u./(z—2.)"
We obtain, in the same manner as in (5),

jp(z) 25 ds=| p(a) S Phas
on

_ 3 1 [ 9q(z, 2,) Cy _ aq(z, [O) o, ]
= 9 Rel: " lla
jf(z) n eing 2. ., -t } S
—(p(2)2 Rel L $[,29020), ;0@E0) o ]
—jf(z) s Re{z f‘:[ o, a7, z—{, }ds

1 [ 0g(2, L), - 3q(z, C»)J
=R — Ty

e{ZanZ»L—I[ e, T

3q(z,0) - 39z L) o ] }
x , 1 ov) g, A6 T |92
VZ.J “Ts 29C, ’ 9z9%, (2—8)*

(by (i) and (ii))
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x ﬁx[ 9q(z, C\«) = aq(z_s C»)___ Ly ]dz}
a:” a:v Z_Cv

y=1

(by integration by parts and (i))
{ Z ll o [a q("“i’ \v) -+ __1 ]+>?i:(/'|l.7iya q(\u’ tv)}

viw=l a“l‘-aww x. —'sv) vop=i a{uaf

(by (iii) and residue theorem)

RP{ \"x ”u"u[—ﬂLo(:w :v) + (C—l—&—;——’]
2 v,p= w—

n
NS A :v)},
V=1

m;:a

because of the relation

ﬂl(za C)_:ZaN(zv C) .
02 0z

By Theorem I we obtain the following
COROLLARY 4. The quantity

(16) Re {v‘\_‘x ”‘uavKo(:u’ :v)_‘qu:‘”u"vln(:u’ D)

is a monotone decreasing domain functional.

The analogous result for the Bergman kernel function K(z, 2
for which K(z, 2)=(—2/7)-[8°G(z, £) /3287|, G(z,¢) being the
Green’s function of D, was derived by Bergman and Schiffer?
from the Hadamard’s variation formula, and recently by Nehari®
by means of Dirichlet principle.

5. Modification of Theorem I. In this section we shall modify
Theorem I and derive a theorem which is useful in the treatment
of extremal problems in the theory of conformal mapping of
multiply-connected domains. _

TueoreM II. Let R, D, D, C, C, and S(z) have lhe same
meaning as in Theorem I, and morveover D and D, have a commion
boundary component y. Let p(2) denote the function satisfying the
Jollowing conditions: (1) p(z)=const. on y, (ii) 9p/dan=0 on I'=
C—y, (iii) p+ S is harmonic in D, (iv) S [0(p+S)/on]ds=0 for any
closed contour B in D. If p,(2) is the correspondmg Junction as-
sociated with D,, then
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3S(2) 4. ap(2)
j.p @ on ds LS(Z) on ds
a S(2) 3p,(2)
aS(z op. (2
2.—-“‘161 (Z)~_82 ’_dS—J'TS(Z)———a—n—‘*dS y

wherve I''=C,—7.
Proof. We put

u=p,+S in D,,
and
{p+S in D
V=
S in D,—D.

Using the notation of Dirichlet integral

(h, k)1)=sj- (h.rk.r'*'hyky)dr ’
D
we easily obtain
(1), 'I))]),z (H, u)m—Z(u. ”—1))1Jl+ (u_v; u"v)lh ’
and therefore
(18) (v, 0)p, 2, 1) p,—2(1t, 4—0) 1, .

From Green’s theorem

T

—j (5,+S) a(f"+5)ds+j (h+8) 2% 5. ds

(19) (3p, /an=0 on 1)
:jp1~———a(vp]+5)(13+j 3]51 d8+j1’1

. on . n

j 590 ds+jp. éS ds +jSﬂ—r—ds

T

' ds +js 95 4s

n

(pi=const. on 7 and (iv)).
Similarly

(20) W, ), =(v, v) p+ (v, V) p-n

=LS~3% ds+§l‘p-§§- ds+jS gs ds +jf 33 ds — jS ) ds,
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and

21) (0, u—0) p,=(u, u—0)p+ (U, u—0) p,_p»

—( 3(p—p) P g 9p:
jo(p,+3) b ds+jrgp,+5) g jp(p,+5) P ds

___j (p,+S) ¥ P—D) 45
. on

On the other hand, from (iv) of the assumptions
j‘ _a,(P‘+§Ld5=J i(pl*'s)ds (=0)
¢ on o on
and from the assumption that S(z) is harmonic in D,—D
j a—sds=s S 4 .
c omn C on
From both reiations it holds that
g 22~~ds=j 91 gs
¢ On o N

and therefore

9 g 2P 4 by (ii
(22) L 2. ds j Pras by Gi).
Using (i) and (22) we obtain the equality
—p), =50 5. (s 0D
(23) (, =), Ls P s Ls %2 gs.

From (18), (19), (20) and (23) we obtain the required result (17).
Q.E.D.

6. Bounded radial slit mapping. To illustrate the application
of Theorem II, consider the case of a finite multiply-connected plane
domain D and of the analytic function F(z, £) which maps D onto
the unit circle slit along radial segments directed towards the origin.
F(z,2) may be so normalized as to satisfy F(Z, 2)=0 for e D
and we may require that the outer boundary ;7 of D be transformed
into the unit circumference. The argument of (z—¢)~'Fiz, &) re-
turns to its initial value if z describes any boundary component
of D, and |F(z ¢)| is constant on j and arg F(z, £) =const. on
I'(=C—y). We may therefore set p(z)=log|F(z, £)| and S(z)=
—log|z—¢| and apply Theorem II. It follows that
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(24) jp 3S js— j 3(1’+S)ds

r

=jlogIF(Z, 9] a} log’
—Re {ﬁj log | F(z, *)l[log F(z’ ‘)] 2}
=Re{> [ logF(z, ¢ |10g £2.9) ] g

—Re {“le 1og";§2_: ! (log F(z, 01" dz}.

(by integration by parts).
Since (3p/3n)ds= (1/i)[log F(z.2)]'dz and p=0 on 7,

(25) js%&{ (p+S)g—f:—ds

T

=1[ (p+S)l10g Pz, ) dz

—Re{l [mgF (2.9 llog Fez, )1 d}.

2

Therefore it follows from (24) and (25) that

jgg%ds { ;’1’ ds— Re{ 1jlog Fiz.9 l1og e, D) de)

=2rlog|F'(z,2)] (by resndue theorem).

From Theorem Il we obtain the following

COROLLARY 5. Let F(z, &) be a noymalized bounded radial slit
mapping function of a finite multiply-connected domain D. Then it
holds that |F'(2,0)| increases if D increases, the outer boundary
component of D being fixed. _

If the domain D is the unit circle |z| <1, F(z,0)=2z and
F’(0,0)=1. Therefore we obtain the following

COROLLARY 6.” Let D be a multiply-connected domain which
is contained in the unit civcle |z| <1 and contains the origin, and
whose outer boundary component is the unit circumference. Then it
holds that '

(26) [F'(0, 0)|<1.
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This is equivalent to the following well known theorem on
bounded univalent functions: Let G be a finite plane domain and
let f(2) be univalent, |f(2)| <1 in G and f()=0. If, moreover,
f(2) maps the outer boundary component of G onio the unit cir-
cumference, then

(27) |/ OIZIF'(& Ol

where F(z,2) maps G onto the unit circle slit along radial segments
divected towards the origin.

7. Circular ring with radial slits. Theorem II can slightly
be modified as follows: Let D, D, be two multiply-connected domains
and Dc D,, and moreover have two common boundary components
7, 7. Let p(z)=const. on 7', 7', 3p/on=0 on ['(C=y+;"+1")
and moreover ([0(p+S)/dn]ds=0 for every closed contour in D.
If p,(2) is the corresponding function associated with D, then

@ ool samazlpad st

(C1=7"+7‘,/+ l).

As an application of the above result, we deal with an extremal
problem on the analytic function F,,(z) which maps a schlicht
domain D of connectivity >3 onto the circular ring 1<|w| <M
slit along radial segments, where two boundary components C,, C,
of D are transformed into the circumferences |w|=1 and |w|= M,
respectively. We denote by D, the doubly-connected domain con-
taining D which is bounded by C, and C,, and by F,(2) the
function mapping D, onto the circular ring 1 <|w|<M,. Clearly,
log F.,(2) —log F,(2) is regular and single-valued in D and we may
apply the above result with p(2)=log |F,,(2)|, S(2)=—log|F,(2)|,
p(2)=log|F,(2)| and =C., y"=C,.. Then the left-hand side of
(28) equals to

=3, | Jogl Rl 2 log | Fds | IF| ds

mFEV, @ CL+Cy

=— 3 1og|milog1mds+jlogwilogmlds
w m c o9

mEv, m

(—é—log|Fw|=0 on C,, m##v, ,u>
on
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—- 2 0 ;
== 3, |, o8I | 2tog| Flds-+  log || 2 log IF.| ds

(by Green’s theorem)

=j loglFm]—a—logiﬁ},lds=logMJ 9 log|F|ds.
¢ 0y on ¢, on
The right-hand side of (28) equals to
| 10g1F) -2 108 |Fy ds=tog M, [ -2-10g |F|ds.
Cpte, on c, On
Therefore it follows that
3 5
(29) 1ogMj —logIFoldsglogMoj 2 log|Fyds.
e, on ¢, on

On the other hand,

9 1 ) |
—l =T n'
j% n og |Fy| ds log M, Lvlgfllﬁ o log | Fy| ds
(IF)|=1 on C,)
='15§Lm (log |F, Tog|Fil)s,> 0.
From (29) it follows that
(30) M= M,.

From this result we obtain the following

COROLLARY 7.2  Let D be a schlicht domain of connectivity
=3 and let C, and C, denote two of its boundary components. If
M, denotes the Riemann modulus of the doubly-connected domain
D, bounded by C, and C,, then, within the conformal class of D,
the problem M,=max is solved by the domain whose boundary com-
ponents other than C, and C, are transformed into radial slits
divected towards the origin by the conformal mapping carrying D,
into a circular ring about the origin.

Kyoto University
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