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The purpose of this paper is to introduce paths in a Finsler space
from a standpoint of a connection in a principal bundle. In a Riemann-
ian  space, a geodesic is, of course, defined as an extrem al of the

length integral, and it is w ell know n that a geodesic coincides with
a path defined with respect to  the Riemannian connection given by
the Christoffel's sym bols. On the other hand, a geodesic in a Finsler
space is defined in like manner, but the explicit equation of a geodesic
is obtained in various forms by several authors, according to the choice
of a  connection [1] , [6] .

In  a  previous paper [2] was presented the theory o f a  Finsler
connection in a certain principal bundle Q. According to this definition
o f a  Finsler connection, various paths may be obtained in a Finsler
sp a c e . In the case of an ordinary connection it is known that the

projection of any integral curve o f every basic vector field in a bundle
space is a path  in the base manifold, and conversely, every path in
the manifold is obtaind in th is w ay [4, p. 6 3 ] . In the present paper,

this theorem  is taken as the standpoint of the definition o f  paths in
a Finsler space.

The terminologies and signs o f p ap ers [2 ] and [3 ]  will be used
in the following without too much comment.

§ 1 .  Basic vector fields

We denote by P(M, 7r, G) the bundle o f frames of a differentiable
n-manifold M , and by B(M, r, F, G) the tangent vector bundle of M,
where G  i s  the full linear real group G L (n , R ) and F  i s  the real
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vector n-space. In order to define a Finsler connection and parallelism,
let us consider the induced bundle r - 1 P=Q (B , t ,  G )  an d  further the
induced bundle 7-- iB =D (B , , F , G ) . Total spaces Q and D  of these
induced bundles are  as follows:

Q= { (b, p) lbEB , p E P, r(b )-- --- n(p)}  ,
D =  {(b , b) I b, bE B, r (b) =r (b)}  .

Then we have induced mappings 72 : Q-->P and  p : D— >B which are
given by v (b , p )=p  and p (b , b) .

A  Finsler connection (I", P h )  in  Q  is by definition [2, §1] a pair
of distributions which satisfies the well known conditions for a connection,
together with the further condition TrP:=13„ where R ,  indicates the
vertical subspace of the tangent vector space 13, to  B  at b =  ( q ) .
As is easily seen, the direct sum F T h  gives an  ordinary connec-
tion in  Q, which is called the linear connection associated with the
Finsler connection.

If we put ir-II=H b, 'k (q ) =b , we have a distribution H: bEB -->H,
which is independent o f th e  choice o f  q ETr- 1 (b ) ,  and the tangent
vector space Bb is the direct sum R b+H b. H  is called the non-linear
connection in  B  induced from the Finsler connection.

The induced bundle D  over B  is associated with the principal
bundle Q in  which the Finsler connection is defined, and we therefore
obtain naturally a  connection K  in  D  corresponding to the Finsler

cconnection [4, p. 43]. In  order to obtain K , we consider a  mapping

r 1 : Q— >D, q=- (b, p)-4-(b, pf), where f  is a  fixed element of F , and
then we have subspaces K = r 1 r ,  and K I:i= r 1 r :  of the tangent vector

space D a at cl, where r f ( q ) = d .  T h e distribution K : dED-->K d=
IC+ IC; is called the connection associated with the Finsler connection.

A concept o f  a  lif t  a r ise s  from a  connection [4, p. 26] . First,
with respect to the associated linear connection r , we obtain the lift
/, X  of a given tangent vector X e B b  to qEH - '( b ) , which is a unique
horizontal vector at qEQ and covers X .  Especially, 4 X  belongs to
r :  or 1 1 , according whether X  is  horizontal or vertical. Moreover,
given a  (piece-wise differentiable) curve C= {b,} in  B , the lift l(q0)C,
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goE T-c- 1 (b 0 ) , to Q  is by definition a horizontal curve {q,} in  Q  such

that '7q., = b t .  (Here, and in  the following, t  indicates always a  para-

meter: 0 < t < 1 . )  The lift /(g o)C  is uniquely determined by its starting

point go, an d  if th e  starting point is taken a s  q o g ,  gE G , then a lift
l ( q o g - )C  is easily verified to be given by R g l ( q 0 C  ( R ,  is  a  right
translation of Q  by gE G ).

Secondly, with respect to  the non-linear connection H  in  B ,  we

have also a  lif t  /b X  o f  a  given tangent vector X E M , to bE r - ' (x ) ,
and  a lift l ( b o) C  o f a  given curve C =  {x,} in  M  to B .  Finally, with
respect to  the associated connection K  in  D ,  we h av e  a  lif t /, X  of
X E B , to c / E t ' ( b )  and  a  lift / (do)C  of a given curve C  in  B  to D.

W e are now in  a position to give the definition o f basic vector
fields H ( f )  and B h ( f ) ,  which will play an important rôle in all our

subsequent considerations. First, the v -b a s i c  vector fie ld  R ( f )  cor-

responding to a  fixed element f E F  is defined by the rule B "(f),----
1 ,(d p j 1f )  E T ,  q =  (b. p ) ,  where c/p expresses the differential of an
admissible mapping p:F—>r - 1 7 r (p ) ,  r  denotes the characteristic field:
Q—).F [2, p. 3] , and j f ,  fE F ,  is  the identification  F — F , [2 ,  p. 3].
On the other hand, the h -b a s ic  vector field B h ( f )  is defined by the
rule B h ( f ) ,= 1 ,1 , ( p f )  E r : ,  q =  ( b ,  p ) .  If e 1, •••, e , is a  fixed base of
F , then we obtain B " (e ,)= H ; and B " (e,)=  B ,  a=1, • • • , n, which are
linearly independent from each other and span r "  and T h  respectively.

In terms of a canonical coordinate (x 1, b', pl„) of a point q ,  those basic
vector fields are expressed as

B = p (  4, —  C ki  a p
a

a • a •— F', —  k
a p ,b )

in  which C, F I an d  F, 1 a r e  functions of arguments x  and b '  only,
and called coefficients o f  the F in s le r  connection.

§ 2 .  Parallel displacement

Let us consider a  curve C= {1) 1}  in  B  and take the lift l(d 0 )C =
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{c1,} { ( b o -b,)}  of C to D , with respect to the associated connection
K .  Then we say as usual that e l, is obtained from  do by Parallel
displacem ent along C in B .  Here pd r =b , is thought of as discribing
another curve in  B .  T hen w e say that b ,  is obtained from  -6° b y
parallel displacement along C  in  B .  Moreover, in the case of the

Finsler connection, the curve C  in B  is looked upon as the curve
{x,} in the base manifold M , together with the vector field

b, defined along C .  T hen  b ,  is in terpreted as another vector field

defined along C .  We therefore express the above situation by saying
that b , is obtained from  -6, by parallel displacement along C  in M
w ith  respect to  the  elem ent o f  support b , [1, p. 4] .

If a given curve C  in B  is  vertical, the projection 7C=C is  obvi-
ously reduced to a single point x o . In this special case, b , and -6 , are

tangent vectors to M  a t the fixed x 0 , which are rotating about x o as

t  varies.

From the definition of the associated connection K  in D, it follows
incidently that

P r o p o s i t io n  1 .  L et l(q0)C= {q,} = {(I), p,)}  b e  a lif t  o f  a given

curv e C= { b,}  in  B  to  Q , then  any  lif t l(do)C= { (1, } = { (b,, b,)}  o f

C to D  is constructed by  the rule -1-zt = pf f , w h e re  f  is  a f ixed elem ent

N ib ° o f  F .

As a consequence of the proposition, the parallel displacement as
above defined is expressed in terms of a canonical coordinate as follows :

(2.1) ,
d b i

 b '  i k (x , )  dbk  ) -  0a t 
dxk
tit '  '  dt

where b,— I X )  b )  and w e put r '0 = F 0 + C ,F .  F in a lly ,
let us consider a  curve C= {x,}  in NI and take a lift l(b 0)C= { b,}  to
B  with respect to  the non-linear connection H  in  B .  The curve C
together with its lift 1(b0) C  is thought of as a special vecter field b,
defined along C .  W e say  th a t b ,  is obtained from  bo  b y  parallel
displacem ent along C .  In  terms of a canonical coordinate, the parallel
displacement of b , is expressible by the equation
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(2. 2) (lb'• dx1 + P (x
'
 b) — 0dt dt

where x t= ( x )  and b,—  (2,,b;).
W e see that equations (2. 1) and (2. 2) expressing parallel dis-

placements coincide formally with that derived by several authors, see

[6], in particular, p. 55 (3. 18), p. 67 (1. 3) and p. 82 (4. 4).

§ 3 .  Horizontal paths

D efin ition . T h e  h o riz o n tal p ath  C  in  B  is  the  pro jec tion  TrC
o f  an  in tegral curv e C  o f  ev ery  h-basic v ector f ield B h(f ) o n  Q.

I f  w e put C= { b,}  and take  the projection .z-C= C= { x,}  on M,
the tangent vector xo' to C a t x o is  ca lled  the in itial direction  of the
horizontal path C .  By virtue of the definition of the non-linear con-
nection H. it is obvious that C  is  horizontal, and hence the tangent

vector bo'  to  C  a t the starting point bo is obtained by //,,, x0'.

Proposition 2. T here  ex ists un iquely  a  horiz on tal path  by
giv ing its starting p o in t  an d  in it ial direction.

P ro o f .  W e first observe that, if the horizontal curve C= { b,}  is
the projection of an integral curve -0 = { 0 = { (b ,, p , ) }  of the h-basic

vector field B h(f ), the tangent vector b ,' to C  a t b , is equal to  10 ,p, f,

as is easily seen from the definition o f B h ( f ) .  Therefore, if C= {xt}
is  the projection of C  to M, the tangent vector x t '  to C  a t x t is equal
to A I:

Now, let any point bo o f B  and any direction xo'EM,,, xo= r(bo),
be given. If we take an arbitrary frame P o E n - 1  r (b0 ), then the direction
x o'  is expressed as p o f ,  f E F .  The pair (b0, PO= go may be regarded
as a point o f Q , and then there exists a unique integral curve C=
{q,} {(b,, p t ) }  through qo of the h-basic vector field B h ( f ) ,  corres-
ponding to the above f  E F .  The projection -it = { b , }  is  the desired
horizontal path.

In order to com plete the proof it is enough  to  show th at the
horizontal path C  as above obtained is independent of the expression

' , o f  of the initial direction x o '. If w e take an another expression po' f',
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there is an element g E G  such that po'=pog, and hence f'=  g - l f .  By
virtue of the relation Bh(g - V)= 1Z ,B "(f), w e see  th a t the integral
curve C ' of B h (f ')  through qo' = qog is given by C ' R ,C ,  and conse-
quently we see TrC'=itR,C=A-C, which coincides with the above C.

T h e o re m  1 .  L e t  C= {b,} be a  h o r iz o n ta l cu rve  in  B  and  le t

DC=C= {x,} be the im age of C  under the projection  r :  B---.111 The

necessary and  sufficient condition f o r  C  to  be a  ho rizon ta l pa th  in

B is that the tangent vector x,' to C is  ob ta ined  from  x o' by para lle l

d isplacem ent along C  w ith  respect to  the element o f suppo rt b1.

P r o o f  Suppose that C  is  a horizontal path an d  hence C  is  the
projection o f  a n  in tegra l curve C = {q,} = {(b„ p,)} o f  th e  h-basic
vector field / 3 " ( f ) .  Since the tangent vector q ,' is equal to l,,lb e (p, f ) ,

w e see that the tangent vector b ,' is  1 ,p ,f and so the tangent vector
x l  is given by p , f. Let us consider a  curve C*= {d,}  =  {(bi, x ,')}  in
D , an d  it fo llow s from  Proposition 1  th a t C* i s  a  lift o f C  to D,
because C= { (b„ P,)} is  a  lift o f C  to Q  and that x , '  pi f .  Thus we
show the necessity of the condition in the theorem.

Conversely, if the condition holds for a horizontal curve C , then
{d,} = {(b„ x t ')}  is  a  lift o f C  to D , by means o f the  definition

of the parallelism, and hence Proposition 1  shows that x 1'=1,,f, where
f  is  a fixed element of F  and C = {q,} = {(bt, p,)} is  a lift o f C  to Q.

Since C  is assum ed to be horizontal, the tangent vector q/ to C  is
given by 1,,l,,(x/), that is , l q ,10 , f ,  which is equal to / 3 " ( f ) , , .  Thus
C  is  an  integral curve of /3" ( f ) ,  and we complete the proof.

In terms o f a  canonical coordinate, the expression of a horizontal
path C  is easily obtained by means Of Theorem 1. Firstly, since C
is  horizontal, the equation (2. 2) is satisfied. Next, x ,' is parallel along

{x,} with respect to b,, and hence h a s  t o  s a t i s f y  (2 . 1 ) . Accord-
ingly the differential equation of a horizontal path is given as follows:

d'x' dxk 

d e  
-I- f i l( x

'

b) 
 d t  d t  

— 0
'

dxl,  

"
(x b) =0.

It dt

(3. 1)
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The h-basic vector field B 0 ( f )  as above used is determ ined, of

course, by choosing an element f E F .  W e, however, can define an

in trin sic  h-horizontal vector field by making use of the characteristic
field r : q = ( b ,  p )  p - l b E F .  Namely, we denote by B " the h-
horizontal vector field w hich is defined by the ru le  B gh=B h(r(q)),.
Such a vector field B " w ill be called the h-characteristic v ector f ield
on Q . W e see  at once that B"q =l,lb (b ) , q = ( b ,  p ) ,  w here the point

b E B  is to  be thought of as the tangent vecto r at x =  ( b )  .  Since
R,13",= B g ,  we know that a projection through bo E B  of an integral
curve o f B h does not depend upon the choice of the starting point

go= (bo, Po) of the integral curve.

D e f in i t i o n .  The path in  A l is the projection r -AC o f  an  integral
curv e  C  o f  th e  h-characteristic v ec to r f ie ld  R .

Corresponding to Proposition 2 for the case of a horizontal path,
w e shall show

Proposition 3. T he p a th  C= { x ,}  in  M  is uniquely  determ ined
by  g iv ing  th e  s tartin g  p o in t x o  an d  th e  in it ial d irec tion  x 0 '.

P ro o f .  W e observe first that, i f  C = {x , } is  the projection of an

integral curve C= {q,}  = { (b,, p ,)}  o f B ", then the tangent vector
to  C  a t x ,  is equal to b„ as is easily seen from the definition of Bk.

Now, let an y  point x o E M and any direction x o '  a t xo be given.
The direction x o '  is looked upon as the point b 0 = x 0'  of B  over xo,
and hence w e have a projection C.-- {b,} through bo o f  a n  integral
curve C = {qt} = P ,)}  of Bh. As have above shown, the curve C
is uniquely detemined by its  starting  point bo= xo'. The projection
C= { x ,}  o f C  to M  is  the desired path, because the tangent vector q,'
to C  i s  l g ,10,(b,), and so the tangent vector x , ' to C  is equal to  b,,
especially xo' = bo. This completes the proof.

It is to be rem arked here that the propeety stated in Proposition
3  is analogous to that of a  geodesic in a Riemannian manifold.

T h e o re m  2 .  A  curv e  C= {x,}  i n  M  i s  a  p a th  in  A l  i f  a n d
o n ly  if  th e  tangen t v ec tor x , ' to  C' is  o b tain ed  f ro m  xo' by  parallel
displacem ent along C.
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P ro o f .  Assume that C  is  a  path in  M , and then C  is  the pro-
jec tion  of the horizontal curve C = { b t}  i n  B ,  th e la tter being the
projection of an integral curve C= { q,}  = { (b,, p,)}  of B h . The tangent
vector q ,' to C  is  l a ,lb ,(b,), and hence the tangent vector x , ' to C  is
equal to b,. Since C =  {b,} = { x /}  is horizontal, x , ' is parallel along
C .  Consequently the necessity of the condition is shown. T he suffi

-ciency will be seen easily, observing that C= {b,} { x / }  is  horizontal,
an d  th a t the tangent vector to  th e  lif t C= { q,} = { (b,, p,)}  o f  C  is
equal to 1,, lb, (x /)=1,,1,,(b,).

Theorem 2  and the equation (2 . 2 ) gives at once the differential
equation o f a  path in  M  in  terms of a canonical coordinate as follows:

 + F ;( x  d x d x l  (3 .2) dt' A  ' d t  )  d t

§4. Vertical paths

The process by means of which we define horizontal paths in the
last section is applied equally well when we use v-basic vector fields,
instead of h-basic ones.

Definition. T h e  v e rt ic al p a th  C  i s  t h e  pro jec tion  C= T C C  o f
a n  in tegral cu rv e  C  o f  ev ery  v-basic v ec tor f ie ld  R ( f )  o n  Q.

L et u s consider an  integral curve e= {qt} =  { (b,, p,)}  o f  B r ( f ) ,
and the projection C = i -C- = { b,}  on B .  The tangent vector q ,' to i s
equal to B" ( f) a ,= 1 , ,(dp j, f ), where r i=  r (qt)=p7 1 1,,, and hence the
tangent vector b ,' to  C  is  d p ijy t f . It is obvious that the vertical path
C  is  vertical in B ,  an d  its  projection r C  i s  a  s ing le  point x o in  M .
Therefore C  is  though t o f as the tangent vector b ,  rotating around
the fixed point x o .

Proposition 4. 'T here ex ists a  un ique  v ertical path  by  g iv ing
its  s tartin g  p o in t  bo a n d  th e  in it ial d irec tion  bo'.

P ro o f .  W e take an arbitrary frame Po E ir- 1 7 (bo) ,  and an element
f E F  such that dpobo'=fy„f , w here r o =p,T'b o . T h en  w e  have the
integral curve C  through g o =  (bo, p o )  o f B V )  corresponding to the
above f E  F .  Put te = C , and then C  is  the desired vertical path, as
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w ill be easily verified. M oreover, in  the sim ilar w ay to  the case of
a horizontal path, it will be seen that C  is well determined, independent
of the choice o f a  frame p o .

In  order to  exam ine the relation  between a  vertica l path  and
parallel displacement, we consider a  mapping

: ( b ) ,  X— p  f  dp - ' X  , p  E  (b) ,

where f = p - '1). A s  is easily verified , the mapping a is well defined,
independent of the choice of a  frame p  used. Thus, corresponding to
a tangent vertical vector X  a t b ,  w e have a  po in t a X  on the fibre
through b. The point c X  is  ca lled  the B -expression o f X .  If X =
X 1 (6/6b91, the B-expression of X  is  the point having the canonical
coordinate (x ', X 1) ,  where b= (xi ,bi).

Now, as has above shown, the tangent vector b ,' to a  vertical path
C  is  d p d y ,f , and hence we have the B-expression ab,' Therefore
Proposition 1  shows that the curve C*= {c/1} ( ( b , ,  ab ,')}  is  a lift of
C  to D .  Conversely, i f  C = {1),} i s  a  vertical curve in  B  such that
the curve C*= {dt}  { (1 ) ,, ab ,')  is  a  lift o f C  to D , it w ill be at once
seen that C  is  a  vertical path in  B .  Thus we have

Theorem  3. T h e  n e c e ssary  and su f f ic ie n t  c o n d it io n  f o r  a
v ertical curv e  C i n  B  to  b e  a v e rt ic al Path  is  th at  the B-expression
of the tangent v e c to r to  C  is  p aralle l alo n g  the curv e  C.

I n  terms of a canonical coordinate, the B-expression of the tangent
vector b,' is the point (x,i, (112i/dt), and then (2. 1) gives the differential
equation o f a  vertical path a s  follows :

a'x ' d ' b i' d b i dxk
(4 .1) — 0   " b )   dt d t 2   d t  d t  0 ,

where xi,=.4;(= constants).
S im ila r  to  the definition o f th e  h-characteristic vector field  Bh,

w e have the v -characteristic v ec to r f ie ld  13', w hich is given by the
rule (r (q)),= 4 (dpj y p - lb ) , q = (b , p ) . Since the projection of
an  integral curve C = {q,} = ((b,, p ,) }  o f  B " on the base M  is  a single
point, we then are  concerned with the projection TTC= C = {b,} on B.
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The tangent vector b ,' to C is equal to dpe j,(P7 1 b ,) ,  and  hence the
B-expression eh ,' is equal to b , .  Conversely, if a vertical curve C = {b,}
in  B  is such that ab i ' — b „ C  i s  a  projection o f an  integral curve of
13', as w ill be easily verified . T hus w e have

Proposition 5. A  v e rtic al c u rv e  C  in  B  is  th e  Pro je c tio n  o f
a n  in te g ral c u rv e  o f  th e  v -c h arac te ris tic  v e c to r f ie ld  B " on  Q  i f
a n d  o n ly  i f  the B -ex pression o f  t h e  tan g e n t v ector to  C  coincides
w ith  C  itse lf .

The definition of the B-expression does not depend upon a Fins ler
connection, and hence Proposition 5 shows that the curve C as above
defined is out o f a ll relation to the Fins ler connection, and the equation
is given by

A ' •(4. 2) _  — b'.
d t c l t

The curve as  just now considered will be of interest only in connection
w ith  a  geometric interpretation of the equatibns (4. 2), in  particular
the second one.

§5. Quasi-paths

There are three kinds of coefficients of a Finsler connection, that
is , F;, F;,, and C'f , . The first F ; take place in  the equation (3.2) o f
a  path in  M , w h ile  the third C I  appear in  th e  equation (4. 1) of a
vertica l path . However, as fo r the second I lk ,

 w e  h ave  not yet an
equation of the form

d'xi •  (    (12 (5. 1) F j k  - O
cit 2 c i t  d t  e l t

though we have already derived th e  equation (3. 1) of a horizontal
path, in w hich  PI and further F ; have appeared. In  order to consider
a  geometrical meaning o f th e  above (5. 1), w e  h ave  to recall here
a quasi-connection in P  derived from a Finsler connection in Q [2, §2] .

A quasi-connection r ,, , with respect to a fixed element fE  F, more
briefly, quasi-f -connection is by definition the distribution r ( , ) ;  p E P
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---->r ( f ) ,  on P  such that r o o p=72r,', where q= (pf , p) E Q . In a previous
paper [2 ] w e found  the quasi-f-connection form coto . The force of
the prefix 'quasi-f' is that the form  (4 ) does not subject to the ordinary
equation : (.4 )1?,= cid(g - 1 ) 4 f ) ,  but satisfies the equation (2.6) of [2] .
This fact is also seen by the equation

(5 .2) lA g -if )p g  .

In fact, we see, according to the definition of r u ) ,

R g r ( f ) p=R g .0-'1,'=72R g r h,=721", ,  q= (pf , p).

Since qg= (pf , pg)= (pg • g - lf , pg), the equation (5. 2) is proved.

Corresponding to f] E F, the b as ic  v e c to r f ie ld  - 1 3 ( f ) ( f i )  o f  th e
quasi-f-connection is naturally obtaind by the rule B o o ( f i )p= vB h(f i),,

( p f ,  p ) .

If an  ordinary connection is given in  P , then we have naturally

the associated connection in  B [4 , p. 4 3 1 .  W e analogously obtain the

connection H *  in  B , corresponding to the quasi-f-connection in P  as

fo llow s. T hat is , if  w e take a  mapping K f  P-4 3 , p-->pf, the distri-

bution H*:bET 3-->11' is defined by th e  ru le  H t=K f r(f )P, p f=  b.
A s above remarked, the quasi-f-connection in P  depends upon the

choice of f E F  used, w hile w e shall show that H * does not so. To
do th is , if  w e take f ,  f 'E F  such  that b =p f — p 'f ', there exists an
element g E G  such that p' = pg, and so f ' = g - i f  By means of (5. 2),
w e have

r(f ')p' K e R g r ( f ) p —  K g f '  r ( f ) p= K  f  r ( f ) p

as we w ished to show. The distribution H *  determined in  this way
is called the non-linear quasi-connection in  B.

With respect to the quasi-f-connection [' co  in  P_and the non-linear
quasi-connection 1 P  in  13, we can define, of course, the concepts of
lifts and parallel displacements. Similar to Proposition 1, we can show
immediately

Proposition 6 . L et C*= {pi}  be a li f t  o f  a giv en curv e C= {x,}
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in  .211  to  P , w ith  respect to  th e  quasi-f-connection r ( f ) . T hen , a lif t
C= {b i }  o f  C  t o  B  w ith respect to  the non-linear quasi-connection
H *  is  construc ted  by  bt=Ptf :

We consider a particular basic vector field B w ( f )  of the quasi-f-
connection, corresponding to th e  same f E F .  In  th e  following, we
shall denote this vector field by B ( f )  s im p ly  an d  ca ll it the self-basic
v ec to r f ie ld . Further, as the image of B ( f )  under the mapping K f ,  we
have the quasi-horizontal vector field F ' on B .  This vector field on
B  is called  the F '- v e c to r f ie ld .  In  term s o f  a  canonical coordinate,
F ' is expressed by

(5. 3) M—b`(  a( x  b )   a
  ) '

where b  (.x, be). It is  to  be no ticed  here  th at w e have an  another

special vector field F ' on B  such that T iB h(f  )„ q= (pf , p), b= pf .
It is easy to see that 11 is well determined independent of the choice

of the expression b =  p f .  The vector field is obviously horizontal

w ith respect to the non-linear connection H  in  B  and is expressed by

(5 .4)P 1 =1 3 " ( -2 9 — :— F (x  b )  
 a  

 ).

I n  a  previous paper [3] , w e derived th e  equation [3, (1. 1)] ,
which gave the differential of the characteristic field r. By virtue of
that equation, we obtain the relation between above vector fields F 1-

and F ' as follows:

(5 .5 )d p r B h ( f ) , = Ft , q = ( p f ,  p ) ,  b = p f

Since F= T rB h(r)„ q= (pf , p), p f ,  we obtain

Proposition 7. T he p ath  in M  is  the  pro jection  o f  an  integral

curv e  o f  th e  v ec tor f ie ld  F ' on B .

Corresponding to this characterization of a path, we now lay down

the following definition.

Definition. T h e  quasi-path  in  M  is  th e  im ag e  o f  an  integral

curv e o f  F ' v ec tor f ie ld  o n  B  u n d e r the projection r :
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As a consequence of (5. 3), we now can recognize that the equation
(5 . 1 ) ju st is the differential equation satisfied by a  quasi-path in M .

Let us consider a quasi-path C = {x t } in M  which is the projection
rC  of an integral curve C= { b,}  of the F 2 vector f ie ld . By means of
the definition of F 2 ,  the curve C  i s  the im age of the integral curve
C *  {A } of the self-basic vector field B c o  o n  P  under the mapping
K 1. F r o m  the relation r l i f = n  it follows that a  quasi-path C  just is
the projection 7 C * . The tangent vector P ,' to  C *  i s ,  by definition,
equal to /3( f ) ,, = v i3h(f ),„ cif = ( p i f ,  P ) ,  and hence the tangent vector is
x /  to C  is expressed a s  ra213"(f),„ which is equal to rTrB"(f),,= pi f
= b . T h u s  w e  have x / = h .  F r o m  the viewpoint o f the  non-linear
quasi-connection H * ,  th is fact perm its u s  to  sta te  th at the tangent
vector field x /  to  the quasi-path C  is paralle l a long C  w ith  respect
to H*.

Conversely, if  th is  fa c t  is  tru e  fo r  a  curve C.= { x ,}  in  M , we
h ave  a  quasi-horizontal curve C =  {1),}  = {x/}  in  B ,  the locus o f the
tangent vector .x /  to C , and then Proposition 6  shows that there exists
a  l if t  C *=  {A } o f C  to P  w ith  respect to the quasi-f-connection rc.f)
such that x ,'=p i f ,  f E F .  Since C * is  horizontal, the tangent vector
P,' to C * is w ritten by B( f )(f 0p ,=v B h(f i),„ q i= (p if ,  P t) , where f i

is som e elem ent o f  F .  Since C *  i s  a  lift o f C , w e see that x,'—
7r7iB h(f i),,=r -feB h(f i) ,,=p f f i, while x t'.---p tf as above shown. It follows
that f ,= f  and Pt' —1213h (f )a,—  B ( f ) p ,. Therefore C* is an integral curve
o f the self-basic vector fie ld  Boo an d  so C  i s  a  quasi-path certainly.
Consequently, we give an  alternative characterization of a quasi-path in

T h e o re m  4 .  A  curv e  C = ( .4  in  M  is a  quasi-path i f  an d  only
if  th e  tan g e n t  v ec tor x /  t o  C  is  p aralle l  alo n g  C  w ith  respect to
the  non-linear quasi-connection H*.

If the Finsler connection under consideration satisfies the condition
F  [3, §61, the concept o f  a  quasi-path coincides with that of a path,
which w ill be easily seen from  (5 . 5 ) and Proposition 7 , or equations
(3 . 2 ) and  (5 . 1 ) concretely.
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