ε-entropy of subsets of the spaces of solutions of certain partial differential equations

by
Shun'ichi Tanaka
$\binom{$ Received and communicated by Prof. H. Yoshizawa, }{ on December 10, 1966.}

§1. Introduction

In recent years ε-entropy of subsets of various function spaces were estimated by A. N. Kolmogorov and B. M. Tikhomirov [2] and by others. In the present paper we estimate ε-entropy of sets in the space of harmonic functions (published earlier in [3]) and the space of solutions of certain parabolic equation.

Our results are stated in $§ 2$ after the definition of ε-entropy is stated. We prove two lemmas in $\S 3$ and the conditions of these lemmas are examined separately for each case in $\S 4$ and $\S 5$.

The author expresses his hearty thanks to Professor H. Yoshizawa who suggested (in 1962) the problem of estimating the ε entropy of sets in space of solutions of partial differential equations.
§2. Definitious and statement of the results
Following [2], we shall list definitions which are necessary to state our results.

Let R be a metric space and A a subset of R.
Difinition 1. A system γ of sets $U \subset R$ is called ε-covering of A, if $A \subset \bigcup_{U \in \gamma} U$ and the diameter of each $U \in_{\gamma}$ does not exceed 2ε.

Definition 2. A set B in R is called ε-separated if the distance
of any distinct points of B are greater than ε.
Now assume that the set A is totally bounded.
Definition 3. $N(\varepsilon, A)$ is the minimal number of elements of all possible ε-coverings of A. $H(\varepsilon, A)=\log N(\varepsilon, A)$ is called ε entropy of the set $A(\log N$ will always mean the logarithm of the number N in the base 2).

Definition 4. $M(\varepsilon, A)$ is the maximal number of points in all possible ε-separated subsets of the set A. $C(\varepsilon, A)=\log M(\varepsilon, A)$ is called the ε-capacity of A.
Obviously
(1) $M(2 \varepsilon, A) \leqslant N(\varepsilon, A)$

Let $f(\varepsilon)$ and $g(\varepsilon)$ be positive functions of ε defined for $0<\varepsilon<\varepsilon_{0}$. We write $f \sim g$ if $\lim _{\varepsilon \rightarrow 0} f(\varepsilon) / g(\varepsilon)=1$ and $f \leqq g$ if $\lim _{\varepsilon \rightarrow 0} f(\varepsilon) / g(\varepsilon) \leqq 1$.

Let K be a continuum in finite dimensional space and G be an open set containing K. For bounded continuous function $u(x)$ in K , we define $\|u\|=\sup _{x \epsilon K}|u(x)|$. We consider class $F_{G}(C)$ of continuous functions in G which satisfies some condition (F) in G and bounded in G by the constant C. We introduce the metric $\|u\|$ in $F_{G}(C)$ and denote it by $F_{G}^{K}(C)$.

Now we state our results.
i) Harmonic functions. In q-dimensional Euclid space, put $K_{r}=\{x,|x| \leqslant r\}$ and $G=\{x ;|x|<R\}$, where $|x|^{2}=x_{1}^{2}+\cdots+x_{q}^{2}$ for $x=\left(x_{1}, \cdots, x_{q}\right)$. Condition (F) in this case means that $u(x)$ is harmonic in G and we write $H_{R}^{r}(C)$ instead of $F_{G_{R}}^{K_{r}}(C)$. Then

$$
\text { (2) } \quad H\left(\varepsilon, H_{R}^{r}(C)\right)\left(C\left(2 \varepsilon, H_{R}^{r}(C)\right)\right)
$$

$=\left\{4 / q!(\log R / r)^{q-1}\right\}(\log 1 / \varepsilon)^{q}+O\left((\log 1 / \varepsilon)^{q-1} \log \log 1 / \varepsilon\right)$.
ii) Solutions of certain parabolic equation. Let $K=I^{s} \times[0, \infty)$ and $G=I^{s} \times(-T, \infty)$, where $I=[0,1]$ and T is a fixed positive number. Condition (F) in this case is that $u(x, t)$ satisfies
(3) $\frac{\partial}{\partial t} u(x, t)=-(-\Delta)^{p} u(x, t)$
in G and we denote $P_{T}(C)$ instead of $F_{G}^{K}(C)$. Then
(4) $H\left(\varepsilon, P_{T}(C)\left(C\left(2 \varepsilon, P_{T}(C)\right)\right.\right.$
$\sim\left\{4 p \Omega_{s-1} / s(2 p+s)(2 \pi)^{s}(T \log e)^{s / 2 p}\right\}(\log 1 / \varepsilon)^{(s / 2 p)+1}$
where

$$
\Omega_{s-1}=2 \pi^{s / 2} / \Gamma\left(\frac{s}{2}\right)
$$

§3. Fundamental lemmas

Let R be a normed space with the system of elements $\left\{\varphi_{k}, k \in K\right\}$. Let further the following conditions be satisfied: Any $f \in R$ is expanded uniquely as
(5) $\quad f=\sum_{k \in K} c_{k}(f) \varphi_{k}$.

Let the decomposition of $K, K=K_{0}+K_{1}+\cdots$, be given. Let $S_{t}=$ $K_{0}+K_{1} \cdots+K_{l}$ and d_{l}, P_{l} be the number of elements in K_{l}, S_{l} respectively. $\quad P_{t}=d_{0}+\cdots+d_{l}$.

Lemma 1. Assume in expansion (5) that
(6) $\|f\| \leqslant C^{\prime} \sum_{k \in K}\left|c_{k}(f)\right|$.

Let b_{0}, b_{1}, \cdots be positive constants such that $\sum_{i=0}^{\infty} b_{l} d_{l}<\infty$ and, for $f \in A \subset R,\left|c_{k}(f)\right| \leqslant b_{l}\left(k \in K_{l}\right)$. Let $n(\varepsilon)$ be a number satisfying
(7) $\sum_{l>n(\varepsilon)} b_{l} d_{l} \leqslant \varepsilon / 2 C^{\prime}$,
then
(8) $\quad H(\varepsilon, A) \leqslant 2 P_{n} \log (1 / \varepsilon)+\sum_{l=0}^{n(\varepsilon)} d_{l} \log b_{l}+2 P_{n(\varepsilon)} \log P_{n(\varepsilon)}$
$+O\left(P_{n(\epsilon)}\right)$.
Proof. Put $n=n(\varepsilon)$. Let T_{n} be the mapping from R to the finite dimensional subspace R_{n}, spanned by $\left\{\varphi_{k}, k \in S_{n}\right\}$, defined by $T_{n} f=$ $\sum_{k \in S_{n}} c_{k}(f) \varphi_{k}$. If $f \in A$, then $\|f-T f\| \leqslant \varepsilon / 2$.

Let us further define the mapping S_{n} from R_{n} to $2 \times P_{n}$ matrices. S_{n} is defined by

$$
S_{n}\left(\sum_{k \in S_{n}} c_{k} \varphi_{k}\right)=\left(\begin{array}{l}
m_{1}^{1} \cdots m_{P_{n}}^{1} \\
m_{1}^{2} \cdots
\end{array} m_{P_{n}}^{2}\right)
$$

where

$$
m_{k}^{i}=\left[\sqrt{2} P_{n} C^{\prime} c_{k}^{i} / \varepsilon\right] \quad\left(c_{k}=c_{k}^{1}+\sqrt{-1} c_{k}^{2}\right)
$$

for $k \in S_{n}$.
Let, for $f, f^{\prime} \in A, S_{n} T_{n} f=S_{n} T_{n} f^{\prime}$. Then

$$
\begin{align*}
& \left\|f-f^{\prime}\right\| \leqslant\left\|f-T_{n} f\right\|+\left\|f^{\prime}-T_{n} f^{\prime}\right\|+\left\|T_{n} f-T_{n} f^{\prime}\right\| \\
& \leqslant \varepsilon+\left\|\sum_{k \in S_{n}}\left\{c_{k}(f)-c_{k}\left(f^{\prime}\right)\right\} \varphi_{k}\right\| \\
& \leqslant \varepsilon+C^{\prime} \sum_{k \in s_{n}}\left|c_{k}(f)-c_{k}\left(f^{\prime}\right)\right| \tag{6}\\
& \leqslant \varepsilon+C^{\prime} P_{n}\left(\varepsilon / P_{n} C^{\prime}\right)=2 \varepsilon .
\end{align*}
$$

So $N(\varepsilon, A)$ is estimated from above by N, the number of elements in the set $S_{n} T_{n}(A)$.

If we put $\left(m_{k}^{i}\right)=(S T)(f)$, for $f \in A$, we have

$$
\left|m_{k}^{i}\right| \leqslant\left(\overline{\sqrt{2} P_{n}} C^{\prime} b_{l} / \epsilon\right)+1 \quad\left(k \in K_{l}\right)
$$

So $N \leqslant \Pi_{k \in s_{n}} N_{k}^{2}$, where

$$
N_{k}=\left(2 \sqrt{2 P_{n}} C^{\prime} b_{l} / \varepsilon\right)+3 \quad\left(k \in K_{l}\right)
$$

Consequently

$$
\begin{aligned}
& H(\varepsilon, A) \leqslant \log N \leqslant 2 \sum_{k \in s_{n}} \log N_{k} \\
& \leqslant 2 \sum_{k \in s_{n}}\left\{\log (1 / \varepsilon)+\log b_{l}+\log P_{n}+O(1)\right\} \\
& =2 P_{n} \log (1 / \varepsilon)+2 \sum_{l-}^{n} d_{l} \log b_{l}+2 P_{n} \log P_{n}+O\left(P_{n}\right) .
\end{aligned}
$$

The Lemma 1 is thus proved.
Lemma 2. We assume that in expansion (5),
(9) $\left|c_{k}(f)\right| \leqslant a_{t}\|f\| \quad\left(k \in K_{t}\right)$
and $\left|c_{k}(f)\right| \leqslant b_{l}^{\prime}\left(k \in K_{l}\right)$ imply $f=\sum_{k \epsilon K} c_{k} \varphi_{k} \in A$.
Then,
(10) $C(2 \varepsilon, A) \geqslant 2 P_{m(\varepsilon)} \log (1 / \varepsilon)+\sum_{l=0}^{m(\varepsilon)} d_{l} \log \left(b_{l}^{\prime} / a_{l}\right)+O\left(P_{m(\varepsilon)}\right)$,
where $m(\varepsilon)$ is a number such that $b_{l}^{\prime} / 2 \sqrt{2} \varepsilon a_{i} \geqslant 1(1 \leqslant l \leqslant m(\varepsilon))$.
Proof. Put $m=m(\varepsilon)$. The set

$$
\begin{aligned}
& B=\left\{f=\sum_{k \epsilon s_{m}} c_{k} \varphi_{k} ;\right. \\
& \left.c_{k}=\left(s_{k}^{1}+i s_{k}^{2}\right) 2_{\varepsilon} a_{l}\left(k \in K_{t}\right), s_{k}^{i} \in Z\right\}
\end{aligned}
$$

is 2ε-separated. The subset of B obtained by restricting s_{k}^{i} to $\left|s_{k}^{i}\right|$ $\leqslant\left[b_{l}^{\prime} / 2 \sqrt{ } \overline{2}_{\varepsilon} a_{l}\right]\left(k \in K_{l}\right)$ is contained in A. So we have $M(2 \varepsilon, A) \geqslant$ $\Pi_{k \in s_{m}} M_{k}^{2}, M_{k}=2\left[b_{l}^{\prime} / 2 \sqrt{2} \varepsilon a_{l}\right]+1$. Consequently,

$$
\begin{aligned}
C(2 \varepsilon, A) & \geqslant 2 \sum_{k \in \Theta_{m}} \log M_{k} \\
& \left.\geqslant \sum_{k \in s_{m}\{ } \log (1 / \varepsilon)+\log \left(b_{l}^{\prime} / a_{l}\right)+O(1)\right\} \\
& \geqslant 2 P_{m} \log (1 / \varepsilon)+\sum_{l=0}^{m} d_{l} \log \left(b_{l}^{\prime} / a_{l}\right)+O\left(P_{m}\right) .
\end{aligned}
$$

The Lemma 2 is thus proved.

§4. The ε-entropy of a set in space of solutions of certain parabolic equation.

Let R be the space of bounded continuous functions $u(x, t)$ satisfying (3) in $(x, t) \in I^{s} \times[0, \infty)$ with norm $\|u\|=\sup _{(x, t) \in I \times \times 0, \infty)}$ $|u(x, t)|$. Any element of R are expanded uniquely as

$$
\begin{gather*}
u(x, t)=\sum_{k} \exp \left\{-(2 \pi|k|)^{2 p} t\right\} v_{k} \exp (2 \pi i k \cdot x) \tag{11}\\
\left(k=\left(k_{1} \cdots, k_{s}\right) \in \boldsymbol{Z}^{s}\right),
\end{gather*}
$$

where v_{k} are Fourier coefficients $\int_{1} u(x, 0) \exp (-2 \pi i k \cdot x) d x$ of $u(x$, '0). Put $K=\left\{k=\left(k_{1} \cdots, k_{s}\right) \in \boldsymbol{Z}^{s}\right\}$ and $K_{l}=\left\{k=\left(k_{1} \cdots, k_{s}\right) ; l \leqslant|k|<l+1\right\}$ $(l=0,1,2, \cdots)$. We take $\varphi_{k}=\exp \left\{-(2 \pi|k|)^{2 p} t\right\} \exp (2 \pi i k \cdot x)$ and c_{k} $(u)=v_{k}$, then (11) is written as (5) and
(12) $\left|c_{k}(u)\right| \leqslant\|u\| \leqslant \sum_{k}\left|c_{k}(u)\right|$.

If $u \in P_{T}(C)$, we have

$$
\left|c_{k}(u)\right| \leqslant C \exp \left\{-(2 \pi l)^{2 p} T\right\} \quad\left(k \in K_{l}\right)
$$

So Lemma 1 is applicable with $b_{l}=C \exp \left\{-(2 \pi l)^{2 p} T\right\}$. In this case

$$
\begin{equation*}
P_{n}=\left(\Omega_{s-1} n^{s} / s\right)\left\{1+O\left(n^{-1}\right)\right\}, \tag{13}
\end{equation*}
$$

where $\Omega_{s-1}=2 \pi^{s / 2} / \Gamma(s / 2)$. And we have

$$
\begin{align*}
\sum_{l=0}^{n} d_{l} l^{2 p}= & \sum_{k \in s_{n}}|k|^{2 p} \tag{14}\\
= & \left(\Omega_{s-1} n^{2 p+s} / 2 p+s\right)\left\{1+O\left(n^{-1}\right)\right\} . \\
& \quad(\text { see }[2, \text { P. } 59))
\end{align*}
$$

We now give an estimate for $n(\varepsilon)$ satisfying (7).

$$
\begin{aligned}
\sum_{l>n} b_{l} d_{l} & \leqslant C \sum_{|k| \geq n+1} \exp \left\{-(2 \pi|k|)^{2 p} T\right\} \\
& \leqslant C_{1} \int_{n}^{\infty} r^{r-1} \exp \left\{-(2 \pi r)^{2 p} T\right\} d r \\
& \leqslant C_{2} n^{\prime \prime} \exp \left\{-(2 \pi n)^{2 p} T\right\} \quad \text { (s' positive number) }
\end{aligned}
$$

(henceforce C_{i} are constants, not affecting our final results). So we: can take $n(\varepsilon)$ satisfying

$$
\begin{array}{r}
\{2 \pi n(\varepsilon)\}^{2 \rho} T=\log (1 / \varepsilon) / \log e+O(\log \log 1 / \varepsilon) \\
(\text { see }[2], \mathrm{P} 46),
\end{array}
$$

therefore

$$
\text { (15) } \quad n(\varepsilon)=(2 \pi)^{-1}\{\log (1 / \varepsilon) / T \log e\}^{1 / 2 p}+O(\log \log 1 / \varepsilon)
$$

By Lemma 1 with estimates (13), (14) and (15), we have

$$
\begin{align*}
& H(\varepsilon, P(C)) \lesssim \tag{16}\\
& \left\{4 p s_{s-1} / s(2 p+s)(2 \pi)^{s}(T \log e)^{s / 2 p}\right\}(\log 1 / \varepsilon)^{(s / 2 p)+1} .
\end{align*}
$$

Given $\Delta>0$, define $C(\Delta)>0$ such that

$$
C(\Delta) \sum_{k} \exp \left\{-(2 \pi|k|)^{2 p} \Delta\right\} \leqslant C .
$$

If

$$
\left|c_{k}(u)\right| \leqslant C(\Delta) \exp \left\{-(2 \pi|k|)^{2 p}(T+\Delta)\right\},
$$

we have $u(x, t)=\sum_{k} c_{k}(u) \cdot \varphi_{k} \in P_{T}(C)$. So Lemma 2 is applicable to $b_{l}^{\prime}=C(\Delta) \exp \left\{-(2 \pi l)^{2 p}(T+\Delta)\right\}$.
We can take $m(\varepsilon)$ such that
(17) $\left.m(\varepsilon)=(2 \pi)^{-1}\{\log (1 / \varepsilon) /(T+\Delta) \log e)\right\}^{1 / 2 p}+O(1)$.

By Lemma 2 with estimates (13), (14) and (17), we have
(18) $C\left(2 \varepsilon, P_{T}(C)\right) \gtrsim$

$$
\left[4 p \Omega_{s-1} / s(2 p+s)(2 \pi)^{s}\{(T+\Delta) \log e\}^{s / 2 p}\right](\log 1 / \varepsilon)^{(s / 2 p)+1}
$$

Combining (16) and (18) by (1), we have the desired result (4).

§5. The ε-entropy of set in some classes of harmonic functions.

We denote a point $x=(x, \cdots, x)$ in q-dimensional Euclid space:
with (ρ, s) where $\rho=|x|$ and s is the intersection of the unit sphere S and the line $\vec{O} x$.

Function $u(x)$ which is harmonic in $|x|<r$ and continuous in $|x| \leqslant r$ can be expanded into hyperspherical harmonics in $|x|<r$ (see[1])

$$
\begin{align*}
& u(x)=u(\rho, s)=p^{-1} \sum_{l=0}^{\infty}(2 l+p)(\rho / r)^{\prime} u_{l}(s) \\
& u_{l}(s)=\int_{s} u\left(r, s^{\prime}\right) V_{l}^{(p)}\left(\cos \angle s O s^{\prime}\right) d s^{\prime}, \tag{19}
\end{align*}
$$

where $q=p+2, \mathrm{ds}^{\prime}$ is the normalized uniform measure on S and $V_{l}^{(p)}(x)$ is defined by

$$
\left(1-2 a x+a^{2}\right)^{-b / 2}=\sum_{l=0}^{\infty} a^{l} V_{l}^{(p)}(x) .
$$

We list here some properties of the above expansion for later use (see[1]).
(A) $\left|V_{l}^{(p)}(\cos \gamma)\right| \leqslant c_{l}$, where $c_{l}=V_{l}^{(p)}(1)=(l, p) /(1, p)$,

$$
(\lambda, k)=\Gamma(\lambda+k) / \Gamma(\lambda)=\lambda(\lambda+1) \cdots(\lambda+k-1) .
$$

(B) Hyperspherical functions of order l form a d_{l}-dimen:sional vector space H_{l}, where $d_{l}=(2 l+p)(l+1, p-1) /(1, p)$.
(C) $\int_{s} V_{l}^{(p)}(\cos \angle N O s)^{2} d s=p c_{l} /(2+p)$,
where $N=(0, \cdots, 0,1)$.
Henceforce by $P_{i}(l)$ we mean polynomials with positive coefficients. We choose $P_{1}(l)$ such that $\left\{p c_{l} /(2 l+p)\right\}^{1 / 2} \leqslant P_{1}(l)$.
(D) If $y(s) \in H_{l}$, then
(20) $|y(s)|^{2} \leqslant p^{-1}(2 l+p) c_{l} \int_{s}|y(s)|^{2} d s$.

In fact, putting $u(x)=\rho^{t} y(s)$ in (19), we have

$$
y(s)=p^{-1}(2 l+p) \int_{s} y(s) V_{l}^{(p)}\left(\cos \angle s O s^{\prime}\right) d s^{\prime}
$$

So by Schwarz' inequality and (C), (20) follows. We choose $P_{2}(l)$ such that $\left\{p^{-1}(2 l+p) c_{l}\right\}^{1 / 2} \leqslant P_{2}(l)$.

Now define a norm for bounded functions u on S by $\|u\|^{\prime}=$ $:_{\sup _{s \epsilon s}|u(s)| \text {. Then, for expansion (19), }}$
(21) $\quad\|u\| \leqslant p^{-1} \sum_{i=0}(2 l+p)\left\|u_{t}\right\|^{\prime}$
and
(22) $\quad\left\|u_{l}\right\|^{\prime} \leqslant P_{1}(l)\|u\|$.

Let $\left\{y_{k}^{l}(s), 1 \leqslant k \leqslant d_{l}\right\}$ be a complete orthonormal system in H_{l}. and $u_{l}(s) \in H_{l}$ be expanded in $\left\{y_{l}^{k}(s)\right\}: u_{l}(s)=\sum_{k=1}^{d_{l}} b_{k}^{l} y_{k}(s)$, where $b_{k}^{l}=\int_{s} u_{l}(s) \overline{y_{k}^{l}(s)} d s$. We have
(23) $\left\|u_{t}\right\|^{\prime} \leqslant P_{2}(l) \sum_{k=1}^{d_{l}}\left|b_{k}^{\prime}\right| \quad$ (by (D))
and
(24) $\left|b_{k}^{\prime}\right| \leqslant\left\|u_{t}\right\|^{\prime}$

Therefore we have, combining (21) and (23),
(25) $\quad\|u\| \leqslant \sum_{l=0}^{\infty} \sum_{k=1}^{d_{l}} P_{3}(l)\left|b_{k}^{l}\right| \quad\left(P_{3}(l)=p^{-1}(2 l+p) P_{2}(l)\right)$
and, combining (22) and (24),
(26) $\quad\left|b_{k}^{h}\right| \leqslant P_{1}(l)\|u\|$.

Now let $u \in H_{R}^{r}(C)$. It has an expansion of the form (19) in G_{R}, where r in (19) is substituted by R. By equating coefficients. in this expansion and in (19), we get

$$
u_{l}(s)=(r / R)^{\prime} \int_{s} u(R, s) V_{l}^{(p)}\left(\cos \angle s O s^{\prime}\right) d s^{\prime}
$$

So if $u \in H_{R}^{r}(C)$,
(27) $\left\|u_{l}(s)\right\|^{\prime} \leqslant C P_{1}(l)(r / R)^{t}$.

Taking $u_{k}^{l}(\rho, s)=(\rho / r)^{l} y_{k}^{l}(s) / P_{2}(l)$ and $\widetilde{b_{k}^{l}}=b_{k}^{l} P_{3}(l)$, we have
(28) $u(\rho, s)=\sum_{l=0}^{\infty} \sum_{k=1}^{d_{t}} \widetilde{b_{k}^{t}} u_{k}^{t}(\rho, s)$
and
$\|u\| \leqslant \sum_{i=0}^{\infty} \sum_{k=1}^{d_{t}}\left|\widetilde{b_{k}}\right|$
and for $u(\rho, s) \in H_{R}^{r}(C)$, we have, by (27),

$$
\left|\widetilde{b_{k}^{\prime}}\right| \leqslant C P_{1}(l) P_{3}(l)(r / R)^{\prime}=b_{l} .
$$

For large l and n, we have
$d_{l}=2 l^{p} / p!+O\left(l^{p-1}\right)$,
(29) $\quad P_{n}=d_{0}+\cdots+d_{n}=2 n^{p+1} /(p+1)!+O\left(n^{p}\right)$
and
(30) $\quad \sum_{i=0}^{n} d_{l} \log b_{l}=2 n^{p+2} \log (R / r) /(p+2) p!+O\left(n^{p+1} \log n\right)$

We can take $n=n(\varepsilon)$ satisfying $\sum_{l>n} b_{l} d_{l} \leqslant \varepsilon / 2 C$ and
(31) $n(\varepsilon)=\log (1 / \varepsilon) / \log (R / r)+O(\log \log 1 / \varepsilon)$

Applying Lemma 1 with estimates (29), (30) and (31), we have
(32) $\quad H\left(\varepsilon, H_{R}^{r}(C)\right) \leqslant\left\{4 / q!(\log R / r)^{q-1}\right\}(\log 1 / \varepsilon)^{q}$ $+O\left((\log 1 / \varepsilon)^{q-1} \log \log 1 / \varepsilon\right)$.

Put $h=\log R / r$. Let, for $\Delta>0$,
(33) $\left|\widetilde{b}_{k}^{\prime}\right| \leqslant C^{\prime} \Delta \exp \{-(h+\Delta) l\} / d_{t}$
i.e. $\quad\left|b_{k}^{\prime}\right| \leqslant C^{\prime} \Delta \exp \{-(h+\Delta) l\} / d_{l} P_{3}(l)$
and define u by
(34) $u(\rho, s)=p^{-1} \sum_{l=0}^{\infty}(2 l+p)(\rho / r)^{\prime} u_{l}(s)$, $u_{l}(s)=\sum_{k=1}^{d_{l}} b_{k}^{l} y_{k}^{l}(s)$.

We have $\left\|u_{l}\right\|^{\prime} \leqslant p(2 l+p)^{-1} C^{\prime} \Delta \exp \{-(h+\Delta) l\}$, so

$$
|u(x)| \leqslant \sum_{l=0}^{\infty}(R / r)^{\prime} C^{\prime} \Delta \exp \{-(h+\Delta) l\}=C^{\prime} \Delta /\left(1-e^{-\Delta}\right)
$$

in G_{R}.
So we can choose C^{\prime}, independent of Δ in $\left(0, \Delta_{0}\right)$, such that u defined ay (34) with b_{k}^{l} satisfying (33) are in $H_{R}^{\prime}(C)$. So Lemma 2 is applicable with $b_{l}^{\prime}=C^{\prime} \Delta \exp \{-(h+\Delta) l\} / d_{l}$. Putting $\Delta=h / \log (1 /-$ ε) and estimating $m(\varepsilon)$ defined there, we may take

$$
m(\varepsilon)=\log (1 / \varepsilon) / \log (R / r)+O(\log \log 1 / \varepsilon) .
$$

So we have

$$
\begin{align*}
C\left(2 \varepsilon, H_{R}^{r}(C)\right) \geqslant & \left\{4 / q!(\log R / r)^{q-1}\right\}(\log 1 / \varepsilon)^{q} \tag{35}\\
& +O\left((\log 1 / \varepsilon)^{q-1} \log \log 1 / \varepsilon\right)
\end{align*}
$$

Combining (32) and (35) by (1), we have the desired result (2).

BIOGRAPHY

[1] P. Appell-J. Kempe de Feriet: Foncttions Hypergeometriques et Hyperspheriques, Polynomes d'Hermite, Paris (1926).
[2] A. N. Kolmogorov and B. M. Tikhomirov: E-Entropy and ع-capacity of sets in function spaces (in Russian), Uspekhi Mat. Nauk, 14, No. 2 (86), 3-59 (1959).
[3] S. Tanaka: The E-entropy of some classes of harmonic functions, Proc. Jap. Acad., Vol. 39, No. 2 (1963), 85-88.

