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1. Introduction. Recently Z. Neharis' h a s , b y  m e a n s  of
Dirichlet principle, obtained various inequalities of function theory
and potential theory which may be reduced to statements regarding
the properties of harmonic functions with constant boundary values,
that is, functions obtainable from the Green's function. While his
method is very useful to deduce some inequalities important in the
theory of conformal maps, it seems difficult to derive, by this method,
several inequalities which may be reduced to statements regarding
th e  properties o f  harm onic functions w ith a  vanishing normal
derivative on some of boundary components o f a  given domain.

I t  is  the aim  of the  present paper to show that the inequalities
of this type can be deduced from the classical Kelvin principle ".
Although some o f  results obtained in  this paper a re  not new, the
method used there will suggest a m ore or less systematic treatment
of the inequalities of this type.

2. Kelvin principle and  a  monotonic functional. L et q  be
any vector function defined in  a  given domain D, satisfying the
following conditions ;

d iv q = 0  in  D
(1)

q n=f (s)  on C  (boundary of D),
n  being the  unit vector in the direction of outward normal and

f ( s )  a  function of arc-length s  defined on C satisfying the condition
f ( s ) d s = 0 .  Under th e  latter condition there exists a  harmonic

function 4 i n  D, satisfying the condition

an = f ( s )  o n  C ,
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only up to an additive constant. W e have then

(2) iL grad 012 d7 K jj dr

This is the result of Kelvin (Thomson) principle.
R em ark .'"  The minimum property of 0 in question holds good

allowing a more general class of vector functions q . They satisfy
(1) except along a closed or open curve in the domain D along which
q and qu  must have one-sided limits and qn must be continuous.

The domain we shall consider will be assumed to be bounded
b y  a  finite num ber o f closed analytic curves and they w ill be
embedded in a given closed Riemann surface R of finite genus. The
symbol S(z) will be used to denote a singularity function with the
following properties : S(2) is real, harmonic, and single-valued on
R, with the possible exception of a finite number of points at which
S (z) has specified singularities.

The following result indicates a monotonic functional associated
with S(2).

THEOREM I. L e t D  an d  D , be two domains embedded in  R
such that D cD , and  that D,—D contains no singularities of  S(z),
and  le t C  an d  C, denote the boundaries of  D  and D „ respectively.
Let further p(z) denote the function which has a  vanishing normal
derivative on C and  is such that p (z )+s (z ) is harmonic in  D .  If
p 1 (z) denotes the corresponding function associated with D „ then

(3) p(z) 5 ds>f p 1 (z)
an an

where the differentiation is performed with respect to the outer normal.
P ro o f. In  the above principle we put

—
[a(p +s) , a(p +s)] in D

ax ay
[ &S as  1
L &x

in D,—D ,

and
+ S in D,.

Using the fact that

div q=0 in D  and in D,—D, ( I n  —

a(6
an a n

on C„

and
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on C ,

a n d  considering the  additional rem ark, w e can apply th e  above
principle in  this c a s e . Therefore it holds that

(4) (PI +s , p,+s)D,_<.(p+s, p+ s) „+ (s, s)D,_, ,
where (u,

From  the Green's theorem and the assumptions, th e  left-hand
side o f  (4 ) equals to

(pi+ s)—a
a ,
s
i-ds

and the right-hand side o f  (4 ) equals to

(p + s)  d s +  s  as ds— S  `
35. san u, an (7 an

Thus we obtain the required result

p,  asp  as ds . Q.E.D.an r  an

3 .  Conformal mapping on  radial slit domain. A s the  first
application of Theorem I, consider the Neumann function N(z,
of a finite plane domain D  defined by the following properties :

( i ) N (z ,  C ) is harmonic in  D, except at the point E D;
(ii) N(z, C) + log jz—CI is harmonic at z =  ;
(iii) aN(z, C)/an= —27/L for z E C, total length of C.

In  the  Theorem  I we put

p(z)=N(z, c) —N2, -6) ( : ,  (  D)
and

S(z) =log lz—:1 —log 12— v21

Obviously p(z) a n d  S (2) satisfy the  assumptions o f  Theorem I
in the case where R is  the whole p lane . A nd  further consider the
analytic functions q (z ) and 0-  (z ) such that

p(z)= Re {q (z)} and S(z) = Re {0- (z)} .

From the relation

(p + S) ds — Re {-1---(q' (z) + (z ))d z } on  C
an



302 Tadao Kl4bo

and Irn{q(z)} =const. on each boundary component o f C because
of ap/an=0 on C, it follows that

fp as as— fpa(P±s)  ds
J
c

Jc an

=Re[--1:-f p lq/(z) -1-0- '(z )} dzi
1 6'

(5) = (z) {q' (z) + (2)1 dZi

= Rer-1 q' (z) j  q (z) + dd , (by integration by parts)
_ c

=277Re [q(C)+ 0- (c) —q (6) — ( )1, (by residue theorem).

It is w ell know n" that the analytic function

(6) Q  (z ) exp {—q(z)

conformally m aps the  domain D  onto th e  whole plane slit along
radial segments directed towards the origin such that the point z=C
corresponds to  th e  origin and  the  po in t z=7,- to infinity. Thus,
putting

Q(2)- - Ao(z—C) + .......  in  the vicinity of

- A .(z-7;) - ' + ••• in  the vicinity of 2=-6,

the above integral equals to

271- Re [log (  ) —log( )
- Q(z) (z - - - 6)• —; (a) (2- 6 )

=277 log(  A -  11C-7;1 - 2 ).
A,, I

Hence we obtain from Theorem I the following
COROLLARY 1. L et Q (z ) be an analytic function which maps

a finite domain D onto the whole plane slit along the radial segments
directed towards the origin, and Q(C)=0 (c E D ) an d  has the ex-
pansion in the vicinity of 2=7; (-6. E D)

(2(4 =-• +•-•

Then IQ' (C)I is a monotone increasing domain functional.
In the special Case where the domain D  is  the circle izi <R,
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1 1-17/R1= 2-- 1— ( 7;2/122)(7) Q(z) = —  - —
1— ( : ) 2 / 1 ? " )  2 - 7 ;  1-  (7)Zgr)

Using Corollary 1 and considering the limiting case R  o o  in (7),
we obtain the following

COROLLARY 2. Let Q(z) (Q(C) = 0 ) be a normalized radial slit
m apping function. T hen it holds that

(8) lq(C ) 1

B y m eans o f a  linear transformation (z— ) / ( 2 _ ,) ,  we
easily obtain from Corollary 2  the following well known results".

COROLLARY 3. Let D be a dom ain containing z=0 and 2 = 0 0 ,

and Q (z ) be a radial slit rnapping function such that Q(0)=0 and
lim  Q (z ) /z =1 . Then it holds that

(9) IQ' (0) I
and is a monotone increasing domain functional.

In the special case where the domain D  is  the whole plane,
Q(z) =z and V (0 )= 1 .  Therefore (9 )  is easily obtained.

This Corollary is equivalent to the following result :
Let f ( z )  (AC) =0) be univalent in a plane dom ain D and f (z )

= +  in the vicinity of z=r) E D ) .  A nd further let Q(z)
be the normalized radial slit mapping function of Corollary I. Then
it follows that

(10) if ' (C) I (C) I
4 .  B e r g m a n  kern el fu n ction . The second application of

Theorem I concerns the Bergman kernel function K o (z, c) of a plane
domain D  associated with the class of functions f ( z )  which are
regular analytic, j f (z )Id7  < co and have single-valued integrals

f ( z ) d z .  It is well known" that

(11) Ku(z, C) —
2  2 N(z ,71.z

N (z , .;') being  the Neumann function o f D  and the differential
operators 3/az and aja-2 are defined by

-- 1

a
__),3 ( a . _  1  a ± i  3  ) ,

iz  2  ax ay ai 2 ‘. ax ay
Further we introduce the function

z =-x +iy .
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2  a21■1(z, C) _ 1 .(12) C) — — 

which plays an important role in the theory of conformal mapping.
Both K,(z, : )  and the function 1„(2, C) defined in  (12) are  regular
in  D.

If  u„ • • •, (i„ are  complex numbers, then

aN(z, ,(13) p ( z ) .  Re u, C)1.
,.-1

h as a  vanishing normal derivative o n  C  b y  th e  property of the
Neumann function and may be identified with p(z ) of Theorem I.
The corresponding singularity function is

a log jz—Cvl _ — 1 R  { : f .  a v(14) S(z):----- fii, e  2_;
— 2 f'

and p(z) + S (z ) is harmonic in D .  If  q(z , :) denotes the  analytic
function of 2 for which Re {q(z, C)} =N(z, we easily obtain

(15) P(z)= — R e 12,[„ ati ( z ,-  '&9 (Z,  C,,) 1 "
2 _ - ji •

The expression in brackets o f  (15) has the  following properties :
( i )  it is single-valued in  D, since the  periods of q(z, C) are pure
imaginary, ( i i )  it has a constant imaginary part on each boundary
component by the properties of Neumann function, (iii) its partial
derivative a/az  has the principal part such a s  —

We obtain, in  the same manner a s  in  (5),

f (1)(z)-r- d s = P ( z ) a ( S-1 1 -P )--dsan

p ( 2 )  a Rel l r a , a q ( z ,  co ±„, aq (2, co  ds
c an t 2 L 2—C),

p(2) - Re { 1 " - , [ , „ '9q ( 2, co ± aq (2 , _  ds
as 2i , =I ac,

— R e  {_ f J. ro  (9q(2, co + 7 i aq(2,  Col
2 i e  2 L  acv  J

L
a2 q (z,   + 7 ; a 2 q (z, C') l d 2 1 .

x 1 - azaC, &z , (z—C,) -
o

)
(b y  ( i )  and  (ii))
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_ f q  ( z , 2  q (2,_C,)]
41. = ,  L aza:, a za :, J
x [„, &q (7 ' cu) 7.,aq (2L   ]dz}

z—C,
(by integration by parts and  ( i ) )

=-- 7- Re{ [ a 2 q ( : I" :b )   +  1 a '  2c , ) t
2 ()C7p,a:v v,171j' all-%

(b y  (iii) and residue theorem)
n• 71--- Re i l -2 (.1

[L
o.,[— 7r Lo ( , :1,,) + 1 

(Cg— :0 12-1

± IT  E a K0 ( , :01,
because of the relation

aq(z,  _ 2 aN(z, C)
az az

By Theorem I we obtain the following
COROLLARY 4. T he quantity

(16) R e{  y, oRfi,10(:R,

is a monotone decreasing domain functional.
The analogous result for the Bergman kernel function K(z,

f o r  which K(2, :)-= (-2/ tr) • [a2 G(z, C)/z , G (z ,  c )  being the
Green's function o f  D , w as derived by B ergm an and Schiffer')
from the Hadamard's variation formula, and recently by Neharis)

by means of Dirichlet principle.
5 . Modification of Theorem I. In this section we shall modify

Theorem I and derive a  theorem which is useful in  the treatment
o f  extremal problems in  t h e  theory o f  conformal mapping of
multiply-connected domains.

THEOREM II. L et R , D , D ,, C , C , an d  S (2 ) hav e the same
meaning as in Theorem I , and  moreover D  and D , hav e a common
boundary component y. L et p (z ) denote the function satisfying the
following conditions: (i) p(2)--const. o n  r ,  ( i i )  a p/ an-=0 o n  1 =
C—y, (iii) p+ S is harmonic in D, ( iv )  f,[a(p+ S) / an]ds=0 f or any
closed contour 43 in  D . I f  pi (z )  is  the  corresponding function as-
sociated with D„ then

=R e {
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p(z) 
 3 S ( z )

 ds— S(z)  aP( 2 )   ds
an an

Pi(z) aS (2 ) ds— f S(z) a P 1 (2 ) ds
p, an an

where P,-=-C,—T.
P roof. W e put

u = p i + s  in

I p + S  in  D
v=

S in D 1 —D.
Using the notation of Dirichlet integral

(h, k),, hilk,,)dr ,

we easily obtain

(y, v) D i
=  ( 1  U )  D I - 2(14, 1 „ ± 74 —  D „

and therefore

(18) (y, _>_(u, u) 2 (u, u—  y) .

From Green's theorem

(11, (p,+ s)  a ( Pl
+ S )  ds

0, an

(p 1 + S) a (P 1 + 5 .)  ds+1 (p 1 + S) 
 aS   ds

Jr an an
(19) (apdan=0 o n  P,)

=JP, ds'
3 S 1 , 3p i +S)  ds +  s  &Pi ds+ f ds+Pi

S aPi ds+1. p, ds + S ds.
T an L., an J e ,  an

(p 1 =const. on y and (iv) ).
Similarly

(20) (y, v),„ = (2), + (y, v),„_ D

S d s  p  &S ds + aS ds +  S  aS ds — IS  aS   ds
r  an 1, an anC j  an 0  an

(17)

and

T an T an p , an
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and

(21) (u, u— v),„= (u, u— v)D+ (u,

H. (Pi+ S) a ( Pi — P) ds + f  (p1+ s)- 131- d s -  ( P i+ s ) a-P, ds
0 an r, an an

=f (Pi+ s ) P) dsan
On the other hand, from  (iv) of the assumptions

a -( 1 3 ± S i d s = a(P,-FS) d s  ( = 0 )
, an Je,a n  

and from the assumption that S W  is harmonic in  D,—D

0 an an
From both relations it holds that

°
P ds °Pi as

an J0. an
and therefore

(22) d s=f 1 ds (b y  (ii)).
T  an T  an

Using ( i) and  (22) we obtain the equality

(23) (u, u -v),„= 1 s-
T T  an

From  (18), (19), (20) and (23) we obtain the required result (17).
Q.E.D.

6 .  Bounded radial slit mapping. To illustrate the application
of Theorem II, consider the case of a finite multiply-connected plane
domain D  and of the analytic function F(z , C) which maps D onto
the unit circle slit along radial segments directed towards the origin.
F(2 , :)  m ay be so norm alized a s  to satisfy F(:, :) = 0  for E D
and we may require that the outer boundary y  of D  be transformed
into the unit circum ference. The argum ent of (z—:) - ' F\z, ‘.7) re-
tu rn s  to  its  initial value if z  describes any boundary component
o f  D , a n d  I F(z , :) I  i s  constant on y  a n d  arg F(z, =const. on
P(-=C— r). W e m ay therefore set P(z) =log IF(z, ‘,.7)1 and 5(z) =

and apply Theorem II. It follows that
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(24) ds p a
(
P
-
FS

)
dsr an r an

=f log I F(z, C) I a log F ( 2 ' dsan 2—:

-= Re { -lf log I F(z, C)Irlog F ( z '   dz }
_ z—:

=Re{ l
i  i logF(2, :)[log F ( 2 ' F̀-: )  Idz }

z—

=Re { — T o g - F ( 2 ' :)  [log F(z , :)]' d2},

(by integration by parts).

Since (3p/an)ds= (1/i)[log F(z,:)]' dz  and p= 0 on r,

(25) S  
°
P ds-- f  (P+S ) &P ds

i3n T
a n

1= f(P+S)1:10gF(z, !,"•)]' dz

=R e log F ( 2 ' C)  [log F(z, :)]' dz} .
2 - 7

Therefore it follows from (24) and (25) that

—l kz  : )  p--a—S  -ds—  S  &I)  -ds— f log F ,
Re [log F(z, :)]' dz}-

r T an z—:
-= —27 log IF  (C, C) I (by residue theorem).

From Theorem II we obtain the following
COROLLARY 5. Let F(z, C) be a  normalized bounded radial slit

mapping function of a f inite multiply-connected domain D. Then it
holds that IF' (C, C)I increases i f  D  increases, the outer boundary
component of D  being fixed.

If the domain D  is the un it circle IzI <1., F(z, z  and
F'.(0, 0) =1. Therefore we obtain the following

COROLLARY 6.")  L e t  D  be a  multiply-connected domain which
is .contained in  the  un it circle 1z1 <1 an d  contains the origin, and
whose outer boundary component is the unit circum ference. Then it
holds that

(26) IF' (0,
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This is equivalent to  the following well known theorem on
bounded univalent functions : L et G be a f inite plane domain and
le t f (z ) be univalent, I f (z)I <1 i n  G  and f  =0. I f ,  moreover,
f ( z )  m aps the  outer boundary component o f  G  onto the  unit cir-
cumference, then

(27) :)I,

where F(z , :)  maps G  onto the unit circle slit along radial segments
directed towards the origin.

7 .  Circular ring with radial slits. Theorem II  can slightly
be modified as follows : Let D, D, be two multiply-connected domains
an d  DC D „ and moreover have two common boundary components
r', r " .  L et p(z )=const. on r", &p/&n=0 o n  l'(C=;-'
an d  moreover Ç[a(p + s )/ an] ds-=0 for every closed contour in D.
If  p ,(z ) is the corresponding function associated with D „ then

(28) p—as- d s — f  S  t3P ds> ds S aPi dan î '+ r "  an r, a n  s

(C1 =7'+1"+ 1).
As an application of the above result, we deal with an extremal

problem on the analytic function F ( z )  w hich m aps a  schlicht
domain D  of connectivity  >3 onto the circular ring 1< I wl < M
slit along radial segments, where two boundary components C . 0 ,  C,
of D  are transformed into the circum ferences *1=1 and I tv = M,
respectively. W e denote by D , the doubly-connected domain con-
taining D  w hich  is bounded by  C„ and C „, and b y  F„(z ) the
function mapping D , onto the circular ring 1 <  w l < M 0 . C learly ,
log F(z ) —  log Fo (z )  is regular and single-valued in D and we may
apply the above result with p(2)= log I F„ 2) , S  (2 ) —  log I F (z) I ,
p,(2)=IogIF,,(z)I and y' =  ,  7 " — C „ .  Then the left-hand side of
(28) equals to

a
— log I F„ I --

a
- logIFo lds + log Fo l ---- log I F„ d s

an c,„+c,L an

logIF„I—
a
---logiFo lds+1 log 1F0 1 -

a
—log IF,,Ids

an an

log I 0  on C„„
an
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a= — logi F„1 log IF01 ds-i-f log
a 

 -log IF'd dsan an
(by Green's theorem)

log IF„I logIF01 ds= log MS —a— log IF„1 ds
& flC I L  an

The right-hand side of (28) equals to
a a of log iFo i tog IF01 ds=log g  Fo l dsan ci., an

Therefore it follows that

a(29) log M f log ds > log Mo f log l Fo l ds .
an CIL

On the other hand,

J
 a  1ogIF01 1 loglFol —a- dsJe, an log Moa n

(1F0!=1 on C L )
1 (log1F0 1, log IF01)Di> O.

log M,
From  (29) it follows that

(30) M >
From this result we obtain the following

COROLLARY 7•'". "  Let D be a schlicht dom ain of connectivity
and let C„ and C, denote two of  its boundary  com ponents. If

Mo denotes the R iem ann m odulus of the doubly-connected domain
D , bounded by CL and C IL , then , w ith in  the conformal class of D,
the problem M0 max is solved by the domain whose boundary com-
ponents other than C L  and G IL are transform ed in to  radial slits
directed towards the origin by  the conformal mapping carry ing D,
into a circular ring about the origin.

Kyoto University
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