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The purpose of this paper is to introduce paths in a Finsler space
from a standpoint of a connection in a principal bundle. In a Riemann-
ian space, a geodesic is, of course, defined as an extremal of the
length integral, and it is well known that a geodesic coincides with
a path defined with respect to the Riemannian connection given by
the Christoffel’s symbols. On the other hand, a geodesic in a Finsler
space is defined in like manner, but the explicit equation of a geodesic
is obtained in various forms by several authors, according to the choice
of a connection [1], [6].

In a previous paper [2] was presented the theory of a Finsler
connection in a certain principal bundle . According to this definition
of a Finsler connection, various paths may be obtained in a Finsler
space. In the case of an ordinary connection it is known that the
projection of any integral curve of every basic vector field in a bundle
space is a path in the base manifold, and conversely, every path in
the manifold is obtaind in this way [4, p. 63]. In the present paper,
this theorem is taken as the standpoint of the definition of paths in
a Finsler space.

The terminologies and signs of papers [2] and [3] will be used

in the following without too much comment.

§1. Basic vector fields

We denote by P(M, =, G) the bundle of frames of a differentiable
n-manifold M, and by B(M,, F, G) the tangent vector bundle of M,
where G is the full linear real group GL(n, R) and F is the real



306 Makoto Matsumoto

vector n-space. In order to define a Finsler connection and parallelism,
let us consider the induced bundle r*P=Q(B3, % G) and further the
induced bundle 'B=D(B,7, F,G). Total spaces Q and D of these

induced bundles are as follows:

Q= {(b’ P) |bEB’ PEP’ T(b) :ﬂ(P)},
D= {(b,b)|b,bEB, t(b) =< (b)}.

Then we have induced mappings 7 : Q—P and p: D—B which are
given by 7(b, p)=p and p(b, b) =b.

A Finsler connection (I, ™) in Q is by definition [2, §1] a pair
of distributions which satisfies the well known conditions for a connection,
together with the further condition #I",=Bj;, where B; indicates the
vertical subspace of the tangent vector space B, to B at b=7%(qg).
As is easily seen, the direct sum I'=I"+TI" gives an ordinary connec-
tion in @, which is called the linear connection associated with the
Finsler connection.

If we put #l",=F,, 7(q) =b, we have a distribution H : b€ B—H,
which is independent of the choice of g=71(d), and the tangent
vector space B, is the direct sum B+ FH,. H is called the non-linear
connection in B induced from the Finsler connection.

The induced bundle D over B is associated with the principal
bundle @ in which the Finsler connection is defined, and we therefore
obtain naturally a connection K in D corresponding to the Finsler
cconnection [4, p. 43]. In order to obtain K, we consider a mapping
rs: Q@—>D, g= (b, p)— (b, pf), where f is a fixed element of F, and
then we have subspaces Kj=,I"; and Ki=r,I"s of the tangent vector
space D, at d, where r,(¢)=d. The distribution K:deD—K,=
K+ Kj is called the connection associated with the Finsler connection.

A concept of a lift arises from a connection [4, p. 26]. First,
with respect to the associated linear connection I, we obtain the lift
[, X of a given tangent vector XEB, to g7 1(b), which is a unique
horizontal vector at g€@Q and covers X. Especially, 7, X belongs to
I or %, according whether X is horizontal or vertical. Moreover,

given a (piece-wise differentiable) curve C= {b,} in B, the lift (q,)C,
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G ET (b)), to Q is by definition a horizontal curve {g.} in @ such
that 7g,=b,. (Here, and in the following, ¢ indicates always a para-
meter: 0=t<{1.) The lift /(q,)C is uniquely determined by its starting
point gy, and if the starting point is taken as g,g, g&€G, then a lift
[(qog)C 1is easily verified to be given by R,/(q,)C (R, is a right
translation of @ by g€G).

Secondly, with respect to the non-linear connection H in B, we
have also a lift /, X of a given tangent vector XM, to ber(x),
and a lift 7(by)C of a given curve C={x,} in M to B. Finally, with
respect to the associated connection K in [), we have a lift /,X of
XEB, to dez7'(b) and a lift /(d,)C of a given curve C in B to D.

We are now in a position to give the definition of basic vector
fields B'(f) and B"(f), which will play an important réle in all our
subsequent considerations. First, the v-basic vector field B'(f) cor-
responding to a fixed element fE€F is defined by the rule B'(f),=
L (dpjsf)Er;,. q= (b, p)., where dp expresses the differential of an
admissible mapping p:F—t'z(p), r denotes the characteristic field:
Q—F [2, p. 3], and j,, fEF, is the identification F—F, [2, p. 3].
On the other hand, the h-basic vector field B"(f) is defined by the
rule B*(f),=L1L(pf)Er;,, q=(b,p). If e1, =, en is a fixed base of
F, then we obtain B'(e.)=DB, and B'(e.)=DB!, a=1, +--, n, which are
linearly independent from each other and span I'" and I'* respectively.
In terms of a canonical coordinate (&', &, p.) of a point ¢, those basic
vector fields are expressed as

By=ph (5‘2—; —piCS ‘%’E)’
Bi=pi(L i~ ).
in which C%, F! and F%; are functions of arguments x’ and &' only,

and called coefficients of the Finsler connection.

§2. Parallel displacement

Let us consider a curve C= {6} in B and take the lift [(d,)C=
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{d} = {(b:,b)} of C to D, with respect to the associated connection
K. Then we say as usual that d, is obtained from d, by parallel
displacement along C in B. Here pd,=b, is thought of as discribing
another curve in B. Then we say that &, is obtained from &, by
parallel displacement along C in B. Moreover, in the case of the
Finsler connection, the curve C in B is looked upon as the curve
tC=C= {z;} in the base manifold M, together with the vector field
b; defined along C. Then b, is interpreted as another vector field
defined along C. We therefore express the above situation by saying
that b, is obtained from &, by parallel displacement along C in M
with respect to the element of support b, [1, p. 4].

If a given curve C in B is vertical, the projection tC=C is obvi-
ously reduced to a single point x,. In this special case, b, and &, are
tangent vectors to M at the fixed x,, which are rotating about x, as
t varies,

From the definition of the associated connection K in D, it follows
incidently that

Proposition 1. Let [(q)C= {q:} = {(b., p.)} be a lift of a given
curve C=1{b} in B to Q, then any lift I(dy)C={d} = {(b,, )} of
C to D is constructed by the rule b,=p,f, where f is a fixed element
o'y of F.

As a consequence of the proposition, the parallel displacement as

above defined is expressed in terms of a canonical coordinate as follows:

@D L p(r L Ci ) <o,
where b,= (zi, b)), b= (i, b)) and we put I'i,=Fi,+Ci Fi. Finally,
let us consider a curve C= {x,} in M and take a lift /(6)C= {b,} to
B with respect to the non-linear connection I{ in B. The curve C
together with its lift 7(5,)C is thought of as a special vecter field &,
defined along C. We say that b, is obtained from &, by parallel
displacement along C. In terms of a canonical coordinate, the parallel

displacement of b, is expressible by the equation
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5 0 db’ ~i dx? _
2.2) 'y Fie, ),

where z,= (x}) and b,= (i, b).

We see that equations (2.1) and (2.2) expressing parallel dis-
placements coincide formally with that derived by several authors, see
[6], in particular, p. 55 (3.18), p. 67 (1.3) and p. 82 (4.4).

§3. Horizontal paths

Definition. 7he horizontal path C in B is the projection =C
of an integral curve C of every h-basic vector field B'(f) on Q.

If we put C={b} and take the projection :C=C= {x,} on M,
the tangent vector xy’ to C at x, is called the initial direction of the
horizontal path C. By virtue of the definition of the non-linear con-
nection Ff, it is obvious that C is horizontal, and hence the tangent
vector by to C at the starting point b, is obtained by 7, 2.

Proposition 2. There exists uniquely a horizontal path by
giving its starting point and initial direction.

Proof. We first observe that, if the horizontal curve C= {b;} is
the projection of an integral curve C= {¢q,} = {(b,, p.)} of the h-basic
vector field B*(f), the tangent vector b, to C at b, is equal to [, p.f,
as is easily seen from the definition of B*(f). Therefore, if C= {z:}
is the projection of C to M, the tangent vector x/ to C at z, is equal
to p.f. ‘

Now, let any point b, of B and any direction xy €M.,, xo=1(bs),
be given. If we take an arbitrary frame p,En"'c(b,), then the direction
&y is expressed as pof, fE€F. The pair (b, po) =qo may be regarded
as a point of Q. and then there exists a unique integral curve C=
{g} = {(b., p.)} through ¢, of the h-basic vector field B"(f), corres-
ponding to the above fEF. The projection zC=C= {b,} is the desired
horizontal path.

In order to complete the proof it is enough to show that the
horizontal path C as above obtained is independent of the expression

pof of the initial direction x,'. If we take an another expression py'f’,
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there is an element g&G such that p/=p,g, and hence f'=g . By
virtue of the relation B*(g7'f) =R, B"(f), we see that the integral
curve C' of B*(f") through ¢'=qug is given by C'=R,C, and conse-
quently we see z(C’'=zR,C==C, which coincides with the above C.

Theorem 1. Let C= {b} be a horizontal curve in B and let
tC=C= {x} be the image of C under the projection v: B—~M. The
necessary and sufficient condition for C to be a horizontal path in
B is that the tangent vector x," to Cis obtained from x, by parallel
displacement along C with respect to the clement of support b,.

Proof. Suppose that C is a horizontal path and hence C is the
projection of an integral curve C= {¢,} = {(b,, p.)} of the h-basic
vector field B*(f). Since the tangent vector ¢, is equal to 1,4, (p. f),
we see that the tangent vector b, is /,,p,f and so the tangent vector
x/ is given by p,f. Let us consider a curve C*= {d,} = {(b,, )} in
D, and it follows from Proposition 1 that C* is a lift of C to D,
because C= {(b,, P} is a lift of C to @ and that x/=p,f. Thus we
show the necessity of the condition in the theorem.

Conversely, if the condition holds for a horizontal curve C, then
C*={d,}={(b,, x/)} is a lift of C to D, by means of the definition
of the parallelism, and hence Proposition 1 shows that z,/=p,f, where
fis a fixed element of F and C= {q} = {(b., p»)} is a lift of C to Q.
Since C is assumed to be horizontal, the tangent vector ¢, to C is
given by [,,0l,,(x/), thatis, I, p. f, which is equal to B*(f),,. Thus
C is an integral curve of B*(f), and we complete the proof.

In terms of a canonical coordinate, the expression of a horizontal
path C is easily obtained by means of Theorem 1. Firstly, since C
is horizontal, the equation (2. 2) is satisfied. Next, x, is parallel along
{x,} with respect to &,, and hence x/=b, has to satisfy (2.1). Accord-
ingly the differential equation of a horizontal path is given as follows:

A’z dx’ dat
“ap TR O

(3.1

”:,bﬂ’«( b)
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The /h-basic vector field B'(f) as above used is determined, of
course, by choosing an element f&F. We, however, can define an
intrinsic h-horizontal vector field by making use of the characteristic
field 7 : Q—F, g= (b, p) p'bEF. Namely, we denote by B the h-
horizontal vector field which is defined by the rule Bi=B"(r(q)),.
Such a vector field B" will be called the h-characteristic vector field
on . We see at once that B;=1,,(b), q= (b, p), where the point
beB is to be thought of as the tangent vector at x=t(d). Since
R,Bi=B.,, we know that a projection through B of an integral
curve of B" does not depend upon the choice of the starting point
qo= (bo, po) of the integral curve.

Definition. The path in M is the projection =zC of an integral
curve C of the h-characteristic vector field B'.

Corresponding to Proposition 2 for the case of a horizontal path,
we shall show

Proposition 3. The path C={x} in M is uniquely determined
by giving the starting point x, and the initial direction z, .

Proof. We observe first that, if C= {2} is the projection of an
integral curve C= {q,} = {(b,, p.)} of B" then the tangent vector zx,
to C at x, is equal to b,, as is easily seen from the definition of B’

Now, let any point 2p& M and any direction x,” at x, be given.
The direction &, is looked upon as the point by=ux, of B over v,
and hence we have a projection C:= {b;} through &, of an integral
curve C= {g.} = {(b.. p)} of B'. As have above shown, the curve C
is uniquely detemined by its starting point by=.x,". The projection
C={x} of C to M is the desired path, because the tangent vector ¢’
to C is [,,1,,(b), and so the tangent vector x," to C is equal to b,
especially xy'=06,. This completes the proof.

It is to be remarked here that the propeety stated in Proposition
3 is analogous to that of a geodesic in a Riemannian manifold.

Theorem 2. A curve C={x} in M is a path in M if and
only if the tangent vector x. to C is obtained from z, by parallel
displacement along C.
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Proof. Assume that C is a path in A, and then C is the pro-
jection of the horizontal curve C= {6} in B, the latter being the
projection of an integral curve C= {¢g,} = {(b,, p)} of 3*. The tangent
vector ¢, to C is I,,,,(b,), and hence the tangent vector x, to C is
equal to b,. Since C= {b} = {x/} is horizontal, x, is parallel along
C. Consequently the necessity of the condition is shown. The suffi-
ciency will be seen easily, observing that C= {b,} = {x,'} is horizontal,
and that the tangent vector to the lift C= {¢} = {(b,, p)} of C is
equal to [, (x/)=1,1,(b).

Theorem 2 and the equation (2.2) gives at once the differential
equation of a path in M in terms of a canonical coordinate as follows:

a0 d’z’ ,~.< ﬁ’g) dx’ _
(3.2) dt’ TE\ dt ) dt 0.

§4. Vertical paths

The process by means of which we define horizontal paths in the
last section is applied equally well when we use w-basic vector fields,
instead of /-basic ones,

Definition. The wvertical path C is the projection C=7C of
an integral curve C of every v-basic vector field B'(f) on Q.

Let us consider an integral curve C= {q,} = {(b,, p)} of B'(f),
and the projection C=%C= {6} on B. The tangent vector g, to C is
equal to B'(f).=10,,(dp.jv, f), where y,=7(q.)=pi'b,, and hence the
tangent vector b, to C is dp.jv.f. It is obvious that the vertical path
C is vertical in B, and its projection vC is a single point x, in M.
Therefore C is thought of as the tangent vector b, rotating around
the fixed point x,.

Proposition 4. There exists a unique vertical path by giving
its starting point by and the initial direction by'.

Proof. We take an arbitrary frame p,Ern~'v(b,), and an element
fEF such that dpedy=jv,f, where yo=pi'b,. Then we have the
integral curve C through go= (b, ps) of B*(f) corresponding to the
above fE€F. Put zC=C, and then C is the desired vertical path, as
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will be easily verified. Moreover, in the similar way to the case of
a horizontal path, it will be seen that C is well determined, independent
of the choice of a frame p,.

In order to examine the relation between a vertical path and

parallel displacement, we consider a mapping
o: Bi—>t7't(b), X-pjdp'X, pea't(h),

where f=p70. As is easily verified, the mapping ¢ is well defined,
independent of the choice of a frame p used. Thus, corresponding to
a tangent vertical vector X at b, we have a point ¢X on the fibre
through 4. The point 6X is called the B-expression of X. If X=
X'(8/0b"),, the B-expression of X is the point having the canonical
coordinate (x', X’), where b= (&', b").

Now, as has above shown, the tangent vector b,’ to a vertical path
C is dp.jy, f, and hence we have the B-expression b, =p, f. Therefore
Proposition 1 shows that the curve C*= {d,} = {(b,, ob,)} is a lift of
C to D. Conversely, if C= {b,} is a vertical curve in B such that
the curve C*= {d,} = {(b,, 6b/) is a lift of C to D, it will be at once
seen that C is a vertical path in B. Thus we have

Theorem 3. The necessary and sufficient condition for a
vertical curve C in B to be a vertical path is that the B-expression
of the tangent vector to C is parallel along the curve C.

In terms of a canonical coordinate, the B-expression of the tangent
vector b, is the point (af, db’/dt), and then (2.1) gives the differential
equation of a vertical path as follows:

dr’ b’ ; db’ dz*
(4. 1) ({[ —0, _dt2 +C]b(.l‘o, b>—dt —dt —O,

where xi= zj(= constants).

Similar to the definition of the h-characteristic vector field B,
we have the v-characteristic vector field B‘, which is given by the
rule B;=DB"(y(¢)) =1 (dpjyp7'b), g= (b, p). Since the projection of
an integral curve C= {g.} = {(b:, p.)} of B’ on the base M is a single

point, we then are concerned with the projection zC=C= {4,} on B.
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The tangent vector b, to C is equal to dp.jy,(pi'0,), and hence the
B-expression ¢b,” is equal to b,. Conversely, if a vertical curve C= {b,}
in B is such that ¢b/=0b,, C is a projection of an integral curve of
I, as will be easily verified. Thus we have

Proposition 5. A wvertical curve C in B is the projection of
an integral curve of the v-characteristic vector field B' on Q if
and only if the B-expression of the tangent vector to C coincides
with C itself.

The definition of the B-expression does not depend upon a Finsler
connection, and hence Proposition 5 shows that the curve C as above
defined is out of all relation to the Finsler connection, and the equation

is given by

dx' _ db’
(4.2) dt =0, dt

= b,

The curve as just now considered will be of interest only in connection
with a geometric interpretation of the equations (4.2), in particular

the second one.

§5. Quasi-paths

There are three kinds of coefficients of a Finsler connection, that
is, Fi, Fi, and Cj,. The first F} take place in the equation (3.2) of
a path in M, while the third Cj, appear in the equation (4.1) of a
vertical path. However, as for the second Fj,, we have not yet an
equation of the form

&’z ,-'< i{:_) da’ dx* _
6.1 A TN ) 0,

though we have already derived the equation (3.1) of a horizontal
path, in which F%, and further [7j have appeared. In order to consider
a geometrical meaning of the above (5.1), we have to recall here
a quasi-connection in P derived from a Finsler connection in @ [2, §2].

A quasi-connection I'¢;y with respect to a fixed element f€F, more

briefly, quasi-f-connection is by definition the distribution I'¢y; pEP
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—TI'¢, on P such that 'y, =9Iy, where g= (pf, p) €EQ. In a previous
paper [2] we found the quasi-f-connection form of, The force of
the prefix ‘quasi-f~ is that the form o¥, does not subject to the ordinary
equation: ofR,=ad(g™) o, but satisfies the equation (2.6) of [2].

This fact is also seen by the equation
(5.2) ReT 3o =Te 1 pops -
In fact, we see, according to the definition of I'¢,
ReTpp=Renl's =R, Ts=1l"3, . q= (pf ).

Since gg= (pf, pg) = (pg g7 'f, pg), the equation (5.2) is proved.

Corresponding to fi€F, the basic vector field B,(fi) of the
quasi-f-connection is naturally obtaind by the rule Bi,(f1),=#B"(f1)q,
q=(2f, ).

If an ordinary connection is given in P, then we have naturally
the associated connection in B[4, p. 43]. We analogously obtain the
connection H* in B, corresponding to the quasi-f-connection in P as
follows. That is, if we take a mapping K,: P—B, p—pf, the distri-
bution H*:beB—>H¥ is defined by the rule H¥=K,I'(»,, pf=0.
As above remarked, the quasi-f-connection in P depends upon the
choice of feF used, while we shall show that H* does not so. To
do this, if we take f, f'€F such that b=pf=p'f’, there exists an
element g&G such that p'=pg, and so f'=g¢7'f. By means of (5.2),

we have
KyTiny=KpRelipy= Ky Tipp=KsTipyy

as we wished to show. The distribution H* determined in this way
is called the non-linear quasi-connection in B.

With respect to the quasi-f-connection I'¢;; in P_and the non-linear
quasi-connection F{* in BB, we can define, of course, the concepts of
lifts and parallel displacements. Similar to Proposition 1, we can show

immediately

Proposition 6. Let C*= {p} be a lift of a given curve C= {x,}
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in M to P, with respect to the quasi-f-connection I'y. Then, a lift
C={b} of C to B with respect to the non-linear quasi-connection
H* is constructed by b,=p.f.

We consider a particular basic vector field B¢, (f) of the quasi-f-
connection, corresponding to the same f€F. In the following, we
shall denote this vector field by B¢y simply and call it the self-basic
vector field. Further, as the image of B¢, under the mapping K,, we
have the quasi-horizontal vector field F? on B. This vector field on
B is called the F*vector field. In terms of a canonical coordinate,
F* is expressed by

(5.3) F3=b"(i,.—b~Fz,.(x, b)i),

ox ob’
where b= (z',b"). It is to be noticed here that we have an another
special vector field F' on B such that F;=7B"(f),, ¢= (pf, p), b=pf.
It is easy to see that F; is well determined independent of the choice
of the expression b=pf. The vector field F' is obviously horizontal
with respect to the non-linear connection H in B and is expressed by

5.4) Pi=b( =Pl 0

In a previous paper [3], we derived the equation [3, (1.1)],
which gave the differential of the characteristic field y. By virtue of
that equation, we obtain the relation between above vector fields F*

and F? as follows:
(5.5) dprB'(f) . =Fi—F., q=(pf,p), b=pf.

Since Fy=7zB"(y),, q= (pf, p), b=pf, we obtain

Propesition 7. The path in M is the projection of an integral
curve of the vector field F' on B.

Corresponding to this characterization of a path, we now lay down
the following definition.

Definition. The quasi-path in M is the image of an integral
curve of F* vector field on B under the projection ©: B—M.
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As a consequence of (5. 3), we now can recognize that the equation
(5.1) just is the differential equation satisfied by a quasi-path in M.

Let us consider a quasi-path C= {z,} in M which is the projection
tC of an integral curve C= {5} of the F* vector field. By means of
the definition of F? the curve C is the image of the integral curve
C*= {p:} of the self-basic vector field B¢, on P under the mapping
K;. From the relation tK,=x it follows that a guasi-path C just is
the projection =C*. The tangent vector p, to C* is, by definition,
equal to By, =2B"(f).,, q.= (p.f, p:), and hence the tangent vector is
x/ to C is expressed as npB"(f),,, which is equal to tzB"(f).,=p.f
=b,. Thus we have x/=5,. TFrom the viewpoint of the non-linear
quasi-connection [*, this fact permits us to state that the tangent
vector field x," to the quasi-path C is parallel along C with respect
to H*.

Conversely, if this fact is true for a curve C= {z,} in M, we
have a quasi-horizontal curve C= {b,} = {x/} in B, the locus of the
tangent vector z, to C, and then Proposition 6 shows that there exists
a lift C*= {p} of C to P with respect to the quasi-f-connection I,
such that x/=p.f, fEF. Since C* is horizontal, the tangent vector
p! to C* is written by Bo»(f)s=2B"(f1).,, .= (pifs p:), where fi
is some element of F. Since C* is a lift of C, we see that z/=
B (f1) ., =t7B"(f1).,=p: f1, while 2/=p, f as above shown. It follows
that fi=f and p./=9B"(f). = By»,. Therefore C* is an integral curve
of the self-basic vector field B¢, and so C is a quasi-path certainly.
Consequently, we give an alternative characterization of a quasi-path in

Theorem 4. A curve C={x)} in M is a quasi-path if and only
if the tangent vector x, to C is parallel along C with respect to
the non-linear quasi-connection H*.

If the Finsler connection under consideration satisfies the condition
F [3, §6], the concept of a quasi-path coincides with that of a path,
which will be easily seen from (5.5) and Proposition 7, or equations
(3.2) and (5.1) concretely.
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