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I. Let K be an algebraically closed field of an arbitrary characteristic
and let G be an algebraic linear group. We consider only K-rational
points of G. Let V be a vector space over K on which G acts as
a group of K-automorphisms. We call V a rational G-module or G
acts rationally on V, if for any element v in V the translates gv
for all g in G generates only a finite dimensional subspace on which
the induced action of G is a rational representation.

Definition 1. G is called semi-reductive if it has the following

equivalent properties:
(1) For any exact sequence of finite dimensional rational G-modules

0—=W-V->K-0

where K is considered to be a trivial rational G-module, there exists a
positive integer m such that if we take the sn-th symmetric products,
the surjective G-homomorphism
Vr—sKr=K

splits.

(2) Let Xi, Xb, -+, X be indeterminates and suppose G acts rationally
on the polynomial ring K[Xi, Xz, +++, X.] as a group of automorphisms
of K-algebra in such a way that the K-subspaces KX;+ KX+ -+
KX, and KX,+ KX, -+ KX, are G-stable and that X, is G-invariant
modulo KX+ KX, - +KX,. Then there exists a G-invariant homo-

geneous polynomial in K[X;, X, -+, X.] which is monic in X].
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(3) Let S be a finite dimensional projective space over K on which
G acts rationally as a group of projective transformations. Suppose
there exists a G-invariant point P in S. Then there exists a G-stable
hypersurface in .S which does not pass through P.
(4) Same assumptions as in (2) except that X; is G-semi-invariant
modulo KX,+ KX;+ -+ KX,. Then there exists a G-semi-invariant
homogeneous polynomial in K[X;, X, -+, X,] which is monic in Xj.
The equivalence of these properties can be proved easily. (See
[1].) It is evident that reductive algebraic linear groups (i.e. every
rational representation is completely reducible) are semi-reductive.
Torus groups are reductive, hence semi-reductive. Finite algebraic
linear groups are semi-reductive, but may not be reductive in general
(i.e. if the order of the group is divisible by the characteristic of the
field.).

The following facts are proved in [1].

Proposition 1. Let N be a normal algebraic subgroup of an
algebraic linear group G. If N and G/N are semi-reductive, then G
is itself semi-reductive. If G is semi-reductive, then G/N is semi-
reductive.

Theorem 1. Let R be a commutative K-algebra of finite type.
Suppose a semi-reductive algebraic linear group G acts rationally on
R as a group of automorphisms of K-algebra. Then the K-subalgebra
I(R) of G-invariant elements of R is a K-algebra of finite type.

The following equivalent conjectures were given by D. Mumford:

Mumford conjecture. (1) If the radical of the connected com-
ponent G, of the identity of an algebraic linear group G is a torus
group, then G is semi-reductive.

(2) I G is a connected semi-simple algebraic linear group, then GG
is semi-reductive.

(3) 1If G is an almost simple algebraic linear group (in the sense of
[3] i.e. any normal algebraic subgroup is either G itself or a finite
subgroup), then G is semi-reductive.

The equivalence of these three properties can be proved easily
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using Proposition 1. (cf. [1].)

It is known that if the field K is of characteristic 0 and if the
radical of the connected component of the identity of an algebraic
linear group G is a torus group, then G is reductive (hence semi-
reductive). Thanks to this fact we have a good invariant theory in
the case of characteristic 0. The importance of Mumford conjecture
is due to the fact that if the conjecture is true, then we get a good
invariant theory even in the case of positive characteristic thanks to
Theroem 1.

Our purpose here is to prove Mumford conjecture in a very special
case, 1.e.

Theorem 2. If the field K is of characteristic 2. then the almost
simple algebraic linear groups G=SL(2, K) is semi-reductive.

Our method seems to be peculiar to this special case and some
device will be indispensable to prove the conjecture in more general

cases.

II. According to the “rational cohomology theory™ of algebraic linear
groups in [2], the extensions of left rational G-modules O— W—V—
K—O are classified up to equivalence by Ext;(K, W)=H' (G, W)
=7Z%(G, W)/B'(G, W) for a given left rational G-module W, where
ZYG, W) is the vector space of “rational crossed homomorphisms™
form G to W i.e. morphisms of affine schemes f from G to W such
that f(gh) =gf(h)+f(g) for all g and & in G. and B'(G, W) is the
subspace of “principal rational crossed homomorphisms” from G to W
i.e. rational crossed homomorphisms dw for all o in W, where dw(g)
=gw—w for all g in G. To f in Z'(G, W) corresponds a rational
G-module V=K@& W with a decomposition as a vector space over K,
where G acts on V on the left according to the rule g(k+w)=
k+kf(g)+gw for all g in G, k in K and w in W. A change of f
to another rational crossed homomorphism f’ in the same cohomology
class modulo B'(G, W) corresponds to a change of the 1-dimensional
K-subspace of V which is complementary to W (only as a vector space
over K). Let H be an algebraic subgroup of (. The complementary
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subspace K in V=K@ W is ILstable if and only if the corresponding
rational crossed homomorphism f vanishes on H. This is also equivalent
to the following: f(gh)=f(g) for all ¢ in G and ) in H.

We denote by K[G] the affine ring of G and by 9t the maximal
ideal in K[G] of {functions which vanishes at the identity element e
of G. Then KI[G] is a right rational G-module under the right trans-
lations F—I¢, where F#¢(h)=F(gh) for I in K[G] and g, h in G.
We have another action of G, namely the left translations F—L,F,
where (L, F)(h)=F(hg) for F in K[G] and g, 1 in G.

Let W be a finite dimensional rational G-module and let Homx( W,
K) be the dual space of W. We make it into a right rational G-
module via the dual action of G: #*(w)=u(gw) for all g in G, w
in W and « in Homg(W, K). For an element f in Z'(G, W) we
have a K-homomorphism f* from the vector space Homx(W, K) into
the subspace M of K[G] defined by f*(u)(g)=u(f(g)) for g in G
and 2z in Homx(W, K). Note that f(e)==0. It is easy to check that
[F*)1s=F*®) + [ f*@)] (g) for « in Homg(W, K) and g in G.
Hence K+ (the image of f*) is a finite dimensional G-stable subspace
of K[G]. 1f the set theoretic image f(G) generates W as a vector
space over K, then f* is injective. In this case we can consider the
right rational G-module K+ (the image of f*) to be the dual rational
G-module of the left rational G-module V=K@ W determined by f
through the pairing {c+f* (), k+w)=ck+u(w) for ¢, k in K, « in
Homg(W, K) and w in W ie. this pairing is non-degenerate and
Lle+f*w)]e, k+w)y=Lc+f*(), glk+w)). Conversely for a given
finite dimensional subspace A of M such that K+ M in K[G] is G-
stable under the right translation, we consider the dual vector space
Homx(K+ M, K) with the dual action of G on the left. It is finite
dimensional and it has a canonical decomposition as a vector space
Homg (K+ M, K) = Ke@F Homx ((K+M)/K, K) where = is the pro-
jection K+M3F—F(e)eK. Tt is easy to check that the set-theoretic
image of the crossed homomorphism f in Z'(G, Hom((K+ M) /K, K))
defined by f(g) =gn—n generates the whole Homx((K+ M) /K, K)).
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Lemma 1. A finite dimensional left rational G-module V=K&W
corresponds to such a f in Z'(G, W) that the set-theoretic image f(G)
generates the whole W as a vector space over K, if and only if it is
dual to such a finite dimensional G-submodule of the right rational G-
module K[G] that contains the constant field K. Tor an algebraic
subgroup H of G the decomposition V=K@ W is Il-stable if and only
if the corresponding finite dimensional G-submodule of the right rational
G-module K|[G] is contained in the K-subalgebra [,(K[G]) of I
invariant elements under the left translations.

Proof. The former part has already been proved. As for the
latter we know from the remark before that f(gh)=f(g) for all g
in G and & in H, hence we have L,(f*(u))=f*(u) for all h in I
and « in Homg (W, K).

Now we reduce our problem.
Lemma 2. (1) Let O—»W—V—-K—0O be an exact sequence of

rational G-modules, and take its m-th symmetric product O—»% Wi
V"—K—0O. 1If the n-th symmetric product of V"—=K—0O spli;sl, then
the mn-th symmetric product of V—K—O splits.

(2) Let u: W—W’ be a homomorphism of rational G-modules and let
f be an element of Z'(G, W) and f’ be the image of f under the
homomorphism wy: Z'(G, W)—=Z'(G, W). 1If the m-th symmetric
product of the exact sequence of rational G-modules O— W— V—K—0O
corresponding to f splits, then the sm-th symmetric product of the
exact sequence of rational G-modules O—W’'— V'—K—QO corresponding
to f splits.

The proofs are both trivial,

To prove that an algebraic linear group is semi-reductive we may
restrict our attention to such finite dimensional left rational G-modules
V=K@®W that is determined by an f in Z'(G, W) whose set-theoretic
image f(G) generates the whole W as a vector space over K. In
fact the subspace W' of W generated by f(G) is G-stable because
gf(h) =f(gh) —f(g) for all g, h in G. Consider f to be an element
of Z'(G, W') and apply Lemma 1 (2) to the injection W’'—W.
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When an algebraic linear group G is connected, we denote by
T N(T) and W(T)=N(T)/T a maximal torus of G, the normalizer
of Tin G and the Weyl group of (; respectively. It is well known
that the torus group 7' is. reductive. Ilence for an exact sequence
of rational G-modules O— W-V—K—(, we have a T'stable 1-dimen-
sional subspace of V' which is complementary to W. The element f
in Z'(G, W) corresponding to this decomposition vanishes on 7 or
equivalently f(gt) =f(g) for all ¢ in G and ¢t in 1. I the order »
of the Weyl group W(T) is not divisible by the characteristic p of
the field K, then N(7T") is reductive and the same argument can be
applied. However to prove that a connected algebraic linear group G
is semi-reductive we may suppose that f vanishes on N(7T") even if r
is divisible by p. In fact we first take such a f in Z'(G, W) that
vanishes on 71" as above. Then we take the ,-th symmetric product
()—>21V"-—> V'—K—0. The subspace K,Ir_ll(l +f(6:)) which is com-

i=1

plementary to i}lW'" is evidently N(T")-stable, where oy, g, **+, 6, are
the representati’\:es of N(T) modulo 7. Then apply Lemma 2 (1).

Combining Lemma 1 and Lemma 2 we get:

Proposition 2. (1) An algebraic linear group G is semi-reductive
if and only if for any finite dimensional subspace M of K[G] which
contains the constant field K and which is G-stable under the right
translations, there exists a positive integer s such that the surjective
G-homomorphism of the m-th symmetric products [Homg(M, K)]™—
[Homg (K, K)]™==K splits. An algebraic linear group G is semi-
reductive if and only if the connected component G, of the identity is
semi-reductive. As for a connected algebraic linear group G, G is
semi-reductive if and only if there exists a positive integer i such that
the surjective G-homomorphism [Hom (M, K)]™— [Homk (K, K)]"=K
splits for any finite dimensional right G-stable subspace M of K[G]
which contains K and is contained in the K-subalgebra I(K|G)]) (or
in Iv»n(K[G])) of Tiinvariant elements (resp. N(T)-invariant ele-
ments) of K[G] under the left translations.

(2) Let M'SM be a finite dimensional G-stable subspace of K[G] con-
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taining the constant field K. If the surjective G-homomorphism of
the s-th symmetric products [Homg (M, K)]™— |[Homg (K, K)]"=K
splits, the same is true for [Homg(M', K)]™— |Homg (K, K)]"==K.

(2) is nothing but (2) of Lemma 2.

III. In this section we denote by p the characteristic of the field K.
We put G=SL(2,K), T= {(t) = <(t) ?_l); tEK*} and o= <(1) _(1)) e
N(T). Then the affine ring of GG is of the form K[G]=KI[A, B,
C, D} where AD—DBC=1 and A(g) =a, B(g) =0, C(g)=c, D(g)=d
for an element g:(Z 2]) inG. We have A*=uA+cB, B*=bA+dB,

t=aC+cD, D*=bC+dD for g:((bl ;,) in G. Taking into account
that LyA=tA, LwyB=tB, LwC=¢t"'C, LuyD=t"'D and L,A=C,
L:B=D, L,C=—A, L. D=—B we have L (AC)=AC, L(BD)
=BD, Lu(AD+BC)=AD+BC, Lu(AD)=AD, L (BC)=BC;
L,(AC)=—AC, L.(BD)=—BD, L.(AD+BC)=—(AD+BC),

Lo(AD) =~ BC, L.(BC)=—AD. For g= (g ;) in G we get

(AD+BC)*= (ad+bc) (AD+ BC) +2abAC + 2¢cd BD
(AC)* =uac (AD+BC) +a*ACH+*BD
(BD)*=bd(AD+ BC)+b0*AC+d*BD

From these and AD—BC=1 we get:
if p=2, Ivy(K|[G|)=K[AC, BD] with AC and BD algebraically

independent over K and

(AC)*=uc+ B*AC+*BD ; B (a c)
(BD)*=bd +PAC+d*BD or £=\p a

if p#2, (K[G])=K[(AD+BC), AC, BD] with algebraic relation
(AD+BC)*=1+4(AC) (BD). Monomials {Ft,;,;= (AD+ BC)¢(AC)’
X (BD)?; e=0 or 1; i, j non-negative integers} are linearly indepen-
dent over K and Fe,i; is in Iy, (K[G]) if and only if e+i+j is
even.

Proof of Theorem 2. For brevity we put X=AC, Y=BD, then
X(g)=ac, Y(@)=bd for g=(§ ). Lin(KIGD) =KIX, Y] and
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Xe=ac+dX+Y ac
S for g= < )
Yo =bd -+ BN 1 d*) bd

We denote by M|[m] for non-negative integer m the finite dimensional
subspace of K[X, Y| consisting of the polynomials in X and Y of
total degree at most m. From the action of G under the right trans-
lations given above we see that A [m] are G-stable, hence we have
a increasing chain of finite dimensional G-stable subspaces whose union

equals the whole Ivq(K[G])
K=M[O]CMI[L]CM[2]C---CM[m]C---.

Every finite dimensional subspace is contained in M|[m] for some .
This and proposition 2 permit us to restrict our attention to the dual
left rational G-modules V[m]=Homg(M[m], K) for all m. We
denote by {[m; i, jl; i, 7==0 and i+;j<m} the dual base of V[m]
corresponding to the base {X'Y’; /,;=0 and i+;<m of M[m]}.
From X¢=ac+a*X+c*Y, Ye=bd+ X+ d*Y we have

(XYNe=(act+a?X+Y) (bd+ U X+d*Y)’
= >3 XYV'E(u, v: 1, 7)(g)

0=u, v
utrSi4Jj

for g= (Z 2), where I (u, v; i, j), defined only for 4-ples of non-
negative integers (u,v; 7, j) satisfying u+v<i+j, are in the affine
ring K[G] and easily computed from the formula above. In the
following we only need the following explicit forms:
E(0,0; 7, j) (&) =(ac)’(bd)'=(X'Y") (g)
for 7, j m, such that i+ ;<om
E(n,0; i, j) (g) =a*b¥
E,m; i, ;) () =c*d¥ for i, j, m such that i+j=m.
The action of G on V[m] dual to that on M[m] 1is
glm; u, v) =OSZ EQu,v; i, 7) (g) [m; 1, §]
=)
w4 rSi+iSm

In particular
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glm; 0,0] =2 Cac) (bd ) [m; i, j) =OSZ, (XY (@) [m; i, j

i+igm i+jam

=lm; 0,0] +fu(g) for g= (Z ?]>, where

Su() =Os§i_lj (XY (@) [m; 4, 4]
0i+jEm

is the crossed homomorphism with values in the G-stable subspace

Wim]l= > Klm; i, j1 of codimension 1. As X'Y’ are linearly
05, 7
0<i+jsm

independent over K, the image of f. generates W/([m] over K.

[m; 0,0] is G-invariant modulo W {m]. We also know that

glm; m,0] = > a*b*[m; i, 5]
0= j

i+j'=m fOI‘ g.: ((l C)
glm; 0, m] = > &d¥[m; 4, jl bd

07, j
t+J=m

In the following we prove by induction on s that the 2™-th

symmetric product of the surjective G-homomorphism
Vim] =Homx(M[m], K)—Hom (K, K)=K

splits. In fact we get a stronger result, that is, there exists a G-
invariant element in V[m]" of the form [m; 0, 0]+ R [m] where n=2™
and R[m] is a homogeneous polynomial of degree n in the base
{Im; 4, 7); (1, ))#0,0)} of Wlm].

First we take the element [m; 0, 0124 [m: m, O] [m; 0, m] in
Vim]®: We have

g(lm; 0,01%+ [m; e, 0] m; 0, m])

= {OSZJ (ac) (bd) [m; i, j]}2+ { S a¥ b j]}

0<i, 7
i+jigsm i+j=m
X { > cFd¥m; 4, j]}
0=, j
i*j=m
= > (@) (bd)¥ [m; 4, 71+ > (ac)* (bd )
?f;"s’m—l ?f;"sj'm—l

X {(ad)* ™ P4 (bc)*™ P} [m; i, m—1i] [m; m—j, j]

Note that the characteristic p=2.
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Lemma 3. Let x and ¥ be elements in a field K of characteristic
2 which satisly £--y=1. Let N be a positive integer. Then V43~
= Py(xy), where Py is a polynomial of one variable with coefficients
in Z/(2) whose degree is less than N/2 and whose constant term
Py(0)=1.

Proof. Let Z be the ring of integers and let x and y be two

indeterminates. In the ring Z[x, v]|
xN +yN: (l/ZN_I> 2 <'j)\;’> (;’L‘ _|‘y) N—-2k {(.t _,_y)z_ 4xy} k
052k N \ =N
Hence in the ring Z[Z, 3| =Z |z, y]/(x+y—1)
~N | ~N N-1 N> Ak
Fy= (/2 3 N<2k (1—4z9)

This is a polynomial in (#¥) with 1 as the constant term, of degree
N/2 (resp. (N—1)/2) if N is even (resp. odd) and with (—1)%/»2
(resp. (—1)¥D2IN) as the leading coefficient if N is even (resp.
odd). Reducing this equation modulo 2, we get the required result.

Proof of Theorem 2 continued. Denoting by = the rational
Frobenius endomorphism of G=SL(2, K) which maps an element

_<a “) to =( _>_<a2 c the last equality before Lemma 3 be-
g= bd n(g)= by dr)e q y O
comes:
g(lm; 0,012+ Ly m, O] [m; 0, m])
=OS‘Z’ (@) Wd» m; 1, 71*

x‘+i',£m-l

—G—OSZ_ (@) (V*d?)! Pui-i () (BPdD)) [m; i, m—1] [m; m—j, ]
i+j's]'m—1

=Os§]_ (XY (n(g)) [m: 4, 7]
i+j'slm—1

+0 > (XY Py (XY)) (e(©) s 4, m—i] [m; m—j, j]

We know that X'Y’P,_;-;(XY) is a polynomial in X and Y of less
total degree than ¢+;+2((m—i—;)/2)=m. Hence we can write

g(lm; 0,012+ [m; m, O] [m; O, m]) =OS§ (XY (=) 14, j]

i+ism-1
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for g—:(z f]>, where [0, 0] = [m: 0,0]1%+ Pn(0) [ne; 0, m] [me: m, 0] =
1020, 0174 [222; 22, 0] Ly O, m] and for 7, j=0 satislying

0<itj<m—1, [i,j1="1m;d, j1*+ m; i, m—i] [m; m—ju, ju] + 0.

Note that [m: 0,0] does not appear in [/, j] for (7, 7)#(0,0). It is
easy to check that the elements {[/, j|; i, /=0, i+;<om—1} in V[m]*
are linearly independent over K. We can rewrite the above equality as
210,01 =10,01 + > (XY (=(g)) i, j]
g%:"-zjgm—l
Compairing this with
glm—1;0,0]=[m—1;0,0]+ E (XY (@) [m—1; 7, 7]
gg:"{-’iSm—l
=[m—1:0,0] +frni(g)

and taking Lemma 1 into account, we see that the subspaces

V= > Kli,j] and W'= > Klij| of V[m]?
Tidma 02 digm-1

are G-stable and that the rational representation of G associated with
the rational G-module V' is equivalent to the composition p,_em of the
representation n and the representation p.-; associated with the rational
G-module V[m—1]. As = does not affect our induction hypothesis
for m—1, there exists a G-invariant element of the form [0,0]"+R

where n=2m"!

and R is a homogeneous polynomial of degree »n in the
base {[7,j]; (i, 7)#(0,0)} of W’'. The image of this G-invariant
element under the G-homomorphism (V')"—((V[m]))"—V[m]* is
([m; 0,012+ [msm, 0] [y 0, m))™+FR=[m; 0,0+ ([m; m, 0]™[m;
0, m]"+R) where 2n=2" and R is the image of R, hence is a homo-
geneous polynomial of degree 2,=2™ in the base {[m; i, j]; (G, j)+#
(0,0)}. Thus we get a G-invariant element of the form [m; 0, 0]?"
+R[m] where R[m] is a homogeneous polynomial of degree 2™ in

{[m; 4, 71; (G, 7)+0,0)}. g.e.d.
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