Paths in a Finsler space

Bу

Makoto Матѕимото

(Received June 17, 1964)

The purpose of this paper is to introduce paths in a Finsler space from a standpoint of a connection in a principal bundle. In a Riemannian space, a geodesic is, of course, defined as an extremal of the length integral, and it is well known that a geodesic coincides with a path defined with respect to the Riemannian connection given by the Christoffel's symbols. On the other hand, a geodesic in a Finsler space is defined in like manner, but the explicit equation of a geodesic is obtained in various forms by several authors, according to the choice of a connection [1], [6].

In a previous paper [2] was presented the theory of a Finsler connection in a certain principal bundle Q. According to this definition of a Finsler connection, various paths may be obtained in a Finsler space. In the case of an ordinary connection it is known that the projection of any integral curve of every basic vector field in a bundle space is a path in the base manifold, and conversely, every path in the manifold is obtained in this way [4, p. 63]. In the present paper, this theorem is taken as the standpoint of the definition of paths in a Finsler space.

The terminologies and signs of papers [2] and [3] will be used in the following without too much comment.

§1. Basic vector fields

We denote by $P(M, \pi, G)$ the bundle of frames of a differentiable *n*-manifold *M*, and by $B(M, \tau, F, G)$ the tangent vector bundle of *M*, where *G* is the full linear real group GL(n, R) and *F* is the real

vector *n*-space. In order to define a Finsler connection and parallelism, let us consider the induced bundle $\tau^{-1}P = Q(B, \bar{\pi}, G)$ and further the induced bundle $\tau^{-1}B = D(B, \bar{\tau}, F, G)$. Total spaces Q and D of these induced bundles are as follows:

$$Q = \{(b, p) | b \in B, p \in P, \tau(b) = \pi(p)\},\$$

$$D = \{(b, \overline{b}) | b, \overline{b} \in B, \tau(b) = \tau(\overline{b})\}.$$

Then we have induced mappings $\eta: Q \rightarrow P$ and $\rho: D \rightarrow B$ which are given by $\eta(b, p) = p$ and $\rho(b, \overline{b}) = \overline{b}$.

A Finsler connection (Γ^v, Γ^h) in Q is by definition [2, §1] a pair of distributions which satisfies the well known conditions for a connection, together with the further condition $\overline{\pi}\Gamma_q^v = B_b^v$, where B_b^v indicates the vertical subspace of the tangent vector space B_b to B at $b = \overline{\pi}(q)$. As is easily seen, the direct sum $\Gamma = \Gamma^v + \Gamma^h$ gives an ordinary connection in Q, which is called the *linear connection associated with the* Finsler connection.

If we put $\overline{\pi}\Gamma_q^h = H_b$, $\overline{\pi}(q) = b$, we have a distribution $H: b \in B \to H_b$ which is independent of the choice of $q \in \overline{\pi}^{-1}(b)$, and the tangent vector space B_b is the direct sum $B_b^v + H_b$. H is called the *non-linear* connection in B induced from the Finsler connection.

The induced bundle D over B is associated with the principal bundle Q in which the Finsler connection is defined, and we therefore obtain naturally a connection K in D corresponding to the Finsler connection [4, p. 43]. In order to obtain K, we consider a mapping $r_f: Q \rightarrow D, q = (b, p) \rightarrow (b, pf)$, where f is a fixed element of F, and then we have subspaces $K_d^* = r_f \Gamma_q^*$ and $K_d^h = r_f \Gamma_q^h$ of the tangent vector space D_d at d, where $r_f(q) = d$. The distribution $K: d \in D \rightarrow K_d =$ $K_d^* + K_d^h$ is called the *connection associated with the Finsler connection*.

A concept of a lift arises from a connection [4, p. 26]. First, with respect to the associated linear connection Γ , we obtain the lift $l_q X$ of a given tangent vector $X \in B_b$ to $q \in \overline{\pi}^{-1}(b)$, which is a unique horizontal vector at $q \in Q$ and covers X. Especially, $l_q X$ belongs to Γ_q^b or Γ_q^b , according whether X is horizontal or vertical. Moreover, given a (piece-wise differentiable) curve $C = \{b_i\}$ in B, the lift $l(q_0)C$, $q_0 \in \overline{\pi}^{-1}(b_0)$, to Q is by definition a horizontal curve $\{q_i\}$ in Q such that $\overline{\pi}q_i = b_i$. (Here, and in the following, t indicates always a parameter: $0 \leq t \leq 1$.) The lift $l(q_0)C$ is uniquely determined by its starting point q_0 , and if the starting point is taken as $q_0g, g \in G$, then a lift $l(q_0g)C$ is easily verified to be given by $R_s l(q_0)C$ (R_s is a right translation of Q by $g \in G$).

Secondly, with respect to the non-linear connection H in B, we have also a lift $l_b X$ of a given tangent vector $X \in M_x$ to $b \in \tau^{-1}(x)$, and a lift $l(b_0)C$ of a given curve $C = \{x_t\}$ in M to B. Finally, with respect to the associated connection K in D, we have a lift $l_d X$ of $X \in B_b$ to $d \in \tau^{-1}(b)$ and a lift $l(d_0)C$ of a given curve C in B to D.

We are now in a position to give the definition of basic vector fields $B^{r}(f)$ and $B^{h}(f)$, which will play an important rôle in all our subsequent considerations. First, the *v*-basic vector field $B^{r}(f)$ corresponding to a fixed element $f \in F$ is defined by the rule $B^{r}(f)_{q} =$ $l_{q}(dpj_{7}f) \in \Gamma_{q}^{r}$. q = (b, p), where dp expresses the differential of an admissible mapping $p: F \rightarrow \tau^{-1}\pi(p)$, γ denotes the characteristic field: $Q \rightarrow F$ [2, p. 3], and $j_{f}, f \in F$, is the identification $F \rightarrow F_{f}$ [2, p. 3]. On the other hand, the *h*-basic vector field $B^{h}(f)$ is defined by the rule $B^{h}(f)_{q} = l_{q}l_{b}(pf) \in \Gamma_{q}^{h}, q = (b, p)$. If e_{1}, \dots, e_{n} is a fixed base of F, then we obtain $B^{r}(e_{a}) = B_{a}^{r}$ and $B^{h}(e_{a}) = B_{a}^{h}, a = 1, \dots, n$, which are linearly independent from each other and span Γ^{r} and Γ^{h} respectively. In terms of a canonical coordinate $(x^{i}, b^{i}, p_{a}^{i})$ of a point q, those basic vector fields are expressed as

$$B_{a}^{v} = p_{a}^{i} \left(\frac{\partial}{\partial b^{i}} - p_{b}^{j} C_{ji}^{k} \frac{\partial}{\partial p_{b}^{k}} \right),$$

$$B_{a}^{h} = p_{a}^{i} \left(\frac{\partial}{\partial x^{i}} - F_{j}^{j} \frac{\partial}{\partial b^{j}} - p_{b}^{j} F_{ji}^{k} \frac{\partial}{\partial p_{b}^{k}} \right),$$

in which C_{ji}^{k} , F_{i}^{j} and F_{ji}^{k} are functions of arguments x^{i} and b^{i} only, and called *coefficients of the Finsler connection*.

§2. Parallel displacement

Let us consider a curve $C = \{b_i\}$ in B and take the lift $l(d_0)C =$

 $\{d_t\} = \{(b_t, \overline{b}_t)\}$ of C to D, with respect to the associated connection K. Then we say as usual that d_t is obtained from d_0 by *parallel* displacement along C in B. Here $\rho d_t = \overline{b}_t$ is thought of as discribing another curve in B. Then we say that \overline{b}_t is obtained from \overline{b}_0 by parallel displacement along C in B. Moreover, in the case of the Finsler connection, the curve C in B is looked upon as the curve $\tau C = \underline{C} = \{x_t\}$ in the base manifold M, together with the vector field b_t defined along \underline{C} . Then \overline{b}_t is interpreted as another vector field defined along \underline{C} . We therefore express the above situation by saying that \overline{b}_t is obtained from \overline{b}_0 by parallel displacement along \underline{C} in M with respect to the element of support b_t [1, p. 4].

If a given curve C in B is vertical, the projection $\tau C = \underline{C}$ is obviously reduced to a single point x_0 . In this special case, b_t and \overline{b}_t are tangent vectors to M at the fixed x_0 , which are rotating about x_0 as t varies.

From the definition of the associated connection K in D, it follows incidently that

Proposition 1. Let $l(q_0)C = \{q_i\} = \{(b_i, p_i)\}$ be a lift of a given curve $C = \{b_i\}$ in B to Q, then any lift $l(d_0)C = \{d_i\} = \{(b_i, \overline{b}_i)\}$ of C to D is constructed by the rule $\overline{b}_i = p_i f$, where f is a fixed element $p_0^{-1}\overline{b}_0$ of F.

As a consequence of the proposition, the parallel displacement as above defined is expressed in terms of a canonical coordinate as follows:

(2.1)
$$\frac{d\overline{b}^{i}}{dt} + \overline{b}^{j} \left(\Gamma^{i}_{jk}(x,b) \frac{dx^{k}}{dt} + C^{i}_{jk}(x,b) \frac{db^{k}}{dt} \right) = 0,$$

where $b_t = (x_t^i, b_t^i)$, $\overline{b}_t = (x_t^i, \overline{b}_t^i)$ and we put $\Gamma_{jk}^i = F_{jk}^i + C_{jl}^i F_k^i$. Finally, let us consider a curve $\underline{C} = \{x_i\}$ in M and take a lift $l(b_0)\underline{C} = \{b_i\}$ to B with respect to the non-linear connection H in B. The curve \underline{C} together with its lift $l(b_0)\underline{C}$ is thought of as a special vector field \overline{b}_t defined along \underline{C} . We say that b_t is obtained from b_0 by *parallel displacement along* \underline{C} . In terms of a canonical coordinate, the parallel displacement of b_t is expressible by the equation Paths in a Finsler space

(2.2)
$$\frac{db^i}{dt} + F^i_j(x,b)\frac{dx^j}{dt} = 0,$$

where $x_t = (x_t^i)$ and $b_t = (x_t^i, b_t^i)$.

We see that equations (2.1) and (2.2) expressing parallel displacements coincide formally with that derived by several authors, see [6], in particular, p. 55 (3.18), p. 67 (1.3) and p. 82 (4.4).

§3. Horizontal paths

Definition. The horizontal path C in B is the projection $\overline{\pi}\overline{C}$ of an integral curve \overline{C} of every h-basic vector field $B^{*}(f)$ on Q.

If we put $C = \{b_i\}$ and take the projection $\tau C = \underline{C} = \{x_i\}$ on M, the tangent vector x_0' to \underline{C} at x_0 is called the *initial direction* of the horizontal path C. By virtue of the definition of the non-linear connection H, it is obvious that C is horizontal, and hence the tangent vector b_0' to C at the starting point b_0 is obtained by $l_{b_0} x_0'$.

Proposition 2. There exists uniquely a horizontal path by giving its starting point and initial direction.

Proof. We first observe that, if the horizontal curve $C = \{b_t\}$ is the projection of an integral curve $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of the *h*-basic vector field $B^*(f)$, the tangent vector b_t' to C at b_t is equal to $l_{b_t}p_tf$, as is easily seen from the definition of $B^*(f)$. Therefore, if $\underline{C} = \{x_t\}$ is the projection of \underline{C} to M, the tangent vector x_t' to \underline{C} at x_t is equal to $p_t f$.

Now, let any point b_0 of B and any direction $x_0' \in M_{x_0}$, $x_0 = \tau(b_0)$, be given. If we take an arbitrary frame $p_0 \in \pi^{-1}\tau(b_0)$, then the direction x_0' is expressed as $p_0 f$, $f \in F$. The pair $(b_0, p_0) = q_0$ may be regarded as a point of Q, and then there exists a unique integral curve $\overline{C} =$ $\{q_t\} = \{(b_t, p_t)\}$ through q_0 of the *h*-basic vector field $B^*(f)$, corresponding to the above $f \in F$. The projection $\overline{\pi}\overline{C} = C = \{b_t\}$ is the desired horizontal path.

In order to complete the proof it is enough to show that the horizontal path C as above obtained is independent of the expression $p_0 f$ of the initial direction x_0' . If we take an another expression $p_0'f'$,

309

there is an element $g \in G$ such that $p_0' = p_0 g$, and hence $f' = g^{-1}f$. By virtue of the relation $B^*(g^{-1}f) = R_g B^*(f)$, we see that the integral curve $\overline{C'}$ of $B^*(f')$ through $q_0' = q_0 g$ is given by $\overline{C'} = R_g \overline{C}$, and consequently we see $\overline{\pi}\overline{C'} = \overline{\pi}R_g \overline{C} = \overline{\pi}\overline{C}$, which coincides with the above C.

Theorem 1. Let $C = \{b_t\}$ be a horizontal curve in B and let $\tau C = \underline{C} = \{x_t\}$ be the image of C under the projection $\tau : B \rightarrow M$. The necessary and sufficient condition for C to be a horizontal path in B is that the tangent vector x_i' to \underline{C} is obtained from x_0' by parallel displacement along \underline{C} with respect to the element of support b_i .

Proof. Suppose that C is a horizontal path and hence C is the projection of an integral curve $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of the *h*-basic vector field $B^*(f)$. Since the tangent vector q_t is equal to $l_{q_t}l_{b_t}(p_tf)$, we see that the tangent vector b_t is $l_{b_t}p_tf$ and so the tangent vector x_t is given by p_tf . Let us consider a curve $C^* = \{d_t\} = \{(b_t, x_t')\}$ in D, and it follows from Proposition 1 that C^* is a lift of C to D, because $\overline{C} = \{(b_t, p_t)\}$ is a lift of C to Q and that $x_t' = p_t f$. Thus we show the necessity of the condition in the theorem.

Conversely, if the condition holds for a horizontal curve C, then $C^* = \{d_i\} = \{(b_i, x_i')\}$ is a lift of C to D, by means of the definition of the parallelism, and hence Proposition 1 shows that $x_i' = p_i f$, where f is a fixed element of F and $\overline{C} = \{q_i\} = \{(b_i, p_i)\}$ is a lift of C to Q. Since C is assumed to be horizontal, the tangent vector q_i' to \overline{C} is given by $l_{q_i} l_{b_i}(x_i')$, that is, $l_{q_i} l_{b_i} p_i f$, which is equal to $B^h(f)_{q_i}$. Thus \overline{C} is an integral curve of $B^h(f)$, and we complete the proof.

In terms of a canonical coordinate, the expression of a horizontal path C is easily obtained by means of Theorem 1. Firstly, since C is horizontal, the equation (2.2) is satisfied. Next, x_t' is parallel along $\{x_t\}$ with respect to b_t , and hence $x_t' = \overline{b}_t$ has to satisfy (2.1). Accordingly the differential equation of a horizontal path is given as follows:

(3.1)
$$\frac{\frac{d^{2}x^{i}}{dt^{2}} + F_{jk}^{i}(x,b)\frac{dx^{j}}{dt}\frac{dx^{k}}{dt} = 0}{\frac{db^{i}}{dt} + F_{j}^{i}(x,b)\frac{dx^{j}}{dt} = 0}.$$

The *h*-basic vector field $B^{*}(f)$ as above used is determined, of course, by choosing an element $f \in F$. We, however, can define an *intrinsic h*-horizontal vector field by making use of the characteristic field $\gamma: Q \to F$, $q = (b, p) p^{-1}b \in F$. Namely, we denote by B^{*} the *h*-horizontal vector field which is defined by the rule $B_{q}^{*} = B^{*}(\gamma(q))_{q}$. Such a vector field B^{*} will be called the *h*-characteristic vector field on Q. We see at once that $B_{q}^{*} = l_{q}l_{b}(b)$, q = (b, p), where the point $b \in B$ is to be thought of as the tangent vector at $x = \tau(b)$. Since $R_{g}B_{q}^{*} = B_{qg}^{*}$, we know that a projection through $b_{0} \in B$ of an integral curve of B^{*} does not depend upon the choice of the starting point $q_{0} = (b_{0}, p_{0})$ of the integral curve.

Definition. The path in M is the projection $\tau \overline{\pi} \overline{C}$ of an integral curve \overline{C} of the h-characteristic vector field B^* .

Corresponding to Proposition 2 for the case of a horizontal path, we shall show

Proposition 3. The path $\underline{C} = \{x_i\}$ in M is uniquely determined by giving the starting point x_0 and the initial direction x_0' .

Proof. We observe first that, if $\underline{C} = \{x_t\}$ is the projection of an integral curve $\overline{C} = \{q_t\} = \{(b_t, p, t)\}$ of B^{*} , then the tangent vector x_t' to \underline{C} at x_t is equal to b_t , as is easily seen from the definition of B^{*} .

Now, let any point $x_0 \in M$ and any direction x_0' at x_0 be given. The direction x_0' is looked upon as the point $b_0 = x_0'$ of B over x_0 , and hence we have a projection $C = \{b_t\}$ through b_0 of an integral curve $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of B^* . As have above shown, the curve Cis uniquely detemined by its starting point $b_0 = x_0'$. The projection $\underline{C} = \{x_t\}$ of C to M is the desired path, because the tangent vector q_t' to \overline{C} is $l_{q_t} l_{b_t}(b_t)$, and so the tangent vector x_t' to \underline{C} is equal to b_t , especially $x_0' = b_0$. This completes the proof.

It is to be remarked here that the propeety stated in Proposition 3 is analogous to that of a geodesic in a Riemannian manifold.

Theorem 2. A curve $\underline{C} = \{x_i\}$ in M is a path in M if and only if the tangent vector x_i' to \underline{C} is obtained from x_0' by parallel displacement along \underline{C} .

Makoto Matsumoto

Proof. Assume that \underline{C} is a path in M, and then \underline{C} is the projection of the horizontal curve $C = \{b_t\}$ in B, the latter being the projection of an integral curve $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of B^t . The tangent vector q_t' to \overline{C} is $l_{q_t} l_{b_t}(b_t)$, and hence the tangent vector x_t' to \underline{C} is equal to b_t . Since $C = \{b_t\} = \{x_t'\}$ is horizontal, x_t' is parallel along \underline{C} . Consequently the necessity of the condition is shown. The sufficiency will be seen easily, observing that $C = \{b_t\} = \{x_t'\}$ is horizontal, and that the tangent vector to the lift $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of C is equal to $l_{q_t} l_{b_t}(x_t') = l_{q_t} l_{b_t}(b_t)$.

Theorem 2 and the equation (2, 2) gives at once the differential equation of a path in M in terms of a canonical coordinate as follows:

(3.2)
$$\frac{d^2x^i}{dt^i} + F_j^i\left(x, \frac{dx}{dt}\right) \frac{dx^j}{dt} = 0.$$

§4. Vertical paths

The process by means of which we define horizontal paths in the last section is applied equally well when we use v-basic vector fields, instead of h-basic ones.

Definition. The vertical path C is the projection $C = \overline{\pi}\overline{C}$ of an integral curve \overline{C} of every v-basic vector field $B^{\nu}(f)$ on Q.

Let us consider an integral curve $\overline{C} = \{q_t\} = \{(b_t, p_t)\}$ of $B^r(f)$, and the projection $C = \overline{\pi}\overline{C} = \{b_t\}$ on B. The tangent vector q_t' to \overline{C} is equal to $B^r(f)_{q_t} = l_{q_t}(dp_t j_{T_t} f)$, where $\gamma_t = \gamma(q_t) = p_t^{-1}b_t$, and hence the tangent vector b_t' to C is $dp_t j_{T_t} f$. It is obvious that the vertical path C is vertical in B, and its projection τC is a single point x_0 in M. Therefore C is thought of as the tangent vector b_t rotating around the fixed point x_0 .

Proposition 4. There exists a unique vertical path by giving its starting point b_0 and the initial direction b_0' .

Proof. We take an arbitrary frame $p_0 \in \pi^{-1}\tau(b_0)$, and an element $f \in F$ such that $dp_0b_0' = j_{\gamma_0}f$, where $\gamma_0 = p_0^{-1}b_0$. Then we have the integral curve \overline{C} through $q_0 = (b_0, p_0)$ of $B^{\nu}(f)$ corresponding to the above $f \in F$. Put $\overline{\pi}\overline{C} = C$, and then C is the desired vertical path, as

312

will be easily verified. Moreover, in the similar way to the case of a horizontal path, it will be seen that C is well determined, independent of the choice of a frame p_0 .

In order to examine the relation between a vertical path and parallel displacement, we consider a mapping

$$\sigma: B_b^{\nu} \to \tau^{-1}\tau(b), \quad X \to pj_f dp^{-1}X, \quad p \in \pi^{-1}\tau(b),$$

where $f = p^{-1}b$. As is easily verified, the mapping σ is well defined, independent of the choice of a frame p used. Thus, corresponding to a tangent vertical vector X at b, we have a point σX on the fibre through b. The point σX is called the *B*-expression of X. If $X = X^i(\partial/\partial b^i)_b$, the *B*-expression of X is the point having the canonical coordinate (x^i, X^i) , where $b = (x^i, b^i)$.

Now, as has above shown, the tangent vector b_t' to a vertical path C is $dp_t j_{\gamma_t} f$, and hence we have the B-expression $\sigma b_t' = p_t f$. Therefore Proposition 1 shows that the curve $C^* = \{d_t\} = \{(b_t, \sigma b_t')\}$ is a lift of C to D. Conversely, if $C = \{b_t\}$ is a vertical curve in B such that the curve $C^* = \{d_t\} = \{(b_t, \sigma b_t')\}$ is a lift of C to D, it will be at once seen that C is a vertical path in B. Thus we have

Theorem 3. The necessary and sufficient condition for a vertical curve C in B to be a vertical path is that the B-expression of the tangent vector to C is parallel along the curve C.

In terms of a canonical coordinate, the *B*-expression of the tangent vector b_t' is the point $(x_t^i, db^i/dt)$, and then (2.1) gives the differential equation of a vertical path as follows:

(4.1)
$$\frac{dx^{i}}{dt} = 0, \quad \frac{d^{2}b^{i}}{dt^{2}} + C^{i}_{jk}(x_{0}, b) \frac{db^{j}}{dt} \frac{dx^{k}}{dt} = 0,$$

where $x_t^i = x_0^i (= \text{constants})$.

Similar to the definition of the *h*-characteristic vector field B^{*} , we have the *v*-characteristic vector field B^{*} , which is given by the rule $B^{*}_{q} = B^{*}(r(q))_{q} = l_{q}(dpj_{r}p^{-1}b), q = (b, p)$. Since the projection of an integral curve $\overline{C} = \{q_{t}\} = \{(b_{t}, p_{t})\}$ of B^{*} on the base M is a single point, we then are concerned with the projection $\overline{\pi}\overline{C} = C = \{b_{t}\}$ on B. The tangent vector b_t' to *C* is equal to $dp_t j_{\gamma_t}(p_t^{-1}b_t)$, and hence the *B*-expression $\sigma b_t'$ is equal to b_t . Conversely, if a vertical curve $C = \{b_t\}$ in *B* is such that $\sigma b_t' = b_t$, *C* is a projection of an integral curve of B^r , as will be easily verified. Thus we have

Proposition 5. A vertical curve C in B is the projection of an integral curve of the v-characteristic vector field $B^{"}$ on Q if and only if the B-expression of the tangent vector to C coincides with C itself.

The definition of the *B*-expression does not depend upon a Finsler connection, and hence Proposition 5 shows that the curve C as above defined is out of all relation to the Finsler connection, and the equation is given by

(4.2)
$$\frac{dx^i}{dt} = 0, \quad \frac{db^i}{dt} = b^i.$$

The curve as just now considered will be of interest only in connection with a geometric interpretation of the equations (4.2), in particular the second one.

§5. Quasi-paths

There are three kinds of coefficients of a Finsler connection, that is, F_j^i , F_{jk}^i and C_{jk}^i . The first F_j^i take place in the equation (3.2) of a path in M, while the third C_{jk}^i appear in the equation (4.1) of a vertical path. However, as for the second F_{jk}^i , we have not yet an equation of the form

(5.1)
$$\frac{d^2x^i}{dt^2} + F^i_{jk}\left(x, \frac{dx}{dt}\right)\frac{dx^j}{dt}\frac{dx^k}{dt} = 0,$$

though we have already derived the equation (3.1) of a horizontal path, in which F_{jk}^i and further F_j^i have appeared. In order to consider a geometrical meaning of the above (5.1), we have to recall here a quasi-connection in P derived from a Finsler connection in Q [2, §2].

A quasi-connection $\Gamma_{(f)}$ with respect to a fixed element $f \in F$, more briefly, *quasi-f-connection* is by definition the distribution $\Gamma_{(f)}$; $p \in P$ $\rightarrow \Gamma_{(f)p}$ on P such that $\Gamma_{(f)p} = \eta \Gamma_{q}^{h}$, where $q = (pf, p) \in Q$. In a previous paper [2] we found the quasi-f-connection form $\omega_{(f)}^{*}$. The force of the prefix 'quasi-f' is that the form $\omega_{(f)}^{*}$ does not subject to the ordinary equation: $\omega_{(f)}^{*}R_{g} = ad(g^{-1})\omega_{(f)}^{*}$, but satisfies the equation (2.6) of [2]. This fact is also seen by the equation

(5.2)
$$R_{g}\Gamma_{(f)p} = \Gamma_{(g^{-1}f)pg}$$

In fact, we see, according to the definition of $\Gamma_{(f)}$,

$$R_{g}\Gamma_{(f)p} = R_{g}\eta\Gamma_{q}^{h} = \eta R_{g}\Gamma_{q}^{h} = \eta\Gamma_{qg}^{h}, \quad q = (pf, p).$$

Since $qg = (pf, pg) = (pg \cdot g^{-1}f, pg)$, the equation (5.2) is proved.

Corresponding to $f_1 \in F$, the basic vector field $B_{(f)}(f_1)$ of the quasi-*f*-connection is naturally obtaind by the rule $B_{(f)}(f_1)_p = \eta B^{*}(f_1)_q$, q = (pf, p).

If an ordinary connection is given in P, then we have naturally the associated connection in B[4, p. 43]. We analogously obtain the connection H^* in B, corresponding to the quasi-f-connection in P as follows. That is, if we take a mapping $K_f: P \rightarrow B, p \rightarrow pf$, the distribution $H^*: b \in B \rightarrow H_b^*$ is defined by the rule $H_b^* = K_f \Gamma_{(f)b}, pf = b$. As above remarked, the quasi-f-connection in P depends upon the choice of $f \in F$ used, while we shall show that H^* does not so. To do this, if we take $f, f' \in F$ such that b = pf = p'f', there exists an element $g \in G$ such that p' = pg, and so $f' = g^{-1}f$. By means of (5.2), we have

$$K_{f'}\Gamma_{(f')p'} = K_{f'}R_g\Gamma_{(f)p} = K_{gf'}\Gamma_{(f)p} = K_f\Gamma_{(f)p},$$

as we wished to show. The distribution H^* determined in this way is called the *non-linear quasi-connection* in *B*.

With respect to the quasi-*f*-connection $\Gamma_{(f)}$ in *P* and the non-linear quasi-connection H^* in *B*, we can define, of course, the concepts of lifts and parallel displacements. Similar to Proposition 1, we can show immediately

Proposition 6. Let $C^* = \{p_i\}$ be a lift of a given curve $\underline{C} = \{x_i\}$

in M to P, with respect to the quasi-f-connection $\Gamma_{(f)}$. Then, a lift $C = \{b_i\}$ of <u>C</u> to B with respect to the non-linear quasi-connection H^* is constructed by $b_i = p_i f$.

We consider a particular basic vector field $B_{(f)}(f)$ of the quasi-*f*connection, corresponding to the same $f \in F$. In the following, we shall denote this vector field by $B_{(f)}$ simply and call it the *self-basic vector field*. Further, as the image of $B_{(f)}$ under the mapping K_f , we have the quasi-horizontal vector field F^2 on *B*. This vector field on *B* is called the F^2 -vector field. In terms of a canonical coordinate, F^2 is expressed by

(5.3)
$$F_b^2 = b^i \left(\frac{\partial}{\partial x^i} - b^* F_{ki}^j(x, b) \frac{\partial}{\partial b^j} \right),$$

where $b = (x^i, b^i)$. It is to be noticed here that we have an another special vector field F^1 on B such that $F_b^1 = \overline{\pi}B^b(f)_a$, q = (pf, p), b = pf. It is easy to see that F_b^1 is well determined independent of the choice of the expression b = pf. The vector field F^1 is obviously horizontal with respect to the non-linear connection H in B and is expressed by

(5.4)
$$F_{b}^{1} = b^{i} \left(\frac{\partial}{\partial x^{i}} - F_{i}^{j}(x,b) \frac{\partial}{\partial b^{j}} \right).$$

In a previous paper [3], we derived the equation [3, (1.1)], which gave the differential of the characteristic field γ . By virtue of that equation, we obtain the relation between above vector fields F^1 and F^2 as follows:

(5.5) $dp\gamma B^{\flat}(f)_{q} = F_{\flat}^{1} - F_{\flat}^{2}, \quad q = (pf, p), \ b = pf.$

Since $F_b^1 = \overline{\pi} B^b(\gamma)_q$, q = (pf, p), b = pf, we obtain

Proposition 7. The path in M is the projection of an integral curve of the vector field F^1 on B.

Corresponding to this characterization of a path, we now lay down the following definition.

Definition. The quasi-path in M is the image of an integral curve of F^2 vector field on B under the projection $\tau: B \rightarrow M$.

As a consequence of (5, 3), we now can recognize that the equation (5, 1) just is the differential equation satisfied by a quasi-path in M.

Let us consider a quasi-path $\underline{C} = \{x_i\}$ in M which is the projection τC of an integral curve $C = \{b_i\}$ of the F^2 vector field. By means of the definition of F^2 , the curve C is the image of the integral curve $C^* = \{p_i\}$ of the self-basic vector field $B_{(f)}$ on P under the mapping K_f . From the relation $\tau K_f = \pi$ it follows that a quasi-path \underline{C} just is the projection πC^* . The tangent vector p_i' to C^* is, by definition, equal to $B_{(f)p_i} = \eta B^h(f)_{q_i}, q_i = (p_i f, p_i)$, and hence the tangent vector is x_i' to \underline{C} is expressed as $\pi \eta B^h(f)_{q_i}$, which is equal to $\tau \overline{\pi} B^h(f)_{q_i} = p_i f = b_i$. Thus we have $x_i' = b_i$. From the viewpoint of the non-linear quasi-connection H^* , this fact permits us to state that the tangent vector field x_i' to the quasi-path \underline{C} is parallel along \underline{C} with respect to H^* .

Conversely, if this fact is true for a curve $\underline{C} = \{x_i\}$ in M, we have a quasi-horizontal curve $C = \{b_i\} = \{x_i'\}$ in B, the locus of the tangent vector x_i' to \underline{C} , and then Proposition 6 shows that there exists a lift $C^* = \{p_i\}$ of \underline{C} to P with respect to the quasi-f-connection $\Gamma_{(f)}$ such that $x_i' = p_i f$, $f \in F$. Since C^* is horizontal, the tangent vector p_i' to C^* is written by $B_{(f)}(f_1)_{p_i} = \eta B^h(f_1)_{q_i}$, $q_i = (p_i f, p_i)$, where f_1 is some element of F. Since C^* is a lift of \underline{C} , we see that $x_i' =$ $\pi \eta B^h(f_1)_{q_i} = \tau \overline{\pi} B^h(f_1)_{q_i} = p_i f_1$, while $x_i' = p_i f$ as above shown. It follows that $f_1 = f$ and $p_i' = \eta B^h(f)_{q_i} = B_{(f)p_i}$. Therefore C^* is an integral curve of the self-basic vector field $B_{(f)}$ and so \underline{C} is a quasi-path certainly. Consequently, we give an alternative characterization of a quasi-path in

Theorem 4. A curve $\underline{C} = \{x_i\}$ in M is a quasi-path if and only if the tangent vector x_i' to \underline{C} is parallel along \underline{C} with respect to the non-linear quasi-connection H^* .

If the Finsler connection under consideration satisfies the condition F [3, §6], the concept of a quasi-path coincides with that of a path, which will be easily seen from (5.5) and Proposition 7, or equations (3.2) and (5.1) concretely.

REFERENCES

- [1] E. Cartan: Les espaces de Finsler, Actualités 79, Paris, 1934.
- [2] M. Matsumoto: Affine transformations of Finsler spaces, J. Math. Kyoto Univ., 3-1 (1963) 1-35.
- [3] M. Matsumoto: Linear transformations of Finsler connections, J. Math. Kyoto Univ. 3-2 (1964) 145-167.
- [4] K. Nomizu: Lie groups and differential geometry, Math. Soc. Japan, 1956.
- [5] T. Okada: A formulation of Finsler connections with use of the fibre bundles, graduation thesis, Kyoto Univ.
- [6] H. Rund: The differential geometry of Finsler spaces, Springer, Berlin, 1959.