Paths in a Finsler space

By
Makoto Matsumoto

(Received June 17, 1964)

The purpose of this paper is to introduce paths in a Finsler space from a standpoint of a connection in a principal bundle. In a Riemannian space, a geodesic is, of course, defined as an extremal of the length integral, and it is well known that a geodesic coincides with a path defined with respect to the Riemannian connection given by the Christoffel's symbols. On the other hand, a geodesic in a Finsler space is defined in like manner, but the explicit equation of a geodesic is obtained in various forms by several authors, according to the choice of a connection [1], [6].

In a previous paper [2] was presented the theory of a Finsler connection in a certain principal bundle Q. According to this definition of a Finsler connection, various paths may be obtained in a Finsler space. In the case of an ordinary connection it is known that the projection of any integral curve of every basic vector field in a bundle space is a path in the base manifold, and conversely, every path in the manifold is obtaind in this way [4, p. 63]. In the present paper, this theorem is taken as the standpoint of the definition of paths in a Finsler space.

The terminologies and signs of papers [2] and [3] will be used in the following without too much comment.

§1. Basic vector fields

We denote by $P(M, \pi, G)$ the bundle of frames of a differentiable n-manifold M, and by $B(M, \tau, F, G)$ the tangent vector bundle of M, where G is the full linear real group $G L(n, R)$ and F is the real
vector n-space. In order to define a Finsler connection and parallelism, let us consider the induced bundle $\tau^{-1} P=Q(B, \bar{\pi}, G)$ and further the induced bundle $\tau^{-1} B=D(B, \bar{\tau}, F, G)$. Total spaces Q and D of these induced bundles are as follows:

$$
\begin{aligned}
& Q=\{(b, p) \mid b \in B, p \in P, \tau(b)=\pi(p)\}, \\
& D=\{(b, \bar{b}) \mid b, \bar{b} \in B, \tau(b)=\tau(\bar{b})\} .
\end{aligned}
$$

Then we have induced mappings $\eta: Q \rightarrow P$ and $\rho: D \rightarrow B$ which are given by $\eta(b, p)=p$ and $\rho(b, \bar{b})=\bar{b}$.

A Finsler connection (Γ^{v}, Γ^{h}) in Q is by definition [2, §1] a pair of distributions which satisfies the well known conditions for a connection, together with the further condition $\bar{\pi} \Gamma_{q}^{v}=B_{b}^{v}$, where B_{b}^{v} indicates the vertical subspace of the tangent vector space B_{b} to B at $b=\bar{\pi}(q)$. As is easily seen, the direct sum $\Gamma=\Gamma^{v}+\Gamma^{h}$ gives an ordinary connection in Q, which is called the linear connection associated with the Finsler connection.

If we put $\bar{\pi} \Gamma_{q}^{h}=H_{b}, \bar{\pi}(q)=b$, we have a distribution $H: b \in B \rightarrow H_{b}$ which is independent of the choice of $q \in \bar{\pi}^{-1}(b)$, and the tangent vector space B_{b} is the direct sum $B_{b}^{v}+H_{b} . H$ is called the non-linear connection in B induced from the Finsler connection.

The induced bundle D over B is associated with the principal bundle Q in which the Finsler connection is defined, and we therefore obtain naturally a connection K in D corresponding to the Finsler cconnection [4, p. 43]. In order to obtain K, we consider a mapping $r_{f}: Q \rightarrow D, q=(b, p) \rightarrow(b, p f)$, where f is a fixed element of F, and then we have subspaces $K_{d}^{v}=r_{f} \Gamma_{q}^{v}$ and $K_{d}^{h}=r_{f} \Gamma_{q}^{b}$ of the tangent vector space D_{d} at d, where $r_{f}(q)=d$. The distribution $K: d \in D \rightarrow K_{d}=$ $K_{d}^{v}+K_{d}^{h}$ is called the connection associated with the Finsler connection.

A concept of a lift arises from a connection [4, p. 26]. First, with respect to the associated linear connection Γ, we obtain the lift $l_{q} X$ of a given tangent vector $X \in B_{b}$ to $q \in \bar{\pi}^{-1}(b)$, which is a unique horizontal vector at $q \in Q$ and covers X. Especially, $l_{q} X$ belongs to Γ_{q}^{k} or Γ_{q}^{p}, according whether X is horizontal or vertical. Moreover, given a (piece-wise differentiable) curve $C=\left\{b_{t}\right\}$ in B, the lift $l\left(q_{0}\right) C$,
$q_{0} \in \bar{\pi}^{-1}\left(b_{0}\right)$, to Q is by definition a horizontal curve $\left\{q_{t}\right\}$ in Q such that $\bar{\pi} q_{t}=b_{t}$. (Here, and in the following, t indicates always a parameter: $0 \leqq t \leqq 1$.) The lift $l\left(q_{0}\right) C$ is uniquely determined by its starting point q_{0}, and if the starting point is taken as $q_{0} g, g \in G$, then a lift $l\left(q_{0} g\right) C$ is easily verified to be given by $R_{g} l\left(q_{0}\right) C\left(R_{g}\right.$ is a right translation of Q by $g \in G)$.

Secondly, with respect to the non-linear connection H in B, we have also a lift $l_{b} X$ of a given tangent vector $X \in M_{x}$ to $b \in \tau^{-1}(x)$, and a lift $l\left(b_{0}\right) C$ of a given curve $C=\left\{x_{t}\right\}$ in M to B. Finally, with respect to the associated connection K in I, we have a lift $l_{d} X$ of $X \in B_{b}$ to $d \in \bar{\tau}^{-1}(b)$ and a lift $l\left(d_{0}\right) C$ of a given curve C in B to D.

We are now in a position to give the definition of basic vector fields $B^{v}(f)$ and $B^{h}(f)$, which will play an important rôle in all our subsequent considerations. First, the v-basic vector field $B^{v}(f)$ corresponding to a fixed element $f \in F$ is defined by the rule $B^{\prime \prime}(f)_{q}=$ $l_{q}\left(d p j_{\gamma} f\right) \in \Gamma_{q}^{v}, q=(b, p)$, where $d p$ expresses the differential of an admissible mapping $p: F \rightarrow \tau^{-1} \pi(p), r$ denotes the characteristic field: $Q \rightarrow F[2, \mathrm{p} .3]$, and $j_{f}, f \in F$, is the identification $F \rightarrow F_{f}[2, \mathrm{p} .3]$. On the other hand, the h-basic vector field $B^{h}(f)$ is defined by the rule $B^{h}(f)_{q}=l_{q} l_{b}(p f) \in \Gamma_{q}^{h}, q=(b, p)$. If e_{1}, \cdots, e_{n} is a fixed base of F, then we obtain $B^{v}\left(e_{a}\right)=B_{a}^{v}$ and $B^{n}\left(e_{a}\right)=B_{a}^{h}, a=1, \cdots, n$, which are linearly independent from each other and span Γ^{v} and Γ^{h} respectively. In terms of a canonical coordinate (x^{i}, b^{i}, p_{a}^{i}) of a point q, those basic vector fields are expressed as

$$
\begin{aligned}
& B_{a}^{v}=p_{a}^{i}\left(\frac{\partial}{\partial b^{i}}-p_{b}^{j} C_{j i}^{k} \frac{\partial}{\partial p_{b}^{k}}\right), \\
& B_{a}^{h}=p_{a}^{i}\left(\frac{\partial}{\partial x^{i}}-F_{i}^{j} \frac{\partial}{\partial b^{j}}-p_{b}^{j} F_{j i}^{k} \frac{\partial}{\partial p_{b}^{k}}\right),
\end{aligned}
$$

in which $C_{j i}^{k}, F_{i}^{j}$ and $F_{j i}^{k}$ are functions of arguments x^{i} and b^{i} only, and called coefficients of the Finsler connection.

§2. Parallel displacement

Let us consider a curve $C=\left\{b_{t}\right\}$ in B and take the lift $l\left(d_{0}\right) C=$
$\left\{d_{t}\right\}=\left\{\left(b_{t}, \bar{b}_{t}\right)\right\}$ of C to D, with respect to the associated connection K. Then we say as usual that d_{t} is obtained from d_{0} by parallel displacement along C in B. Here $\rho d_{t}=\bar{b}_{t}$ is thought of as discribing another curve in B. Then we say that \bar{b}_{t} is obtained from \bar{b}_{0} by parallel displacement along C in B. Moreover, in the case of the Finsler connection, the curve C in B is looked upon as the curve $\tau C=\underline{C}=\left\{x_{i}\right\}$ in the base manifold M, together with the vector field b_{t} defined along \underline{C}. Then \bar{b}_{t} is interpreted as another vector field defined along \underline{C}. We therefore express the above situation by saying that \bar{b}_{t} is obtained from \bar{b}_{0} by parallel displacement along \underline{C} in M with respect to the element of support $b_{t}[1, \mathrm{p} .4]$.

If a given curve C in B is vertical, the projection $\tau C=\underline{C}$ is obviously reduced to a single point x_{0}. In this special case, b_{t} and \bar{b}_{t} are tangent vectors to M at the fixed x_{0}, which are rotating about x_{0} as t varies.

From the definition of the associated connection K in D, it follows incidently that

Proposition 1. Let $l\left(q_{0}\right) C=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ be a lift of a given curve $C=\left\{b_{t}\right\}$ in B to Q, then any lift $l\left(d_{0}\right) C=\left\{d_{t}\right\}=\left\{\left(b_{t}, \bar{b}_{t}\right)\right\}$ of C to D is constructed by the rule $\bar{b}_{t}=p_{t} f$, where f is a fixed element $p_{0}^{-1} \bar{b}_{0}$ of F.

As a consequence of the proposition, the parallel displacement as above defined is expressed in terms of a canonical coordinate as follows:
(2.1) $\frac{d \bar{b}^{i}}{d t}+\bar{b}^{j}\left(\Gamma_{j k}^{i}(x, b) \frac{d x^{k}}{d t}+C_{j k}^{i}(x, b) \frac{d b^{k}}{d t}\right)=0$,
where $b_{t}=\left(x_{t}^{i}, b_{t}^{i}\right), \bar{b}_{t}=\left(x_{t}^{i}, \bar{b}_{t}^{i}\right)$ and we put $\Gamma_{j k}^{i}=F_{j k}^{i}+C_{j l}^{i} F_{k}^{\prime}$. Finally, let us consider a curve $\underline{C}=\left\{x_{t}\right\}$ in M and take a lift $l\left(b_{0}\right) \underline{C}=\left\{b_{t}\right\}$ to B with respect to the non-linear connection H in B. The curve \underline{C} together with its lift $l\left(b_{0}\right) \underline{C}$ is thought of as a special vecter field b_{t} defined along C. We say that b_{t} is obtained from b_{0} by parallel displacement along \underline{C}. In terms of a canonical coordinate, the parallel displacement of b_{t} is expressible by the equation

$$
\begin{equation*}
\frac{d b^{i}}{d t}+F_{j}^{i}(x, b) \frac{d x^{j}}{d t}=0 \tag{2.2}
\end{equation*}
$$

where $x_{t}=\left(x_{t}^{i}\right)$ and $b_{t}=\left(x_{t}^{i}, b_{t}^{i}\right)$.
We see that equations (2.1) and (2.2) expressing parallel displacements coincide formally with that derived by several authors, see [6], in particular, p. 55 (3.18), p. 67 (1.3) and p. 82 (4.4).

§3. Horizontal paths

Definition. The horizontal path C in B is the projection $\bar{\pi} \bar{C}$ of an integral curve \bar{C} of every h-basic vector field $B^{h}(f)$ on Q.

If we put $C=\left\{b_{t}\right\}$ and take the projection $\tau C=\underline{C}=\left\{x_{t}\right\}$ on M, the tangent vector $x_{0}{ }^{\prime}$ to \underline{C} at x_{0} is called the initial direction of the horizontal path C. By virtue of the definition of the non-linear connection H, it is obvious that C is horizontal, and hence the tangent vector $b_{0}{ }^{\prime}$ to C at the starting point b_{0} is obtained by $l_{b_{0}} x_{0}{ }^{\prime}$.

Proposition 2. There exists uniquely a horizontal path by giving its starting point and initial direction.

Proof. We first observe that, if the horizontal curve $C=\left\{b_{t}\right\}$ is the projection of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of the h-basic vector field $B^{n}(f)$, the tangent vector b_{t}^{\prime} to C at b_{t} is equal to $l_{b_{t}} p_{t} f$, as is easily seen from the definition of $B^{h}(f)$. Therefore, if $\underline{C}=\left\{x_{t}\right\}$ is the projection of \underline{C} to M, the tangent vector x_{t}^{\prime} to \underline{C} at x_{t} is equal to $p_{t} f$.

Now, let any point b_{0} of B and any direction $x_{0}{ }^{\prime} \in M_{x_{0}}, x_{0}=\tau\left(b_{0}\right)$, be given. If we take an arbitrary frame $p_{0} \in \pi^{-1} \tau\left(b_{0}\right)$, then the direction $x_{0}{ }^{\prime}$ is expressed as $p_{0} f, f \in F$. The pair $\left(b_{0}, p_{0}\right)=q_{0}$ may be regarded as a point of Q, and then there exists a unique integral curve $\bar{C}=$ $\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ through q_{0} of the h-basic vector field $B^{h}(f)$, corresponding to the above $f \in F$. The projection $\bar{\pi} \bar{C}=C=\left\{b_{t}\right\}$ is the desired horizontal path.

In order to complete the proof it is enough to show that the horizontal path C as above obtained is independent of the expression $p_{0} f$ of the initial direction $x_{0}{ }^{\prime}$. If we take an another expression $p_{0}{ }^{\prime} f^{\prime}$,
there is an element $g \in G$ such that $p_{0}{ }^{\prime}=p_{0} g$, and hence $f^{\prime}=g^{-1} f$. By virtue of the relation $B^{h}\left(g^{-1} f\right)=R_{g} B^{h}(f)$, we see that the integral curve $\overline{C^{\prime}}$ of $B^{h}\left(f^{\prime}\right)$ through $q_{0}^{\prime}=q_{0} g$ is given by $\overline{C^{\prime}}=R_{g} \bar{C}$, and consequently we see $\bar{\pi} \overline{C^{\prime}}=\bar{\pi} R_{g} \bar{C}=\bar{\pi} \bar{C}$, which coincides with the above C.

Theorem 1. Let $C=\left\{b_{t}\right\}$ be a horizontal curve in B and let $\tau C=\underline{C}=\left\{x_{t}\right\}$ be the image of C under the projection $\tau: B \rightarrow M$. The necessary and sufficient condition for C to be a horizontal path in B is that the tangent vector x_{t}^{\prime} to \underline{C} is obtained from $x_{0}{ }^{\prime}$ by parallel displacement along \underline{C} with respect to the clement of support b_{1}.

Proof. Suppose that C is a horizontal path and hence C is the projection of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of the h-basic vector field $B^{h}(f)$. Since the tangent vector q_{t}^{\prime} is equal to $l_{q_{t}} l_{b_{t}}\left(p_{t} f\right)$, we see that the tangent vector b_{t}^{\prime} is $l_{b_{t}} p_{t} f$ and so the tangent vector x_{t}^{\prime} is given by $p_{t} f$. Let us consider a curve $C^{*}=\left\{d_{t}\right\}=\left\{\left(b_{t}, x_{t}^{\prime}\right)\right\}$ in D, and it follows from Proposition 1 that C^{*} is a lift of C to D, because $\bar{C}=\left\{\left(b_{t}, p_{t}\right)\right\}$ is a lift of C to Q and that $x_{t}{ }^{\prime}=p_{t} f$. Thus we show the necessity of the condition in the theorem.

Conversely, if the condition holds for a horizontal curve C, then $C^{*}=\left\{d_{t}\right\}=\left\{\left(b_{t}, x_{t}^{\prime}\right)\right\}$ is a lift of C to I, by means of the definition of the parallelism, and hence Proposition 1 shows that $x_{t}^{\prime}=p_{t} f$, where f is a fixed element of F and $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ is a lift of C to Q. Since C is assumed to be horizontal, the tangent vector q_{t}^{\prime} to \bar{C} is given by $l_{q_{t}} l_{b_{t}}\left(x_{t}^{\prime}\right)$, that is, $l_{q_{t}} l_{b_{t}} p_{t} f$, which is equal to $B^{h}(f)_{q_{t}}$. Thus \bar{C} is an integral curve of $B^{h}(f)$, and we complete the proof.

In terms of a canonical coordinate, the expression of a horizontal path C is easily obtained by means of Theorem 1 . Firstly, since C is horizontal, the equation (2.2) is satisfied. Next, $x_{t}{ }^{\prime}$ is parallel along $\left\{x_{t}\right\}$ with respect to b_{t}, and hence $x_{t}^{\prime}=\bar{b}_{t}$ has to satisfy (2.1). Accordingly the differential equation of a horizontal path is given as follows:

$$
\begin{align*}
& \frac{d^{2} x^{i}}{d t^{2}}+F_{j k}^{i}(x, b) \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0 \tag{3.1}\\
& \frac{d b^{i}}{d t}+F_{j}^{i}(x, b) \frac{d x^{j}}{d t}=0
\end{align*}
$$

The h-basic vector field $B^{h}(f)$ as above used is determined, of course, by choosing an element $f \in F$. We, however, can define an intrinsic h-horizontal vector field by making use of the characteristic field $\gamma: Q \rightarrow F, q=(b, p) p^{-1} b \in F$. Namely, we denote by B^{h} the h horizontal vector field which is defined by the rule $B_{q}^{h}=B^{n}(r(q))_{q}$. Such a vector field B^{h} will be called the h-characteristic vector field on Q. We see at once that $B_{q}^{h}=l_{q} l_{b}(b), q=(b, p)$, where the point $b \in B$ is to be thought of as the tangent vector at $x=\tau(b)$. Since $R_{g} B_{q}^{h}=B_{q g}^{h}$, we know that a projection through $b_{0} \in B$ of an integral curve of B^{h} does not depend upon the choice of the starting point $q_{0}=\left(b_{0}, p_{0}\right)$ of the integral curve.

Definition. The path in M is the projection $\tau \bar{\pi} \bar{C}$ of an integral curve \bar{C} of the h-characteristic vector field B^{h}.

Corresponding to Proposition 2 for the case of a horizontal path, we shall show

Proposition 3. The path $\underline{C}=\left\{x_{t}\right\}$ in M is uniquely determined by giving the starting point x_{0} and the initial direction $x_{0}{ }^{\prime}$.

Proof. We observe first that, if $\underline{C}=\left\{x_{i}\right\}$ is the projection of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p,\right)\right\}$ of B^{h}, then the tangent vector x_{t}^{\prime} to \underline{C} at x_{t} is equal to b_{t}, as is easily seen from the definition of B^{h}.

Now, let any point $x_{0} \in M$ and any direction $x_{0}{ }^{\prime}$ at x_{0} be given. The direction $x_{0}{ }^{\prime}$ is looked upon as the point $b_{0}=x_{0}{ }^{\prime}$ of B over x_{0}, and hence we have a projection $C=\left\{b_{t}\right\}$ through b_{0} of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of B^{h}. As have above shown, the curve C is uniquely detemined by its starting point $b_{0}=x_{0}{ }^{\prime}$. The projection $\underline{C}=\left\{x_{t}\right\}$ of C to M is the desired path, because the tangent vector $q_{t}{ }^{\prime}$ to \bar{C} is $l_{q_{t}} l_{b_{t}}\left(b_{t}\right)$, and so the tangent vector x_{t}^{\prime} to \underline{C} is equal to b_{t}, especially $x_{0}{ }^{\prime}=b_{0}$. This completes the proof.

It is to be remarked here that the propeety stated in Proposition 3 is analogous to that of a geodesic in a Riemannian manifold.

Theorem 2. A curve $\underline{C}=\left\{x_{t}\right\}$ in M is a path in M if and only if the tangent vector x_{t}^{\prime} to \underline{C} is obtained from x_{0}^{\prime} by parallel displacement along \underline{C}.

Proof. Assume that \underline{C} is a path in M, and then \underline{C} is the projection of the horizontal curve $C=\left\{b_{t}\right\}$ in B, the latter being the projection of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of B^{h}. The tangent vector q_{t}^{\prime} to \bar{C} is $l_{q_{t}} l_{b_{t}}\left(b_{t}\right)$, and hence the tangent vector x_{t}^{\prime} to \underline{C} is equal to b_{t}. Since $C=\left\{b_{t}\right\}=\left\{x_{t}^{\prime}\right\}$ is horizontal, x_{t}^{\prime} is parallel along C. Consequently the necessity of the condition is shown. The sufficiency will be seen easily, observing that $C=\left\{b_{t}\right\}=\left\{x_{t}^{\prime}\right\}$ is horizontal, and that the tangent vector to the lift $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of C is equal to $l_{q_{t}} l_{b_{t}}\left(x_{t}^{\prime}\right)=l_{q_{t}} l_{b_{t}}\left(b_{t}\right)$.

Theorem 2 and the equation (2.2) gives at once the differential equation of a path in M in terms of a canonical coordinate as follows:

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{i}}+F_{j}^{i}\left(x, \frac{d x}{d t}\right) \frac{d x^{j}}{d t}=0 \tag{3.2}
\end{equation*}
$$

§4. Vertical paths

The process by means of which we define horizontal paths in the last section is applied equally well when we use v-basic vector fields, instead of h-basic ones.

Definition. The vertical path C is the projection $C=\bar{\pi} \bar{C}$ of an integral curve \bar{C} of every v-basic vector field $B^{v}(f)$ on Q.

Let us consider an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of $B^{v}(f)$, and the projection $C=\bar{\pi} \bar{C}=\left\{b_{t}\right\}$ on B. The tangent vector $q_{t}{ }^{\prime}$ to \bar{C} is equal to $B^{n}(f)_{q_{t}}=l_{q_{t}}\left(d p_{t} j \gamma_{t} f\right)$, where $r_{t}=\gamma\left(q_{t}\right)=p_{t}^{-1} b_{t}$, and hence the tangent vector b_{t}^{\prime} to C is $d p_{t} j_{\gamma_{t}} f$. It is obvious that the vertical path C is vertical in B, and its projection τC is a single point x_{0} in M. Therefore C is thought of as the tangent vector $b_{\text {t }}$ rotating around the fixed point x_{0}.

Proposition 4. There exists a unique vertical path by giving its starting point b_{0} and the initial direction b_{0}.

Proof. We take an arbitrary frame $p_{0} \in \pi^{-1} \tau\left(b_{0}\right)$, and an element $f \in F$ such that $d p_{0} b_{0}{ }^{\prime}=j \gamma_{0} f$, where $\gamma_{0}=p_{0}{ }^{-1} b_{0}$. Then we have the integral curve \bar{C} through $q_{0}=\left(b_{0}, p_{0}\right)$ of $B^{v}(f)$ corresponding to the above $f \in F$. Put $\bar{\pi} \bar{C}=C$, and then C is the desired vertical path, as
will be easily verified. Moreover, in the similar way to the case of a horizontal path, it will be seen that C is well determined, independent of the choice of a frame p_{0}.

In order to examine the relation between a vertical path and parallel displacement, we consider a mapping

$$
\sigma: B_{b}^{n} \rightarrow \tau^{-1} \tau(b), \quad X \rightarrow p j_{f} d p^{-1} X, \quad p \in \pi^{-1} \tau(b),
$$

where $f=p^{-1} b$. As is easily verified, the mapping σ is well defined, independent of the choice of a frame p used. Thus, corresponding to a tangent vertical vector X at b, we have a point σX on the fibre through b. The point σX is called the B-expression of X. If $X=$ $X^{i}\left(\partial / \partial b^{i}\right)_{b}$, the B-expression of X is the point having the canonical coordinate $\left(x^{i}, X^{i}\right)$, where $b=\left(x^{i}, b^{i}\right)$.

Now, as has above shown, the tangent vector b_{t}^{\prime} to a vertical path C is $d p_{t} j \gamma_{t} f$, and hence we have the B-expression $\sigma b_{t}^{\prime}=p_{t} f$. Therefore Proposition 1 shows that the curve $C^{*}=\left\{d_{t}\right\}=\left\{\left(b_{t}, \sigma b_{t}^{\prime}\right)\right\}$ is a lift of C to D. Conversely, if $C=\left\{b_{t}\right\}$ is a vertical curve in B such that the curve $C^{*}=\left\{d_{t}\right\}=\left\{\left(b_{t}, \sigma b_{t}{ }^{\prime}\right)\right.$ is a lift of C to D, it will be at once seen that C is a vertical path in B. Thus we have

Theorem 3. The necessary and sufficient condition for a vertical curve C in B to be a vertical path is that the B-expression of the tangent vector to C is parallel along the curve C.

In terms of a canonical coordinate, the B-expression of the tangent vector $b_{t}{ }^{\prime}$ is the point ($x_{t}^{i}, d b^{i} / d t$), and then (2.1) gives the differential equation of a vertical path as follows:

$$
\begin{equation*}
\frac{d x^{i}}{d t}=0, \quad \frac{d^{2} b^{i}}{d t^{2}}+C_{j k}^{i}\left(x_{0}, b\right) \frac{d b^{j}}{d t} \frac{d x^{k}}{d t}=0, \tag{4.1}
\end{equation*}
$$

where $x_{t}^{i}=x_{0}^{i}(=$ constants $)$.
Similar to the definition of the h-characteristic vector field B^{h}, we have the v-characteristic vector field B^{0}, which is given by the rule $B_{q}^{v}=B^{v}(\gamma(q))_{q}=l_{q}\left(d p j_{\gamma} p^{-1} b\right), q=(b, p)$. Since the projection of an integral curve $\bar{C}=\left\{q_{t}\right\}=\left\{\left(b_{t}, p_{t}\right)\right\}$ of B^{v} on the base M is a single point, we then are concerned with the projection $\bar{\pi} \bar{C}=C=\left\{b_{t}\right\}$ on B.

The tangent vector b_{t}^{\prime} to C is equal to $d p_{t} j y_{t}\left(p_{t}^{-1} b_{t}\right)$, and hence the b-expression σb_{t}^{\prime} is equal to b_{t}. Conversely, if a vertical curve $C=\left\{b_{t}\right\}$ in B is such that $\sigma b_{t}^{\prime}=b_{t}, C$ is a projection of an integral curve of B^{n}, as will be easily verified. Thus we have

Proposition 5. A vertical curve C in B is the projection of an integral curve of the v-characteristic vector field B^{n} on Q if and only if the B-expression of the tangent vector to C coincides with C itself.

The definition of the B-expression does not depend upon a Finsler connection, and hence Proposition 5 shows that the curve C as above defined is out of all relation to the Finsler connection, and the equation is given by

$$
\begin{equation*}
\frac{d x^{i}}{d t}=0, \quad \frac{d b^{i}}{d t}=b^{i} \tag{4.2}
\end{equation*}
$$

The curve as just now considered will be of interest only in connection with a geometric interpretation of the equations (4.2), in particular the second one.

§5. Quasi-paths

There are three kinds of coefficients of a Finsler connection, that is, $F_{j}^{i}, F_{j k}^{i}$ and $C_{j k}^{i}$. The first F_{j}^{i} take place in the equation (3.2) of a path in M, while the third $C_{j k}^{i}$ appear in the equation (4.1) of a vertical path. However, as for the second $F_{j k}^{i}$, we have not yet an equation of the form

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+F_{j k}^{i}\left(x, \frac{d x}{d t}\right) \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0 \tag{5.1}
\end{equation*}
$$

though we have already derived the equation (3.1) of a horizontal path, in which $F_{j k}^{i}$ and further F_{j}^{i} have appeared. In order to consider a geometrical meaning of the above (5.1), we have to recall here a quasi-connection in P derived from a Finsler connection in $Q[2, \S 2]$.

A quasi-connection $\Gamma_{(f)}$ with respect to a fixed element $f \in F$, more briefly, quasi-f-connection is by definition the distribution $\Gamma_{(f)} ; p \in P$
$\rightarrow \Gamma_{(f) p}$ on P such that $\Gamma_{(f) p}=\eta \Gamma_{q}^{h}$, where $q=(p f, p) \in Q$. In a previous paper [2] we found the quasi- f-connection form $\omega_{(f)}^{*}$. The force of the prefix 'quasi- f ' is that the form $\omega_{(f)}^{*}$ does not subject to the ordinary equation: $\omega_{(f)}^{*} R_{g}=a d\left(g^{-1}\right) \omega_{(f)}^{*}$, but satisfies the equation (2.6) of [2]. This fact is also seen by the equation

$$
\begin{equation*}
R_{g} \Gamma_{(f) b}=\Gamma_{\left(g^{-1} f\right) b g} . \tag{5.2}
\end{equation*}
$$

In fact, we see, according to the definition of $\Gamma_{(f)}$,

$$
R_{g} \Gamma_{(f) p}=R_{g} \eta \Gamma_{q}^{h}=\eta R_{g} \Gamma_{q}^{b}=\eta \Gamma_{q g}^{h}, \quad q=(p f, p) .
$$

Since $q g=(p f, p g)=\left(p g \cdot g^{-1} f, p g\right)$, the equation (5.2) is proved.
Corresponding to $f_{1} \in F$, the basic vector field $B_{(f)}\left(f_{1}\right)$ of the quasi $-f$-connection is naturally obtaind by the rule $B_{(f)}\left(f_{1}\right)_{p}=\eta B^{n}\left(f_{1}\right)_{q}$, $q=(p f, p)$.

If an ordinary connection is given in P, then we have naturally the associated connection in $B[4$, p. 43]. We analogously obtain the connection H^{*} in B, corresponding to the quasi- f-connection in P as follows. That is, if we take a mapping $K_{f}: P \rightarrow B, p \rightarrow p f$, the distribution $H^{*}: b \in B \rightarrow H_{b}^{*}$ is defined by the rule $H_{b}^{*}=K_{f} \Gamma_{(f)+}, p f=b$. As above remarked, the quasi- f-connection in P depends upon the choice of $f \in F$ used, while we shall show that H^{*} does not so. To do this, if we take $f, f^{\prime} \in F$ such that $b=p f=p^{\prime} f^{\prime}$, there exists an element $g \in G$ such that $p^{\prime}=p g$, and so $f^{\prime}=g^{-1} f$. By means of (5.2), we have

$$
K_{f^{\prime}} \Gamma_{\left(f^{\prime}\right) p^{\prime}}=K_{f^{\prime}} R_{g} \Gamma_{(f) p}=K_{g f^{\prime}} \Gamma_{(f) p}=K_{f} \Gamma_{(f) p}
$$

as we wished to show. The distribution H^{*} determined in this way is called the non-linear quasi-connection in B.

With respect to the quasi- f-connection $\Gamma_{(f)}$ in P. and the non-linear quasi-connection H^{*} in B, we can define, of course, the concepts of lifts and parallel displacements. Similar to Proposition 1, we can show immediately

Proposition 6. Let $C^{*}=\left\{p_{t}\right\}$ be a lift of a given curve $\underline{C}=\left\{x_{t}\right\}$
in M to P, with respect to the quasi-f-connection $\Gamma_{(f)}$. Then, a lift $C=\left\{b_{t}\right\}$ of \underline{C} to B with respect to the non-linear quasi-connection H^{*} is constructed by $b_{t}=p_{t} f$.

We consider a particular basic vector field $B_{(f)}(f)$ of the quasi- f connection, corresponding to the same $f \in F$. In the following, we shall denote this vector field by $B_{(f)}$ simply and call it the self-basic vector field. Further, as the image of $B_{(f)}$ under the mapping K_{f}, we have the quasi-horizontal vector field F^{2} on B. This vector field on B is called the F^{2}-vector field. In terms of a canonical coordinate, F^{2} is expressed by

$$
\begin{equation*}
F_{b}^{2}=b^{i}\left(\frac{\partial}{\partial x^{i}}-b^{k} F_{k i}^{j}(x, b) \frac{\partial}{\partial b^{j}}\right), \tag{5.3}
\end{equation*}
$$

where $b=\left(x^{i}, b^{i}\right)$. It is to be noticed here that we have an another special vector field F^{1} on B such that $F_{b}^{1}=\bar{\pi} B^{h}(f)_{a}, q=(p f, p), b=p f$. It is easy to see that F_{b}^{1} is well determined independent of the choice of the expression $b=p f$. The vector field F^{1} is obviously horizontal with respect to the non-linear connection H in B and is expressed by

$$
\begin{equation*}
F_{b}^{1}=b^{i}\left(\frac{\partial}{\partial x^{i}}-F_{i}^{j}(x, b) \frac{\partial}{\partial b^{j}}\right) . \tag{5.4}
\end{equation*}
$$

In a previous paper [3], we derived the equation [3, (1.1)], which gave the differential of the characteristic field γ. By virtue of that equation, we obtain the relation between above vector fields F^{1} and F^{2} as follows:

$$
\begin{equation*}
d_{p r} B^{n}(f)_{q}=F_{b}^{1}-F_{b}^{2}, \quad q=(p f, p), b=p f . \tag{5.5}
\end{equation*}
$$

Since $F_{b}^{1}=\bar{\pi} B^{h}(\gamma)_{q}, q=(p f, p), b=p f$, we obtain
Proposition 7. The path in M is the projection of an integral curve of the vector field F^{1} on B.

Corresponding to this characterization of a path, we now lay down the following definition.

Definition. The quasi-path in M is the image of an integral curve of F^{2} vector field on B under the projection $\tau: B \rightarrow M$.

As a consequence of (5.3), we now can recognize that the equation (5.1) just is the differential equation satisfied by a quasi-path in M.

Let us consider a quasi-path $\underline{C}=\left\{x_{t}\right\}$ in M which is the projection τC of an integral curve $C=\left\{b_{t}\right\}$ of the F^{2} vector field. By means of the definition of F^{2}, the curve C is the image of the integral curve $C^{*}=\left\{p_{t}\right\}$ of the self-basic vector field $B_{(f)}$ on P under the mapping K_{f}. From the relation $\tau K_{f}=\pi$ it follows that a quasi-path \underline{C} just is the projection πC^{*}. The tangent vector p_{t}^{\prime} to C^{*} is, by definition, equal to $B_{(f) p_{t}}=\eta B^{h}(f)_{q_{1}}, q_{t}=\left(p_{t} f, p_{t}\right)$, and hence the tangent vector is x_{t}^{\prime} to \underline{C} is expressed as $\pi \eta B^{h}(f)_{q_{t}}$, which is equal to $\tau \bar{\pi} B^{h}(f)_{q_{t}}=p_{t} f$ $=b_{t}$. Thus we have $x_{t}^{\prime}=b_{t}$. From the viewpoint of the non-linear quasi-connection H^{*}, this fact permits us to state that the tangent vector field x_{t}^{\prime} to the quasi-path \underline{C} is parallel along \underline{C} with respect to H^{*}.

Conversely, if this fact is true for a curve $C=\left\{x_{t}\right\}$ in M, we have a quasi-horizontal curve $C=\left\{b_{t}\right\}=\left\{x_{t}^{\prime}\right\}$ in B, the locus of the tangent vector x_{t}^{\prime} to \underline{C}, and then Proposition 6 shows that there exists a lift $C^{*}=\left\{p_{t}\right\}$ of \underline{C} to P with respect to the quasi- f-connection $\Gamma_{(f)}$ such that $x_{t}^{\prime}=p_{t} f, f \in F$. Since C^{*} is horizontal, the tangent vector p_{t}^{\prime} to C^{*} is written by $B_{(f)}\left(f_{1}\right)_{p_{t}}=\eta B^{h}\left(f_{1}\right)_{q_{t}}, q_{t}=\left(p_{t} f, p_{t}\right)$, where f_{1} is some element of F. Since C^{*} is a lift of \underline{C}, we see that $x_{t}^{\prime}=$ $\pi \eta B^{h}\left(f_{1}\right)_{q_{t}}=\tau \bar{\pi} B^{h}\left(f_{1}\right)_{q_{t}}=p_{t} f_{1}$, while $x_{t}^{\prime}=p_{t} f$ as above shown. It follows that $f_{1}=f$ and $p_{t}^{\prime}=\eta B^{h}(f)_{q_{1}}=B_{(f) p_{t}}$. Therefore C^{*} is an integral curve of the self-basic vector field $B_{(f)}$ and so \underline{C} is a quasi-path certainly. Consequently, we give an alternative characterization of a quasi-path in

Theorem 4. A curve $\underline{C}=\left\{x_{i}\right\}$ in M is a quasi-path if and only if the tangent vector x_{t}^{\prime} to \underline{C} is parallel along \underline{C} with respect to the non-linear quasi-connection H^{*}.

If the Finsler connection under consideration satisfies the condition $F[3, \S 6]$, the concept of a quasi-path coincides with that of a path, which will be easily seen from (5.5) and Proposition 7, or equations (3.2) and (5.1) concretely.

REFERENCES

[1] E. Cartan: Les espaces de Finsler, Actualités 79, Paris, 1934.
[2] M. Matsumoto: Affine transformations of Finsler spaces, J. Math. Kyoto Univ., 3-1 (1963) 1-35.
[3] M. Matsumoto: Linear transformations of Finsler connections, J. Math. Kyoto Univ. 3-2 (1964) 145-167.
[4] K. Nomizu: Lie groups and differential geometry, Math. Soc. Japan, 1956.
[5] T. Okada: A formulation of Finsler connections with use of the fibre bundles, graduation thesis, Kyoto Univ.
[6] H. Rund: The differential geometry of Finsler spaces, Springer, Berlin, 1959.

