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1. When a group G acts on a ring R inducing a group of automo-
phisms, then we can speak of G-invariants in R. Let us denote the
set of G-invariants in R by I;(R). Our particular interest lies in the
case where R is a finitely generated (commutative) ring over a field K
and the action of G on R is such that 1) the automorphisms are K-
isomorphisms and 2) J,cf*K is a finite K-module for every fER.
In this case, let fi, -, f be a set of generators of R over K and
choose a linearly independent base f;, -+, fo of 3:(Zeec(f1)*K). Then
R=KI[f, ", f»] and the action of F on R is characterized by the
representation of G defined by the module 3 ,ffK. Thus, in order
to observe I;(R), we may assume that

(1) G is a matric group contained in GL(n, K), and

(2) R=KIfi,, fx] and, for every g€G, the automorphis of R

defined by g is induced by the linear transformation

()

Under the circumstance, the following results are known:

Lemma 1. I;(R) is finitely generated if every rational represen-
tation of G is completely reducible or if G is a finite group, hence
if G has a normal subgroup N of finite index such that every

rational representation of N is completely reducible.
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In the general case, there are some examples of a pair of G and
R such that I;(R) is not finitely generated.

Lemma 1.2. [f G is the smallest algebraic set in GL(n, K)
among those containing G, then G is a group which acts on R
naturally and I;(R)=L(R).

Lemma 1.3. If K' is a ring containing K, then, under a
natural extension of the action of G on RQxK' such that every
element of K' is G-invariant, we have I,(RQxK") =I(R)Xx K.

By virtue of Lemmas 1.2, 1.3, above, we see that, in asking finite
generation of I;(R), fundamental is the case where G is an algebraic
group with universal domain K. But, such an assumption does not
bring us any simplicity in our treatment. Therefore we shall not
assume that G is an algebraic group, but assume the assumptions (1)
and (2) above.

Furthermore, rational representations of G which we meet in our
treatment are rather special, and therefore it is good enough to under-
stand by a rational representation of G a representation obtained in
the following manner;

Let R* be the polynomial ring over K in indeterminates Xj, ---
X.. Then G acts on R* as defined by

(X, )~>g<Xl> for each g€G.
X.) \X.

Let M and N be G-stable finite K-modules contained in R* such that
NCM. M/N defines a rational representation of G. Rational represen-

>

tations we shall meet with in this paper are those of this type.

2. We call G a reductive group if every rational representation of

G is completely reducible. It is known that

Lemma 2.1. If G is an algebraic group, then (i) in the charac-
teristic zero case, the reductivity is equivalent to the condition that
the radical is a torus and (i) in the case of characteristic p+0,

the reductivity is equivalent to the condition that the connected
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component Gy of the identity of G is a torus and furthermore the
index [G:G,) is prime to p.

Thus the class of reductive groups is not very small in the charac-
teristic zero case, but is very small in the positive characteristic case.
Thus, in view of the known counter-example to the 14-th problem of
Hilbert, the following consequence of Lemma 1.1 is rather satisfactory
in the characteristic zero case and is very unsatisfactory in the positive

characteristic case:

Lemma 2.2. In the characteristic zero case, Ic(R) is finitely
generated if the radical of the smallest algebraic group G, in
GL(n, K) among those containing G, is a torus: in the positive

characteristic case, I;(R) is finitely generated if the connected
component of the identity of G is a torus.

3. Let us denote by P, from now on the polynomial ring over K in
m indeterminates X, *+*, Xn.

Let p be a rational representation of G. If o(G)SGL(m, K),
then we define an action of G on P, by

(X, >—>p(g) (Xl) for every geG.
Xm Xm

This is called the action of G on P, defined by p.

We call G a semi-reductive group if the following is true: If p
is a rational representation of G which defines an action on P, (m
being such that p(G) CGL(m, K)) such that (i) 3:,X;K is G-stable
and (ii) X; modulo 55, X;K is G-invariant, then there is a polynimial
FeP, which is G-invariant, monic in X; and of positive degree in
X. v

Since the action of G preserves the degree of every homogeneous
form, the condition on F above may be replaced by the condition to
be a G-invariant homogeneous form of positive degree which is monic
in X;.

For algebraic linear groups, it was conjectured by D. Mumford
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that if the radical is a torus then the group is semi-reductive. As will
be shown below, this conjecture is equivalent to the following, which
we like to call Mumford Conjecture:

Mumford Conjecture. If G is a connected semi-simple algebraic
linear group, then G is semi-reductive.

To the writer’s knowledge, Mumford Conjecture has been solved
only in a very special case where characteristic is 2 and G=SL(2,K);
it was done by Mr. Tadao Oda.”

The purpose of the present note is to show

Main Theorem. I;(R) is finitely generated if G is semi-re-
ductive.

Let us indicate here how to prove the equivalence of Mumford
conjecture with the case of an algebraic group whose radical is a torus.
The key lemma is:

Lemma 3.1. Let N be a normal subgroup of G. If both N
and G/N are semi-reductive, then G is also semi-reductive.

Proof. Let p be a rational representation of G as stated in the
definition of semi-reductivity. Then the restriction o' of p on N is of
the same type, whence there is a homogeneous form F& P, of positive
degree such that F is monic in X; and N-invariant under the action
of N defined by p’. Consider the G-module M=3,,F¢K. The action
of G on M is really an action of G/N. Let M* be M\3:23X;Pn,
and let F, -, I, be a base of M*. Then, since M= FK-+ M#*, since
any power of X; is G-invariant module 3, X; P, the semi-reductivity
of G/N implies the existence of a homogeneous form F* in F, Fj,
.-, I, of positive degree such that (i) it is monic in F and (ii) it is
G-invariant. F* is a homogeneous form of positive degree in X, «--.
Xm. Since F,€X;2,X; P, and since F is monic in X;, we see that
F* is monic in X;. Thus G is semi-reductive.

Now the equivalence said above is proved easily by the fact that

finite groups and tori are all semi-reductive.

1) To be published in this issue.
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4. Before proving our main theorem, we like to give a remark on
our formulation of Mumford Conjecture. Momford’s formulation was
stated in projective space. Namely, if p is a rational representation
of G and if p(G) EGL(n, K), then an action of G on P, is defined,
which defines an action of GG on the projective space S™' of dimension
m—1. The condition proposed by Mumford is that if a point PeS™"
is G-invarinat, then there is a G-stable hypersurface in S™' which
does not go through P.

If this condition is stated in P,, then, choosing coordinates of P
to be (1,0, ---,0), it can be stated as follows:

If 5,X;K is G-stable (hence, X; modulo 2., X;K is G-semi-
invariant), then there is a G-semi-invariant homogeneous form F which
is monic in X; and of positive degree.

Proposition 4.1. If the above condition is satisfied by G, then
G is semi-reductive.

Proof. Let p be as in the definition of semi-reductivity. Then
there is a homogeneous form F as in the above condition. Since X;
is invariant modulo Xi-,X;K under the action of G, any power of X;
is G-invariant modulo the ideal generated by J3~,X;K. Therefore
that F is G-semi-invariant implies that F' is G-invariant.

The converse of Proposition 4.1 is also true under the usual
definition of rational representations and was proved by Mr. M.
Miyanishi. The proof will be given at the end of this article as an

appendix.

5. A reductive group is obviously a semi-reductive group, hence our
main theorem includes the corresponding result for reductive groups.
As for the proof, that special case is much simpler than the semi-
reductive case. In order to compair these cases, let us begin with
glance at the reductive case.

The following two are key lemmas to prove our main theorem for
reductive groups:

Lemma S.1.A. Let ¢ be a G-homomorphism from R onto a
ring R'. If G is reductive, then Io(R)=¢(I;(R)).
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Lemma 5.2. A. If G is reductive, then jfor any I, -, hs in
L(R), we have (Z:h:R) NI(R)=3;h:;(I:(R)).

Namely, the first lemma enables us to assume that fi, -+, f» are
algebraically independent. Then the second lemma, shows that I;(R)
is a graded Noetherian ring, and we see easily that I;(R) is finitely
generated, by virtue of a well known lemma which will be recalled
later.

For semi-reductive groups, we have the following adaptions of
the above lemmas:®

Lemma 5.1.B. With the same notations as above, if G is semi-
reductive, then, for every element x of I;(R'), there is a power x'
of x such that x'€¢(I;(R)). Consequently, I(R") is integral over
o(I(R)) in this case.

Lemma 5.2.B. Assume that G is semi-reductive. Then for any
hy, o, €I (R), every element of (Z:hR)NI(R) is nilpotent
modulo Z:h;(I:(R)).

Proof of Lemma 5.1.B. Let y be an element of R such that
o(y)=z. Set M=Icy*K, a=¢"(0), N=Ma. If =0, then the
assertion is obvious, and we assume that x5~0. Since x is G-invariant,
we have y*—yEN for every g&G. Therefore, letting y;, **-, ym be
a linearly independent base of N, we see that, by virtue of the semi-
reductivity of G, there is a G-invariant element F of K[y, y1, ***, ¥ml
which is monic and of positive degree, say ¢, in y, and homogeneous
in v, 9, ", ym. Then ¢(F)=zx'€¢(I;(R)). This completes the
proof of Lemma 5. 1. B.

Proof of Lemma 5.2.B. We shall make use of induction argu-
ment on s without fixing R. Let ¢ be the natural homorphism from
R onto R/R. Let x be an arbitrary element of (3:/1;R)NIL(R).
Then ¢(x) is in I ()d(R) MNé(I:(R)), whence by induction on
s, we see that there is a natural number ¢ such that ¢(x') is in
Sised(h) I:(¢(R)). This means that z'=3;h;F; with F;€R and
Fy, -, F.€¢'(Ie(¢(R)). By Lemma 5.1.B, there is a natural number

2) We do not need Lemma 5.2.B in our proof of the main theorem. See §8 below.
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u such that ¢(I") €¢(I;(R)). Then, considering x'* instead of z,
we may assume that F.€I(R) (Gf s>1). Then x'—hF.€
(Zics-h:R) NI(R), and z*—h, F, is nilpotent modulo Zic,—1h:(I:(R)),
which implies the assertion. Therefore we have only to prove the case
where s=1. In this case, z=ha" with 2’€R and z’ is G-invariant
modulo 0:/;R. Let ¢ be the natural homorphism R—R/(0:/R).
Then o(z") € L;(6(R)), whence there is a natural number ¢ such that
s(a)€a(Ile(R)). Let z€I:(R) be such that ¢(2)=06(2""). Then
x'=hix'=hiz€h(I:(R)). This completes the proof of Lemma 5.2.B.

We recall here the lemma on graded Noetherian ring refered
above:

Lemma 5.3. Assume that a ring A is such that (i) it is the
direct sum of submodules As, Ai, -+, An, -+ and (1) A;A;S Ay for
every possible pair (i,j). If the ideal Zis1A:; has a finite basis,
then A is finitely generated over A,.

6. Let ¢ be the homomorphism from P, onto R such that ¢(X;)=f;
for every 7 and let f be the kernel of 4. We shall prove here the
main theorem in the case where f is a homogenéous ideal. Since P,
is Noetherian, we can use induction argument on the largeness of f.
Thus we assume that if ¥’ is.a G-stable homogeneous ideal of P, and
contains t properly,-then I;(P,/t') is finitely genenated.

Lemma 6.1. Under the circumstance, if 9 is a graded G-stable
ideal +0 of R, then L(R)/(ONI:(R)) is finiterly generated.

Proof. By assumption, I;(R/D) is finitely generated. By Lemma
5.1.B. I(R/Y) is integral over I.(R)/(HNI:(R)). These two facts
show the result.

Therefore, by virtue of Lemma 5.3, if there is such an ideal §
(not containing 1) as above so that HI;(R) has a finite basis, then
we see the finite generation of I;(R).

As.a particular case, we have the case of an integral domain.
Namely, if 2 is a homogeneous element of I;(R) and if R is-an
integral domain, then RN I(R)=h(I;(R)). The same reasoning is

applied if there is a hemogeneous element % of positive degree which
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is not a zero-divisor.

Next we consider the case where R is not an integral domain.
Let i1#0 be a homogeneous element of I;(R) of positive degree. Set
a=0:hR. If a=0, then we finished already, and we assume that
a#0. Then, by Lemma 6.1, both IL(R)/(hARNI(R)) and I;(R)/
(aNI:(R)) are finitely generated. Therefore there is a finitely gene-
rated subring A of I;(R) such that I;(R)/(hRNI;(R))=A/(hRNA)
and such that L(R)/(aNL(R))=A/(aMNA). Since I;(R/a) is a
finite module over A/(a(NA), ther are elements ¢y, -+, ¢, of R such
that I:(R/a) is generated by these ¢; modulo a as an A/(aNA)-
module. We like to show that I;(R) is then generated by c¢;h over
A. Since ¢; modulo a are G-invariant, we see that ¢;h are G-invariant.
Conversely, let x be any element of I;(R). Then there is an element
a of A such that z—a€hR. Let r be such that x—a=hr (rER).
Since hr is G-invariant, we see that  modulo ais G-invariant, whence
there is an element b of JAc; such that »—bea. Then hr=hbe
Alhey, -+, he,], this completes the proof, provided that the kernel t

of ¢ is homogeneous.

7. Now we consider the general case. We adapt the notation in §6
without assuming that f is homogeneous. The induction argument is
also adapted, considering all G-stable ideals of P,. Then we need a
different proof only in the case where I;(R) is an integral domain
(for, othewise, take an element h of I;(R) which is a zero-divisor in
I:(R), and adapt the proof just above). In this case, I;(R) is integral
over I;(P,)/(tNI;(P,)). Since the result in §6 includes the case
where t=0, we see that I;(P,) is finitely generated, hence the integral
dependence implies that I;(R) is finitely generated. Thus the proof
of the main theorem is completed.
8. We like to add a remark here. As was remarked in a footnote,
we did not use Lemma 5.2. B. What we remark here is that Lemma
5.2.B has the following meaning:

Consider the case where G is a semi-reductive algebraic group

acting on an affine variety V with affine ring R. Let W be the affine
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variety defined by the affine ring I;(R). Then there is a one to one
correspondence between closed orbits on V and points on W in such
a way that if the orbit of P€V is closed and corresponds to P’ W,
then the local ring of P’ is the set of G-invariants in the local ring
of P.

If we define a relation~such that P~@Q (P, Q€V) if and only
if the closures of the orbits of > and @ meet, then we see that ~ is
an equivalence relation and each equivalence class contains unique
closed orbit. If the class of P contains a closed orbit QG, then the
set of G-invariants in the local ring of € is contained in that of P.

In particular, if G is a linear algebraic group and if H is a semi-
reductive algebraic subgroup of G, then G/H is affine.

The proof of the above statement can be given quite simiarly as
in our lecture notes on the 14th problem of Hilbert at Tata Institute

of Fundamental Research (that was for the case of reductive groups.)

APPENDIX
The converse of Proposition 4. 1.

We shall prove here the converse ¢f Proposition 4.1 above.

Assume that a rational representation p of G is of the form

(6 )

where ¢ is of degree 1. Let m be the degree of p. Then we consider
a representation r=¢tE, E being the unit matrix of degree m. Then
7(g) is in the cener of GL(m, K) for every g€G, and therefore pr™’
gives a rational representation of G (not in the restricted sense above,
but in the usual sense). By the semi-reductivity of G, there is a
homogeneous form F in P, of positive degree such that it is monic in
X; and G-invariant under the action of G defined by pr™>. Then F is
semi-invariant under the action of G defined by p. This proves the

converse of Proposition 4. 1.



