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1. In this short note we shall correct a proposition given in [1]
and rewrite, in part, the proof of a theorem depending on the pro-
position. Moreover we shall add some results on calculus of generalized
cycles on ahsolutely irreducible models over a discrete valuation ring,
which were treated in [1].

We shall generalize the definitions of products and intersections
of generalized cycles, which have a sense in [1], whenever all the
components of generalized cycles dominate the same place of the
ground ring. In other words we shall define these calculus without any
restriction on generalized cycles. Then, making use of properties of
the operation p defined in [1], we shall see that some important results
on calculus of generalized cycles in [1] remain also true.

The notations and the terminologies are the same as those of [1].
In particular we shall fix a ground ring o with the quotient field £,
the maximal ideal p= (z) and the residue class field .

2. At first place we shall generalize the definition of a product
of generalized cycles on absolutely irreducible models. Let M and N
be two absolutely irreducible affine models over v, whose affiine rings
are 0[x] and o[y] respectively. Then A=vo[x]®oo[y] is the affine
ring of the affine model M X N. Let P and @ be spots of M and N
corresponding to the prime ideals m and n of o[x] and o[y] respec-
tively. If P and @ dominate the same place of the ground ring o,
PX@Q is defined in the sense of [1] and it is easy to see that the
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components Ry, «*+, R, of PX @ correspond to the minimal prime ideals
I, -+, I, of a= (m®1, 1®n) A, and that the coefficient of R; in PXQ
is equal to /(R:/aR;). Therefore it is natural to give the same defini-
tion of PX ) as above in the case where P and @ dominate diffierent
places of 0. Let P and @ dominate 0 and % respectively. Then the
minimal 'prime ideals ni, +-+, 1} of (x, n)o[y] correspond to the induced
spots of @ over P, and it is easily seen that a minimal prime ideal
of (X1, 1®n)A is a minimal prime ideal of (&1, 1IQu)A for
some i and vice versa. This means that any component of PXQ is
a component of PXQ; for some induced spot @:, and that, conversely,
any component of PX )} is a component of PX Q. Therefore it seems
to be significant to define a product of cycles on any absolutely irredu-
cible models over o as follows. Let M and N be two absolutely
irreducible models over v. Let (P, m1) be a spot of the closed subset
M—M, of M and (Q, n) a spot of the open subset N, of N. Let
Q-+, Q. be all the induced spots of @ over p and that n; is the
prime ideal of Q; corresponding to @. Then P and Qi dominate the
same place 0, and hence PXQ; is defind in the sense of [1]. If
(R, 1) is a component of PX @, then it is easy to see that R is a
quotient ring of P®oQ; and that the length /(R/(m®1, 1Qn,)R) is
finite. Then we put PX szs‘igl(R/(m@l, 1@1,)R), where R
runs over all the components of ‘P X Q);, and call this generalized cycle
the product of P and . Similary we can define PXQ in the case
where P and @ are in M, and N— N, respectively.

ProOPOSITION 1. Let M and N be two absolutely irreducible
models over 0. Let (P,m) be in M—M, (resp. in M) and (Q, n)
in Ny (resp. in N—N,). Then we have

PxQ=Pxp(Q) (resp. PXxQ=p(P)XQ)

on MXN.
Proor. By the definition, PXQ and PXp(Q) have the same

components. Let (R,!) be one of these compontents. Then R domi-
nates 0. Let (@', n’) be the induced spot of @ dominated by R and
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n; the prime ideal of @’ corresponding to . Then we can easily

see that

L(R/m®1, 1Qn)R) =1(R/(mR1, 1 (=, 111))R)
’ =1((P/m&.Q"/ (=, m))1),

where T is the prime ideal of P/m®.Q’/(x, 11;) corresponding to the
maximal ideal | of R. By Lemma 2 in [1], the righ hand side of

the above equality is equal to

[(R/ (1, 1IQu)R)I(P/m)I(Q'/ (=, m))
=I(R{(m®1, 1®n")R) n(Q; Q).

This means that the coefficient of R in PXQ is equal to that of
Pxo(Q). q.ed.

Remark; Let (0*, p*) be a ground ring extension of (o, ), and
let P and (Q be as the above proposition. Then, using Propositions 1
and 5 in [1], we can easily see that gv*/o(PX Q) =av*/o(P) X ao*/0(Q).
In other words. we can remove the restriction that XX Y is well
defined in Proposition 1 in [1]. '

3. Let M be an absolutely irreducible model over . Let P be
a spot in the closed subset M— M, of M and @ a spot in the open
subset M, of M. Let (R, 1) be a component of M{P)NM(Q). Let
us put O=R®oR and d=0(D). If m and n are the prime ideals of
R corresponding to P and @, then I'= (I&Q)1, d)O is a minimal prime
ideal of (M®1, 1@u, 8)O. Let O be the quotient ring Or, of O with
respect to ', and we denote the multiplicity ¢(dO/ (m®1, 1®@n)O) by
w(R; P-Q). We shall define the inters\ection of P and Q by
P-Q=§‘_.lio(R,~; P-Q)R;, where Ry, ---, R, are all the components of
M(P) hM(Q). It is evident to see that P-Q=@Q-P. This definition
is a natural generalization of the definition given in [1].

PROPOSITION 2. Let M be an absolutcly irreducible model over
0. Let P and Q be spots in M— M, and M, respectively. Then any
component R of P-Q is that of P-o(Q) and the coefficient of R in
P-Q is equal to that of P-p(Q).
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Proor. The first assertion is easily seen from the definition of
P-Q. Let the notations be as the above. Then the coefficient of R
in P-Q is equal to e(®O/(m®1, I®n)O). Using Lemma 8 and
Lemma 10 in [1], we see that this value is equal to ‘Ze(bf)/‘&,)l (O,
/(Mm®1, 1R (x, 1)) Os,), where B, runs over all tlhu-a1 minimal prime
divisors of (M®1, 1®)O= (M®]1, 1Q(x, ))O. In fact it is easily
seen that these prime ideals have the same corank. Now put n,=%,
N(ARR) and Qi=Ry,. Then B, is a minimal prime divisor of (M1,
1@;.;)5 and we can see that

1(Os,/ (mM®1, 1®(x, 1)) Osp,)
=1((Ow,/ (m®1, 1Qn;) Op,) e (xQ}/nQ})

(cf. the proof of Proposition 1). Lte nj, -+, ni, be all the different

members among 1y, ---, n,. Then we have
e(®D/ (M®1, 1QM D)
= Ee(bg/ B (Op,/(M®1, 1Qu;) Og,) e(xQ1/nQs)

- {"2 e(dO/P)1(Os,/ (M1, 1®“D5‘3~)6(QZ/HQ;)}

§= ! !
ji=1 Pk

= 33e(0D/ (1, 120 D)e (xQ /@)
:,.E:,fv(R: P-Qi) - #(Q; Q).

The right hand side of this equality is equal to the coefficient of R
in P-p(Q). q.ed.

COROLLARY. Let M be an absolutely irreducible model over ©
such that M has only one generating spot Py over p. Then we
have the equality P,-Q=Py-p(Q) for any spot in the open subset
M, of M.

ProoF. By the definition, the components of Py-Q are the induced
spots of @ over p. On the other hand, since P, is the unique gene-
rating spot over p, all the induced spots of @ are specializations of P,.

Therefore the components of Py-p(Q) are the induced spots of Q over
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b. The corollary is a direct conseqtence of this fact and Proposition
2. q.e.d.

4, In this section we shall correct some points in [1]. First
Proposition 2 in §2 of [1] should be read as follows:

PropOSITION 2 in [1]. Let M be an absolutely irreducible model
over 0. Let 0* be a ground ring extension of 0 and let X and Y
be generalized cycles in M such that XY is well defined. Then
any component of av*/o(X-Y) is a component of ao*/o(X) -a0*/o(Y)
and the coefficien? of R* in ov*/o(X-Y) is equal to that of R* in
60,/0(X) ra0%/6(Y).

In fact a component of au*/0(X) -0v*/b(Y) may not appear in
60¢/0(X-Y). The proof need not be corrected.

Here we shall remark that the restriction on X and Y in this
Proposition 2 can be removed, if we understand X-Y as in §3. The
first assertion is verified withaut any modification. As to the second,
let R be the component of P-Q such that R* is a component of
6#/6(R). Then R is a component of P-p(Q) and the coefficient of
R in P-Q is equal to that of P-p(Q) by Proposition 2 in §3. There-
fore the coefficient of R* in ao*/o(P- Q) is equal to that of av*/o(P-p(Q)),
which is the coefficient of R* in 6ut/o(P) a0t /0(p(Q)) = 6v*/o(P)
-p(00%/0(Q)) by Proposition 2 in [1]. Since we have already seen
that R* is a component of ao*/o(P) -av*/0(Q), we see that the coefficient
of R* in eu*/o(P-Q) is equal to that of avt/o(P) -a0*/0(Q).

Using Proposition 2 in [1], we proved Theorem 2 in [1]. How-
ever the results of Theorem 2 need not be changed. For it is enough,
in the proof of Therem 2, to correct the last part (the part from the
9-th line to the 16-th line in p. 146) as follows:

Let P and @ be components of X and Y respectively such that
R is a component of p(P) -p(Q). If P* and Q* are components of
P and @ over o* respectively such that p(P*) -p(Q*) has R* as a
component, the coefficient ¢ of R* in p(P*) -p(Q*) is equal to that of
p(P*-Q*) by Proposition 8. On the other hand, from the fact that
R is a proper component of p(P)-p(Q) and from Proposition 2, it is
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‘easy to see that the coefficient ¢; of R* in au*/0(a(P) p(Q)) is equal
to that of ao*/o(p(P))a0*/0(p(Q)) = p(avt/o(P)) -p(ao*/0(Q)). Therefore
c is equal to ¢;. Next we show that ¢ is equal to the coefficient of
R* in a0¢/0(p(P-Q)) =p(60*/0(P-Q)). TFor this, it is enough to show
that any component S* of avt/o(P) -00*/0(Q) having R* as a speciali-
zation is a component of ew*/p(P-Q). If S* is not a component
oo /o(P-Q), there exists a component S of po*/0(P-Q) which is a
- generalization of S* but not equal to S*. Then there exist spots S
and S; in M(P)NM(Q) such that R is a component of p(S), and
such that S* and S} are components of S and S; over o* respectively.
From this, we easily see that there exists a component R; of p(S;)
which is a generalization of R. This means that R=R; and hence
S*=S¥, a contradiction. Therefore the coefficient of R* in ao*/0(P-Q))
is equal to that of av*/o(p(P)0(Q)).
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