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§1. Introduction

In recent years e—entropy of subsets of various function spaces
were estimated by A. N. Kolmogorov and B. M. Tikhomirov [2]
and by others. In the present paper we estimate e-entropy of sets
in the space of harmonic functions (published earlier in [3]) and
the space of solutions of certain parabolic equation.

Our results are stated in §2 after the definition of e-entropy is
stated. We prove two lemmas in §3 and the conditions of these
lemmas are examined separately for each case in §4 and §5.

The author expresses his hearty thanks to Professor H. Yoshi-
zawa who suggested (in 1962) the problem of estimating the e
entropy of sets in space of solutions of partial differential equations.

§2. Definitious and statement of the results

Following [2], we shall list definitions which are necessary to
state our results.
Let R be a metric space and A a subset of R.

Difinition 1. A system 7y of sets UCR is called ecovering
of A, if Ac U U and the diameter of each Uy does not exceed 2e.

vey

Definition 2. A set Bin R is called e-separated if the distance
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of any distinct points of B are greater than e.
Now assume that the set A is totally bounded.

Definition 3. N(e, A) is the minimal number of elements of
all possible e—coverings of A. H(e, A) =logN(e, A) is called e
entropy of the set A(logN will always mean the logarithm of the
number N in the base 2).

Definition 4. M (e, A) is the maximal number of points in all
possible e-separated subsets of the set A. C(e, A)=1logM(e, A) is
called the e-capacity of A.

Obviously

(1) M2, A) <N(, A)

Let f(¢) and g(e) be positive functions of ¢ defined for 0<le<Ze,.
We write f~g if Li_)rﬁlf(e)/g(e)=1 and f<g if lei_glf(e)/g(e)gl.

Let K be a continuum in finite dimensional space and G be an
open set containing K. For bounded continuous function #(x) in
K, we define ||#|=sup.ex|u(x)|. We consider class F;(C) of con-
tinuous functions in G which satisfies some condition (F) in G and
bounded in G by the constant C. We introduce the metric |[[#] in
F;(C) and denote it by F&(C).

Now we state our results.

i) Harmonic functions. In g-dimensional Euclid space, put
K,={x,]x|<r} and G= {x; |x|<<R}, where |x|*=xi+---+2x] for
2= (%,,%,). Condition (F) in this case means that #(x) is har-
monic in G and we write H;(C) instead of F&;(C). Then

@ He, Hi(0) (C2e Hi(C)))

= {4/q" (logR/7r)" % (logl/e)*+0 ((logl/e)* "log log 1/¢).

ii) Solutions of certain parabolic equation. Let K=I°X [0,00)
and G=IX(—T, o), where I=1[0,1] and T is a fixed positive
number. Condition (F) in this case is that u#(x,¢) satisfies

@ Zulxd=—(—a ulxt
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in G and we denote P;(C) instead of F&(C). Then
(4) H(e, Pr(C) (C(Z, Pr(C))
~ {4p2../s(2p+s) (2n)* (T log €)'} (log 1/e) “/*»**

where

§3. Fundamental lemmas

Let R be a normed space with the system of elements {p,, k€ K}.
Let further the following conditions be satisfied: Any fER is ex-
panded uniquely as

5) f= > kexCh <f>¢k-
Let the decomposition of K, K= K,+ K,+---, be given. Let S;=

Ky+ K,---+ K, and d,, P, be the number of elements in K, S, respec-
tively. P,=d,+---+d..

Lemma 1. Assume in expansion (5) that

(6) ”f”<cl el () 1.

Let b, by, --- be positive constants such that >372.6,d,<<ece and, for
fEACR, |c.(f)|<b, (kEK,). Let n(e) be a number satisfying

(7> 2:>n(e)bzd1<€/2C’y
then

(8> H(ev A) <2Pn log(l/e) + 27(-60)(11 logbl+2Pn(5) loan(e)
+0(Pus).

Proof. Put n=n(e). Let T, be the mapping from R to the finite
dimensional subspace R,, spanned by {¢,, kES,}, defined by T,f=
ShessCi(flow If fEA, then | f— Tf[<e/2.

Let us further define the mapping S, from R, to 2 X P, matrices.
S, is defined by

1

S, (essCrn) = <m;m:' )

m ..-mP.
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where

mi=[/2P,C’ ci/e] (ci=ci+v/ —1cd)
for k= S..

Let, for f,f'€A, S,T.f=S.T.f. Then

If=FI<Uf=T. 1 +1f=T.f 1 +I1T.f=T.f
Let | Zhesa () —a(fD} il

e+ Ces la(f) —a(fD] (by (6))
<e+C'P,(e/P,C") =2e.

So N(e, A) is estimated from above by N, the number of ele-
ments in the set S.7T,(A4).

If we put (mi)=(ST)(f), for f€ A, we have

|m | <(/2P.C" bi/e) +1 (ke K).
So N<I1,e,NE, where

Ni=(2y/2P,C' b/e)+3 (ke K)).
Consequently

H(e, A)< logN < 25 ,¢s,l0gN,
< 23, {log(1/e) +log b+1log P,+0(1)}
=2P,log (1/¢) +23.td/logh,+2P,log P,+O(P,).

The Lemma 1 is thus proved.

Lemma 2. We assume that in expansion (5),
@ la(OHI<alfll (ke K)

and |C,,(f) |<b; (kE Kl) imply f: 2}6KC;¢§6A.
‘Then,

(10) C(2¢, A)> 2P, slog(1/e) + 1 5dilog(bi/a) +O0(Pue),

where m(e) is a number such that )/2y/2ea,>1 A<I<m(e)).
Proof. Put m=m(e). The set

B= {f= D iesnCii;
= (si+ish)2ea, (ke K)), sicZ}
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is 2e-separated. The subset of B obtained by restricting si to |si|
<[b)/2v/2¢a,) (k€ K)) is contained in A. So we have M(2¢, A)>
e, M2, M,=2[b,/2,/2¢ca,] +1. Consequently,
C(2e, A) >2>eslogM,
>3 es, {log(1/e) +log(bi/a,) + O(1)}
>2P,log(1/e) + > dJog(bi/a,) + O(P,).

‘The Lemma 2 is thus proved.

§4. The c-entropy of a set in space of solutions
of certain parabolic equation.

Let R be the space of bounded continuous functions u(x, )
satisfying (3) in (x,8) €I X [0, o0) with norm |[[#| =supc. nerxo. =
|u(x,t)|. Any element of R are expanded uniquely as

(11) u(x,t)=exp{— 2= |k])¥?t} viexp(2rnik-x)
(k= (k- k) EZ),

‘where v, are Fourier coefficients S”u(x, 0)exp(—2ntk-x) dx of u(x,
0). Put K= {k=(ki-++, k) €Z} and K,= {k= (k- k) ; I<|k|<</+1}
1=0,1,2,--). We take ¢g,=exp{— C2x=|k|)*” t} exp(2rik-x) and c,
(u) =wv,, then (11) is written as (5) and
A2) e (o) | <lluel| <Zlex(n) |
If ue P:(C), we have
lev(u) | <Cexp{— (2zD)*T} (kEK),
So Lemma 1 is applicable with b,= Cexp{— (2x/)*T}. In this case
13) P.=(2.m'/s) 1+ 0™},
where 2,.,=27"?/r(s/2). And we have

(14) 27-0 dll”= Ekss. |k|”
= (2, m**/2p+s) {1+ O0(n)}.
(see [2,P.59))

We now give an estimate for n(e) satisfying (7).
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21>nb,d,<CZ 1t 2n+1€XP {—@Cr|k])* T}
<C18mr"‘exp {— Crr)*T}dr
< Cm¥exp{— 2mnn)* T} (s’ positive number)

(henceforce C; are constants, not affecting our final results). So we:
can take n(e) satisfying

{2rn(e)}** T=1log(1/e) /loge+ O(log log1/e)

(see [2], P46),
therefore

(15) n(e)=(2r)*{log(1/e)/ T loge} * + O(log log1/e)
By Lemma 1 with estimates (13), (14) and (15), we have

H(, P(O)=
{4p2, 1/s(2p+5) (2r)*(T loge)*"*”} (log 1/e)C1*P+,

Given 4>0, define C(4)>>0 such that
CHZwexp{—(2n|k|)* 4 <C.

(16)

If
les(u) |<C(dexp{— Cr|kD*(T+ )},

we have u(x,t)=>uc,(#) -9, Pr(C). So Lemma 2 is applicable to
bi=C(a) exp{— 2neD)*(T+ 4)}.
We can take m(e) such that

A7) me)=(2n) " {log(1/e)/(T+ 4) loge)} ™+ O(1).
By Lemma 2 with estimates (13), (14) and (17), we have

(18) C(2¢, P (C)H=
[4p2.1/s(2p+s) (2n)* {( T+ 4) loge} '**] (logl/e)«/*»+!

Combining (16) and (18) by (1), we have the desired result (4)..
§5. The c-entropy of set in some classes
of harmonic functions.

We denote a point x=(x,---, x) in g-dimensional Euclid space:
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-with (p,s) where p=|x| and s is the intersection of the unit sphere
.S and the line Ox.

Function #(x) which is harmonic in |x|<{7 and continuous in

|x|<r can be expanded into hyperspherical harmonics in |x|<r

(see[1])

(19) u(x)=ulp, s) =p* o2+ ) (o/7)'us(s)
u,(s)= su(r, s Vi?(cos /sOs")ds’,

where g=p+2, ds’ is the normalized uniform measure on S and
Vi®(x) is defined by

(1—2ax+a)**=3na' VP (x).

We list here some properties of the above expansion for later
use (see[l1]).

(A) [ VP(cosy) I<c,, where ¢,=VPQ) =, p)/Q, p),
(AB) =T G+E)/r(D) =1(2+1) - (A+E—1).
(B) Hyperspherical functions of order !/ form a d;, —dimen
:sional vector space H,, where d,=Ql+p)(U+1,p—1)/Q, D).
© { voicossNOsyas=pe/a+p),
where N=(0,---,0,1).
‘Henceforce by P;(l) we mean polynomials with positive coefficients.
‘We choose P;(l) such that {pc,/(2l+p)}**<P,(D).
(D) If y(s)eH,, then

20) 1y P<pr@+pe 190 1ds.
In fact, putting #(x) =o' y(s) in (19), we have
y(s) = p(20+ ) S y(s) V¥ (cos /50 ds'.

'So by Schwarz’ inequality and (C), (20) follows.

We choose P,(1)
such that {p7(21+p)ec,}*<P,(D).

Now define a norm for bounded functions # on S by |u|’'=
supses|#(s)|. Then, for expansion (19),
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21)  |ul|<p'ZiaeRL+D) [udll’
and
(22)  lwll'<P(D) |lu]].

Let {y:(s),1<<k<d,} be a complete orthonormal system in H.
and #,(s) € H, be expanded in {yi(s)}: u,(s)=iL.biy:(s), where.
b~ g 1,(s)yI(s)ds. We have

S

(23) o' <P (1) 5L, | B4 (by(D))

and

@40 |h<llull’
Therefore we have, combining (21) and (23),

(25) Nu||<XfmoxitiPs(D) |6 (Ps(D)=p ' (21+p) P,(1))
and, combining (22) and (24),

(26) |6 <Pi(D) [lm].

Now let u€ H ;(C). It has an exparsion of the form (19) in
G, where 7 in (19) is substituted by R. By equating coefficients.
in this expansion and in (19), we get

w,(s) = (7/R)" Ss"(R’ §) VP (cos /s0s')ds'.

So if ue Hi(C),
@) () I'<CP (D) (r/R)".

Taking #.(p,5) = (o/7)'yi(s)/Py(I) and bl==5\Ps(l), we have
(28) u(p, s) =it blui(p, 5)

and
| < So >34k | B

and for u(p, s)e Hi(C), we have, by (27),
|50 | < CP(I) Py(1) (#/R)! =b,.

For large / and n, we have
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d,=2I'/p'+00"™),
(29) P,=dy+--+d.=2n"/(p+1)!+0(*)
and
(30) i.od/logb,=2n*"*log(R/r)/(p+2)p!+ O(n**logn)
We can take n=n(e) satisfying 35.06:d:<e/2C and
(31) #n(e) =log(1/e)/log(R/7)+ O(log logl/e)

Applying Lemma 1 with estimates (29), (30) and (31), we
have

(32) H(e, H:(C))<{4/q!(logR/7)*"} (log 1/e)*
+0((log1/e)* log logl/e).

Put h=log R/r. Let, for 4>0,

(33) |BL|<C dexp{— (h+ D1} /d,

i.e. lb£|<C’Aexp{—(h+A)l}/d1Pa(1)
and define # by

(34) ulp, s)=p ">+ D) (o/7)'u:(s),

u/(S) :Eleb/:y{:(S).

We have [u]’'<<p2l+p)C' dexp{— (h+ 41}, so

lu(x) | <<Zmo(R/7)'Cdexp{—(h+ DI} =C"4/(1—e™)
in GR.

So we can choose C’, independent of 4 in (0, 4,), such that #
defined ay (34) with b; satisfying (33) are in H%(C). So Lemma
2 is applicable with ;= C'dexp{— (h+ 4)l} /d,. Putting 4=h/log(1/-
¢) and estimating m(e) defined there, we may take

m(e) =log(1/e) /log(R/r) + O(log log 1/e).

So we have

(35) C(2¢, Hi(C))>{4/q! (ogR/7)* "} (log1/e)*
+0((log1/e)* log log1/e).

Combining (32) and (35) by (1), we have the desired result (2).
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