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Let o be the ring of polynomials or the ring of formal power
series in indeterminates x,, ---, x, over a field k. Let p and q be
prime ideals in o and let n be a minimal prime divisor of (p, q)o.
It is easy to see that rank n<_rank p+ rank q.” When rank n=
rank p+rank q, we say that n is a proper component of puq. On
the other hand, the multiplicity #(n; puq) of a minimal prime
divisor nt of (p, q)o with respect to pU q is defined as follows: Let
o’ be a copy of o and we construct o*=o0x,0.» We denote by d
the set {x,—=x/, ---, 2,—%,/}, where x,/ is the copy of x; (ino’). Let
q' be the copy of q. Set u*= (1, d)o. It is evident that n* is a
prime ideal of o*. Set 6=v*;*. Then we define

i(n; puU q):e( (b’ b, q/)a/ (P, q/) 13).:”4)

The purpose of the present paper is to show the foilowing

Theorem. Assume that (p, ¢')0 is a prime ideal of 6 and that
1 is a proper component of puq. Then we have

(1) iGypug)<e((p, q)on/qou), and the equality holds if and
only if poy is generated by elements of number rank p;

(2) Gy pug)=<e((y, 9)on), and the equality holds if and only

1) It is easy to see that if r is a regular local ring and if p and q are prime
ideals of r, then for any minimal prime divisor n of (p, q)r we have rank n<rank
p-+rank q.

2) When o is the ring of polynomials, we mean under this notation o x 0’ the
tensor product of o and o’ over k (therefore o x zo’=£k[x, -, 5, %/, -, %,”]); when o
is the ring of formal power series, we mean under the same notation the Kroneckerian
product of o and o’ over % in the sense of C. Chevelley, Intersections of algebraic and
algebreid varieties, Trans. Amer. Math. Soc. 57 (1945), pp. 1-85 (in this case, o x g0/ =k
{21 ) % %, xn/})’

3) Cf. C. Chevalley, 1. c. note 2).
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if pon and qon are generated by elements of numbers rank p and
rank g respectively. 4

In §2 we translate this theorem into geometric language.

§1. Proof of the theorem.

1) Proof of (1). We choose a subset b= (b,, -+, b,) (r=rank p)
of p so that b mod qon is a system of parameters in on/qon and
that e((b, @) on/qon) =e((d, Q)on/qon).” Then e((d, b, q')5/q'0)=
e((d, q") v, )5/ q"0(>, a)2) €((d, b, a")8/ (b, ¢") )" =e((b, b, ¢')5/(D, ) 0)
=e((b, 9")on/qon) =e((p, 9)oxu/qon). On the other hand, e((d, b, q’)
0/q'0)=>e((b, q')dp./qp,)e((d, §)6/§),” where §, runs over all mini-
mal prime divisors of (g, b)8. Since b Cp and since rank bo=rank
p, we see that (p, ¢’)0 must appear among §;. Therefore we have
e((p, Q)on/qon) =e((d, p, ¢')0/(p, ¢)0) =i(nn; puq). This proves
the inequality in (1). Now that e((b, q)on/qon)=i(n; puUq) is
equivalent to the following two conditions: a) e((b, q')0,q¢)s/
q'dp,q)s)=1 and b) (p, q')0 is the unique minimal prime divisor
of (b, q’)0. a) is equivalent to that the primary component of
(b, ¢’)d belonging to (b, q')0 coincides with (b, q')o. Therefore,
together with b), they are equivalent to the condition that (b, q')0
=(p, )0, that is, bon=pon. Thus (1) is proved completely.

2) Proof of (2). We choose a subset a=(a,, ---, @a,) (s=rank
p+rank q) of (b, q)on so that a is a system of parameters in o
and that e(don) =e((p, q)on). Further we choose elements a,, -, a,
of (p,q)d so that ¢,=a; mod d5. Set a=(a, -, a,). Then
e((a, d)0)=e(dbdvs)e((d, a)5/d0)”=e(avn) =e((p, q)on). On the
other hand, e((a, d)8)=e(avs,;)e((d, p.)6/p,),” where j, runs over
all minimal prime divisors of ap. Since aC (p, q")d, we see that
(v, ¢')0 appears among P, Therefore we have e((p, ¢)on) = e((d, p,
a)o/ (b, q)0)=i(u; puq). Now that e((p, q)on)=i(t; puUgq) is
equivalent to the following two conditions: a) e(ad(,q¢)s)=1 and
b) (p, ¢)0 is the unique minimal prime divisor of ad. And there-
fore it is equivalent to the following: c) ab=(p, q')8. This shows
our assertion.

4) Cf. P. Samuel, La notion de multiplicicité en algebre et en géométrie
algébrique, J. Math. Pures Appl. (9), 30 (1951), pp. 159-274.

5) This equality follows from the theorem of associativity formula due to C.
Chevally, 1. c. note 2), which can be proved easily without assumption on basic field;
see, Nagata, Local rings, Stigaku, 5 No. 4 (1954) pp. 229—238 (in Japanese).
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§2. Translation into geometric language.

Let U, V be algebraic (or algebroid) varieties in #u-space (or
local n-space) S*. Assume that a variety W is a proper component
of the intersection of U and V. Take a common field % of definition
for U, Vand W. Let o be the ring of polynomials (or formal
power series) in indeterminates x,,---,%,. Take prime ideals n, p
and q which corresonds to W, U and V respectively. Then we have

1) i(W; U-V)<<e((p, 9)on/qon), and the equality holds if and
only if U is locally complete intersection at W;

(2) i(W; U-V)y<e((p, 9)on), and the equality holds if and only
if both U and V are locally complete intersections respectively
at W.

Remark. It is easy to see that the following four conditions
are equivalent to each other:

(1) e((y, q)on/qon) =1,

(2) e((y, 9)on) =1,

(3) (b, g)on=n0n, A

(4) i(W;U-V)=1 (for the case of our theorem, i(n; puq)
=1).



