Atomic Quasi-Injective Modules

By

Edward T. Wong*

(Received June 10, 1964)

1. Quasi-injective modules. R is an associative ring with an indentity element, all R-modules considered here are left unitary modules.

Given an R-module M and submodules N_1 , N_2 of M, N_2 is called an essential extension of N_1 or N_1 is essential in N_2 if

(1) $N_1 \subset N_2$ and (2) $Rx \cap N_1 \neq 0$ for every nonzero x in N_2 .

Condition (2) is equivalent to that every nonzero submodule in N_2 has nonzero intersection with N_1 . If N_2 is an essential extension of N_1 then the left ideal $(N_1: x) = \{r \in R \mid rx \in N_1\}$ is essential in R for every x in N_2 (considering R as a left R-module).

Every submodule of M has a maximal essential extension in M. If the singular submodule M^{\blacktriangle} of M is zero then for every submodule N, N^s is the unique maximal essential extension of N in M, where

$$N^{s} = \{m \in M | (N : m) \text{ is essential in } R\}$$

 $M^{\blacktriangle} = \{m \in M | (0 : m) \text{ is essential in } R\}.$

The verification of N^s being the unique maximal essential extension of N in M in the case of $M^{\blacktriangle}=0$ is straight forward.

In this paper we assume every R-module has zero singular submodule unless stated otherwise. Of course if N_1 is essential in N_2 then $N_1^{\blacktriangle} = 0$ if and only if $N_2^{\blacktriangle} = 0$.

In [2] we call an R-module M quasi-injective if for any submodule N of M and any $f \in \operatorname{Hom}_R(N, M)$, f can be extended to an element of $\operatorname{Hom}_R(M, M)$. An injective module of course is quasi-injective.

^{*} The author is a National Science Foundation Faculty Fellow of U.S.A., 1963-64.

On the other hand a simple module is quasi-injective but not necessary injective.

Given an R-module M, denote the minimal injective extension (injective hull, injective envelope) of M by \overline{M} and the total ring of R-endomorphisms of \overline{M} by K. M is quasi-injective if and only if M is a K-submodule of \overline{M} [2, 1.1 Th] (considering \overline{M} as a right K-module). In this case $\operatorname{Hom}_R(M,M)=K$. We also know that K is a regular ring (von Neumann) and self injective as a left module over itself. Furthermore K is a division ring if and only if every nonzero submodule of M is essential in M [2, 1.7 Th].

Definition 1.1. A submodule N of an R-module M is called a closed submodule if $N=N^s$.

Sometimes we call N^s the closure of N in M. $(N^s)^s = N^s$. For submodules N_1 , N_2 of M, $N_1 \cap N_2 = 0$ if and only if $N_1^s \cap N_2^s = 0$. For any submodule N of M there exists a closed submodule B of M such that $B \cap N = 0$ and $(B+N)^s = M$.

In [2] we proved the following two valuable theorems about quasiinjective modules.

Theorem 1.2. N_1, \dots, N_n are submodules of a quasi-injective module. $(N_1 + \dots + N_n)^s = N_1^s + \dots + N_n^s$.

Proof: In [2, 1.4 Th], we proved the case where N_i are closed. For any submodules N_1 , N_2 , $(N_1+N_2)^s \supset N_1^s + N_2^s$. If $z \in N_1^s + N_2^s$, z=x+y where $x \in N_1^s$ and $y \in N_2^s$. The intersetion L of the essential left ideals L_1 and L_2 again is essential where $L_1x \subset N_1$, $L_2y \subset N_2$. $L_2 \subset N_1 + N_2$, $z \in (N_1 + N_2)^s$.

 $(N_1+N_2)^s \subset (N_1^s+N_2^s)^s = N_1^s+N_2^s$. Thus $(N_1+N_2)^s = N_1^s+N_2^s$. The rest follows by induction method.

Theorem 1.3. Let M be quasi-injective R-module (singular submodule not necessary zero) and let $K = \operatorname{Hom}_{\mathbb{R}}(M, M)$. If N is an annihilator K-submodule of M so that $N'^r = N$ (N' the annihilator of N in R), and if $x \in M$, then

$$(N+xK)^{Ir}=N+xK.$$

Proof: 2.1 Theorem [2].

Corollary 1.4. If $x_1, \dots, x_n \in M$ then $(x_1K + \dots + x_nK)^{tr} = x_1K + \dots + x_nK$.

Proof: 2.2 Corollary [2].

Proposition 1.5. M is quasi-injective R-module. A submodule N of M is closed if and only if N is a direct summand of M.

Proof: N is a closed submodule. Let B be a closed submodule so that $B \cap N = 0$ and $(B + N)^s = M$. By Theorem 1.2, $(B + N)^s = B + N = M$, N is a direct summand of M.

Suppose $M=N \oplus C$, $x \in N^s$, x=n+c for some $n \in N$ and $c \in C$. (N:x) is essential in R and $(N:x)x \subset N$. Hence (N:x)c=0 and c=0 by the assumption $M^{\blacktriangle}=0$. $N=N^s$.

Combining this with the fact that a submodule of a quasi-injective module is itself quasi-injective if it is closed [2, 1.6], we conclude that a direct summand of a quasi-injective module is also quasi-injective. Of course the converse is not true.

Definition 1.6. A closed submodule $N \neq 0$ of an R-module M is called an atom if $Rx \cap Ry \neq 0$ for all nonzero x and y in N.

A closed submodule $N\neq 0$ is an atom if and only if $N=B^r$ for any nonzero submodule B in N.

Also immediately it follows that an atom is a minimal nonzero closed submodule. In the case of injective modules the atoms and the nonzero indecomposable injective submodules are the same objects as described in [3] by E. Matlis.

If N is essential in M then the closed submodules of M and the closed submodules of N (closed in N) have a one-to-one correspondence given by:

 $C \rightarrow C \cap N$, where C is closed in M,

 $A \rightarrow A^s$, where A is closed in N and A^s is the closure of A in M. A is an atom in N if and only if A^s is an atom in M.

For any module N, let \overline{N} be the injective hull of N, and M be a quasi-injective extension of N in \overline{N} (M can be any K-submodule of \overline{N} containing N, $K = \operatorname{Hom}_{\mathbb{R}}(\overline{N}, \overline{N})$). If \overline{N} is the sum of its own atoms such as in the case where R is a left Noetherian ring [3, Th 2.5],

then \overline{N} is an essential extension of the sum of all atoms of M which in terms is an essential extension of the sum of all atoms of N.

Theorem 1.7. M is quasi-injective R-module, C is an atom of M, $K = \operatorname{Hom}_R(M, M)$, then

$$A = \{k \in K | Mk \subset C\}$$
 is a minimal left ideal of K ; $A = Ke$, $e^2 = e \neq 0$, and $C = Me$.

Conversely if A = Ke, $e^2 = e \neq 0$, a minial left ideal of K, then C = Me is an atom of M.

Proof: This theorem follows easily from the fact that an atom is an indecomposable direct summand. However we are going to present another proof which bases on the property of quasi-injective module.

For any nonzero elements a and b in A, it will suffice to show that there exists a $k \in K$ such that a = kb. Notice that $A \neq 0$. The kernels H_a , H_b of a and b respectively are closed R-submodules of M. There exist nonzero closed submodules S_1 and S_2 where

$$M = H_a \oplus S_1$$
, $M = H_b \oplus S_2$, and $0 \neq S_1 a \cap S_2 b \subset C$.

Choose s_1 in S_1 and s_2 in S_2 so that $s_1a=s_2b\neq 0$. The mapping t defined by $(rs_1)t=rs_2$, for all $r\in R$ is a R-isomorphism of Rs_1 onto Rs_2 . Extend t to an element k' of K. Since Rs_1 is essential in S_1 , $Rs_1(a-k'b)=0$ implies $S_1(a-k'b)=0$. If we denote the projection of M onto S_1 relative to H_a by f then a=kb where k=fk'.

So we have proved that A is a minimal left ideal of K. A = Ke, $e^2 = e \neq 0$, and C = Me are obvious.

Conversely if A is a minimal nonzero left ideal, A = Ke. Me is a direct summand of M and hence it is closed. If $Me = N \oplus S$, $N \neq 0$, then the left ideal $B = \{k \in K \mid Mk \subset N\}$ must be equal to A. This shows S must be zero and Me is an atom.

Corollary 1.8. There is a one-to-one correspondence between the atoms of M and the nonzero minimal left ideals (nonzero minimal right ideals) of K.

Proof: For any two atoms C_1 and C_2 , either $C_1 \cap C_2 = 0$ or $C_1 = C_2$. The correspondence between the atoms of M and the nonzero minimal left ideals of K is clearly one-to-one. K is a regular ring, Ke is a minimal left ideal where e is an idempotent, if and only if eK is a minimal right ideal. The corollary is completed.

Corollary 1.9. xK is a simple K-submodule of M for any non-zero x in an atom.

Proof: C is an atom. C=Me, where e is an idempotent of K and eK is a minimal right ideal. eK and xK are isomorphic as K-modules.

Proposition 1.10. M is quasi-injective, C is an atom of M, and C_1, \dots, C_n are submodules. Then either $C \cap (C_1 + \dots + C_n) = 0$ or $C \subset C_1^s + \dots + C_n^s$.

Proof: If $B = C \cap (C_1 + \dots + C_n) \neq 0$ then $B^s \subset (C_1^s + \dots + C_n^s)$ by Theorem 1.2. But $B^s = C$.

Let $\mathcal{F} = \{C_i\}$ be the collection of all atoms of a quasi-injective module M and let $C = \sum_{C_i \in \mathcal{F}} C_i$. By the above proposition C can be written as a direct sum of a subset T of \mathcal{F}

$$C = \sum_{C_i \in T} \bigoplus C_i$$
.

Furthermore by the Azumaya's generalization of the Krull-Remark-Schmidt Theorem [1], the direct sum decomposition of C into atoms is unique up to an automorphism of C. That is, if

$$C = \sum_{C_{i'} \in T'} \bigoplus C'_{i}, C'_{i}$$
 atom,

then for each C_i in the first decomposition there exists a unique C'_j in the second decomposition that C_i and C'_j are isomorphic.

2. Atomic closed submodules. We say that the lattice of closed submodules of an R-module M is atomic if each nonzero closed submodule of M contains an atom. If R is a left Noetherian ring then any R-module is atomic.

As in section 1, let M be quasi-injective and C the sum of all atoms of M. C can be written as a direct sum of atoms.

From now on, we assume that the lattice of closed submodules of M are atomic.

Theorem 2.1. C is also quasi-injective and $C^s = M$.

Proof: $C^s = M$ is obvious. Otherise there exists an atom B such that $B \cap C = 0$.

Let $x \in C$, $x = c_1 + \cdots + c_n$ for some n and c_i belongs to atom C, for $i = 1, \dots, n$. For any k in $K = \operatorname{Hom}_R(M, M)$, $xk \in C_1k + \cdots + C_nk$. Since C_ik is either zero or an atom for each i, $xk \in C$ and C is K invariant. From the first part $C^s = M$ implies the injective hull \overline{C} of C coincides with the injective hull \overline{M} of M. Thus

 $\operatorname{Hom}_{R}(\overline{C}, \overline{C}) = \operatorname{Hom}_{R}(\overline{M}, \overline{M}) = \operatorname{Hom}_{R}(M, M) = \operatorname{Hom}_{R}(C, C) = K.$ By [2, 1.3 Th], C is also quasi-injective.

Corollary 2.2. $\operatorname{Hom}_{R}(M, M) = \operatorname{Hom}_{R}(\sum_{i} \bigoplus C_{i}, \sum_{j} \bigoplus C_{j})$, where C_{i} , C_{j} are atoms.

Theorem 2.3. Considering C as a right K-module, C is completely reducible.

Proof: From Corollary 1.10, xK is a simple K-module if x is an element in an atom. $y \in C$, $y = x_1 + \cdots + x_n$, $x_i \in C_i$ atom. $y \in x_1K + \cdots + x_nK$. Thus $C = \sum xK$ where x runs through all nonzero elements of atoms of M. $C = \sum xK$ follows from the fact that xK is simple.

The concepts of dimensionality and linear independency of C relative to K are defined as usual. Since every K-submodule of C is a direct summand of C. C is quasi-injective K-module.

For any element x of C, $x=x_1k_1+\cdots+x_nk_n$ with some n and $x_i \in C_i$, $k_i \in K$, where C_i are atoms. $k \in K$, xk=0 if and only if $x_ik_ik=0$ for all $i=1, \dots, n$. If $x\neq 0$, we might assume $x_ik\neq 0$, $(Rx_1)k_1k=0$ implies $C_1k_1k=0$. $C_1k_1=Me$ is an atom of M. $C_1k_1k=Mek=0$, ek=0, and $k\in (1-e)K$. Therefore if $x\neq 0$ in M then the annihilator of x in K is contained in (1-e)K for some nonzero idempotent e of K. (1-e)K is not an essential right ideal of K. Therefore the singular submodule of C relative to K is zero.

Let $C = \sum \oplus C_i$ be a direct sum decomposition of C into atoms. For

each C_i in the decomposition let e_i be a projection of M onto C_i . For all $y \in C$, $ye_i = 0$, for each i, if and only if y = 0. Every nonzero x in M there exists an r in R, $0 \neq rx \in C$ because $C^s = M$. Therefore there exists an e_i such that $rxe_i \neq 0$, $0 \neq xe_i \in C$. C is essential in M as K-modules. $C \subset M \subset \overline{C}$, where \overline{C} is the K-injective hull of C. Since $S = \operatorname{Hom}_K(C, C) = \operatorname{Hom}_K(\overline{C}, \overline{C})$, $\operatorname{Hom}_K(M, M) \subset \operatorname{Hom}_K(C, C) = S$. In othere words the total ring of K-endomorphisms of M is a subring of the total ring of K-endomorphisms of C. $\operatorname{Hom}_K(M, M) = S$ if and only if M is also K-quasi-injective. S is a regular ring and self injective as a right module over itself by our previous results.

Lemma 2.4. Let M be a quasi-injective module, C_1, \dots, C_n atoms of M, and $x_i \in C_i$, $i=1, \dots, n$. If A_1, \dots, A_n are left ideals of R that $A_i x_i \neq 0$, for each $i=1, \dots, n$. Then for each $s \in S = \operatorname{Hom}_K(C, C)$ there exists an essential left ideal L of R such that

$$Lsx_i \subset A_ix_i, i=1, \dots, n.$$

Proof: For each i, C_i is a direct summand of M. C_i is S invariant. There exists an essential left ideal L_i of R such that $L_i s x_i \subset A_i x_i$, for each i. Let $L = \bigcap_{i=1}^n L_i$, L is still essential and will do the job.

Theorem 2.5.* M is quasi-injective R-module and $\{x_1, \dots, x_n\}$ is a finite subset of generator of C as K-module. For each $s \in S = \operatorname{Hom}_K(C, C)$ there exist r, \overline{r} in R such that

$$rsx_i = \overline{r}x_i$$
, $i = 1, \dots, n$.

Proof: Without loss of generality we can suppose that each x_i in $\{x_1, \dots, x_n\}$ belongs to some atom C_i , $i=1, \dots, n$, and the set $\{x_1, \dots, x_n\}$ is K-linearly independent.

Let
$$N_i = \sum_{j \neq i}^n x_j K$$
, $j = 1, \dots, n$.

By corollary 1.4, $N_i^{\prime r} = N_i$, for each i. Therefore

$$N_i' x_i \neq 0$$
 and $N_i' x_i = 0$, $i \neq i$.

^{*} Corollary 2.6 in [2] proved the case where M is irreducible.

From Lemma 2. 4 there exists an essential left ideal L of R where $Lsx_i \subset N_i'x_i$, $i=1, \dots, n$.

If $sx_i \neq 0$ for some i we can choose $r \in L$ such that $rsx_i = \overline{r}_i x_i \neq 0$. Now $rsx_i = \overline{r}_i x_i$, $\overline{r}_i \in N_i^t$, $i = 1, \dots, n$. The theorem follows if we let $r = \overline{r} + \dots + \overline{r}_n$.

Theorem 2.5 is a generalization of the classical density theorem for completely reducible modules.

For any nonempty subset of M its annihilator in R is a closed left ideal since $M^{\blacktriangle}=0$. Thus if either d.c.c. or the a.c.c. holes for the closed left ideals of R then C must be finite dimensional over K [2]. If this is the case then for each nonzero s in S, $Rs \cap R \neq 0$.

3. Quotient rings. If R is a subring of a ring Q, then Q is called a left quotient ring of R if $Rq \cap R \neq 0$ for each nonzero $q \in Q$. The idea of this type of quotient ring was introduced by R. E. Johnson and has been studied through different approaches (see [2] for references).

If M is a faithful R-module, i.e., rM=0, if and only if r=0 for all r in R. Then C is automatically R-faithful since C is essential in M as K-modules and the singular submodule of C relative to K is zero. Therefore if M is R-faithful then R can be considered as a subring of $S=\operatorname{Hom}_K(C,C)$. We have just seen that if C is finite dimensional over K then S is a left quotient ring of R providing M is a faithful R-module.

We assume now M is a faithful R-module. If C is finite dimensional over K then any proper K-submodule of C has nonzero annihilator in R and S is a left quotient ring of R. In the remaining of this paper we are going to show that S is a left quotient ring of R if and only if every proper K-submodule of C has nonzero annihilator in R.

An element s in S is said to be finite rank if sC is finite dimensional over K. The collection of all finite rank elements of S forms a two sided ideal ϕ in S. $s\phi = 0$, $\phi t = 0$, if and only if s = 0, t = 0. for all s, t in S.

If $0 \neq \varphi \in \Phi$, then C can be written as $C = W \oplus D$, where D is the kernel of φ and $W = x_1 K \oplus \cdots \oplus x_n K$, for some n and x_i belongs to some atom C_i , $i = 1, \dots, n$.

Let
$$N_i = x_1 K \oplus \cdots \oplus x_{i-1} K \oplus x_{i+1} K \oplus \cdots \oplus x_n K \oplus D$$
, $i = 1, \dots, n$.

Suppose we assume that each N_i has nonzero annihilator N_i' in R, then it is obvious that $N_i'' = N_i$ for all $i = 1, \dots, n$.

As before there exists an essential left ideal L in R that

$$L\varphi x_i \subset N_i' x_i, i=1, \dots, n.$$

Choose r in L such $r\varphi x_i \neq 0$ for any fixed i. There exist $\overline{r}_i \in N_i'$, $i=1, \dots, n$, such that $r\varphi x_i = \overline{r}_i x$. Let \overline{r} be the sum of all \overline{r}_i , then $(r\varphi - \overline{r})C = 0$ and $r\varphi = \overline{r} \neq 0$.

So far we have shown that $R\varphi \cap R \neq 0$ for each nonzero $\varphi \in \emptyset$. The left ideal $(R:\varphi) = \{r \in R \mid r\varphi \in R\}$ is essential in R for each $\varphi \in \emptyset$. For a nonzero s in S, let $\varphi \in \emptyset$, that $0 \neq \varphi s \in \emptyset$. Let r, \overline{r} in R so that $r(\varphi s) = (r\varphi)s = \overline{r} \neq 0$. $(R:r\varphi)(r\varphi)s = (R:r\varphi)\overline{r}$. $(R:r\varphi)\overline{r} \neq 0$ since the faithfulness of M and $M^{\blacktriangle} = 0$ guarantee $R^{\blacktriangle} = 0$. S is a left quotient ring of R.

Theorem 3.1. S is a left quotient ring of R if and only if every proper K-submodule of C has nonzero annihilator in R.

Proof: We have proved the if part. The only if part is obvious since every proper K-submodule of C has nonzero annihilator in S.

REFERENCES

- [1] G. Azumaya, Corrections and supplementaries to my paper concerning Krull-Remark-Schmidt's theorem, Nagoya Math. 1 (1950) 117-124.
- [2] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings. Journal London Math. Soc. 36 (1961) 260–268.
- [3] E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958) 511
 –528.

Kyoto University Oberlin College, U.S.A.