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§ 1 .  Introduction

In recent years e—entropy o f subsets o f various function spaces
were estimated by A. N. Kolmogorov and B. M . Tikhomirov [2]
and by others. In the present paper we estimate e—entropy of sets
in the space o f  harmonic functions (published earlier in [3] ) and
the space of solutions of certain parabolic equation.

Our results are stated in §2 after the definition of e—entropy is
stated. We prove two lemmas in §3 and the conditions of these
lemmas are examined separately for each case in §4 and §5.

The author expresses his hearty thanks to Professor H. Yoshi-
zawa who suggested (in  1962) the problem o f  estimating the e—
entropy of sets in space of solutions of partial differential equations.

§2. Definitious and statement of the results

Following [2] , we shall list definitions which are necessary to
state our results.

Let R  be a metric space and A a subset o f R.

D ifinition 1. A  system r o f s e ts  U cR  is called e- covering
o f A, i f  A cU U  and the diameter of each UE y does not exceed 2e.

Definition 2. A set B in R is called e- separated if the distance
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o f any distinct points of B  are greater than e.
Now assume that the set A is totally bounded.

Definition 3 .  N(e, A ) i s  the minimal number o f  elements of

a l l  possible 6-coverings o f  A .  H(e, A ) = logN(e, A )  is  c a lle d  E-
entropy of the set A ( lo g N  will always mean th e  logarithm of the

number N  in the base 2).

Definition 4. M ( ,  A ) is  the maximal number of points in all
possible 6-separated subsets o f th e  s e t  A . C(e, A) = logM(e, A ) is
called the e- capacity of A.
Obviously

(1 ) M (2 e , A) <N (e , A)
Let f (e )  and g (e ) be positive functions of e defined for 0<e<60.

We write f  g  i f  lim f(e )/g(e ) =1  and f g  i f  lim f(e )/g(e) 1.

Let K  be a continuum in finite dimensional space and G be an

open set containing K . F o r  bounded continuous function u (x )  in
K , we define su peK lu  (x )I•  We consider class FG (C ) o f  con-
tinuous functions in G which satisfies some condition (F )  in  G and

bounded in  G b y  the constant C .  We introduce the m etric  lull in

F e (C ) and denote it by F i(C ).
Now we state our results.

i) Harmonic functions. In  q-dimensional Euclid space, put

IC= {x , I x 1< r }  and G  {x  ;  < R } , where Ix 12 = 4+ • • • +  for

X= (x i ,• • • ,x , ) .  Condition ( F )  in th is case means that u (x ) is har-
monic in  G and we write H ( C )  instead o f Fg.; ( C ) .  Then

(2) H (e , H (C )) (C (2 e , H ;(C )))
= {4/q ! (log R / r )" }  (log1/6) +0 ( (log1 /6) "log log 1/e).

ii) Solutions of certain parabolic equation. Let K x [0,0.0)

and G —  P x ( —  T, 00) , where I= [0 , 1 ] and T  i s  a  fixed positive

num ber. Condition (F )  in this case is  th at u (x, t )  satisfies

a(3) u (x
'

 t) = — (— 4)P u (x , t)8t 
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in G and we denote 13 ,-(C )  instead of F g (c ) .  Then

(4) I-1(e, PT (C ) (C (2e, P(C ))
— { 4pQ ,,/s(2P+s) (270 (T  log e) /2P} (log 1 /s) ( '1" ) '

where

= 2re/2/r(  2
s )

§ 3 .  Fundamental lemmas

Let R  be a normed space with the system of elements {v,„ kE K } .

Let further the following conditions be satisfied : Any fE  R  is ex-

panded uniquely as

(5) f  — Ek EK C k (f )V k •

Let the decomposition of K , K = K o + K i + • • , be given. Let .3, =
K o + K 1 - • • + K , and d,, P, be the number of elements in K1, S, respec-

tively. P i =d 0 +•••+cl i .

Lemma 1. Assume in expansion (5) that

(6) f ! < C '  EkE K I C k ( f )  I.
Let bo, b1, • •• be positive constants such that Er_ 0b id ,< 00  and, for
f E A c  R ,  c k ( f )  I < b ,  ( k  K , ) .  Let n ( e )  be a number satisfying

(7) E i > „(, )bidi<e/2C ,

then

( 8 )  H(e, A) <2P„ log (1/s) + Er4;d i logbi + 2P„ ( e ) logP,, (e )

+ 0 (P„ ( e ) ).

P roo f. Put n = n ( ) .  L e t  T„ be the mapping from R  to  the finite
dimensional subspace R „, spanned by {ço,„ k E S „} , defined by T „f =
EkEs.ck(f)q, k• If f E  A , then !I f  T f i l< e / 2 .

Let us further define the mapping S. from  R „ to 2 x P„ matrices.
S” is defined by

S  n (E k E S N C =  (
M l • • • M ip

• • • M 2p  )
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where

m ,= [ 1/ 2 P „C' e] (C h= Clh+ 1/ — 14)

for kES„.
Let, for f, f ' E A , S„T„f --- S „T„f%  Then

<11f— 7'f II — T„f'll + IIT.f —
< e +  EkESN { c k (f )  - - c k (f ') } v k l l

< e + C 'E k E s k Ic k (f ) — c k (f )1 (by (6 ))
< 6 +  C'P„(el P„Cp = 2e.

So N(e, A ) is estimated from above by N , the number o f ele-
ments in the set S„T„(A).

I f  we put (m ik ) = ( S T ) ( f ) ,  for fE  A, we have

in41<(1/ 2 P,C' 1,
1/0+1

S o Ar< n-  k E S .N 1 , where

(kE K ,).

N k = ( 2 /2  P C ' + 3 (kE K ,).

Consequently

H (e , A )<  lo g N  <  2 E  locf N k
<  2EhEsh {log (1/e) + log b + log P + 0 (1)1
=2P„log (1/E) +2E,_;c/ilogb,+2/3 Jog P ,+ O (P ,).

The Lemma 1  is thus proved.

Lemma 2 .  We assume that in expansion (5) ,

(9) Ick(f)1<aillfil (k E K,)

and I ck  ( f ) I< b , (k E K ,) imply f=  EkEKC kç Pk E  A .

Then,

(10) C (2e, A)> 2P „, ( e ) log(1./ e) + E71Vd, log (1);/a1) + 0 (13  .(e))

where m ( e )  is  a number such that b;/21/ 2 ea ,> 1  (1 < / < m (e )) .

P ro o f. Put m = m ( s ) .  The set

B= {f—EkEsh,c,A0k;
c h = (st+ is1 )2 ea ,(k E K ,), 4 E 2 )
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is 2e-separated. The subset of B  obtained by restricting s̀k t o  141

< [b;/2 1/ 2 e a d  (k  K ,) is contained in A .  So we have M (2e, A)>.-
I I  kEs„,M12,7 Mk — 2 [W 2 1/2 e a j  + 1 .  Consequently,

C(2€, A) > 2 E , lo g M k

>Ekee„, {log (1/e) + log (b ;/a,)+ 0(1)}
>2/3 ,k log(1/e) + ET=odilog(1),/ai) + 0 ( P ) .

•The Lemma 2  is thus proved.

§ 4 .  The e-entropy o f a  se t in  space of solutions
of certain parabolic equation.

Let R  be the space o f bounded continuous functions u (x, t)

satisfying ( 3 )  in (x , t ) E P X  [0, 0 0 )  with norm Nu = supc, oep.(0,.)
u (x, t) I .

 Any elem ent of R  are expanded uniquely as

(11) u (x, t) EkexP { — (27r I k l)"t}  vkexp (27rik• x)
(k = (k 1 •••, k) E Z O ,

'where vk are Fourier coefficients (x, 0)exp( — 27rik• x) dx of u (X ,

'0 ). Put K = { k =(k ,••• ,k s )  Z '} and K,=. {k= (k1-• • , ks); 1< 1k i< l+
(1= 0 ,  1 ,  2 ,  . ) .  We take çok exp { — (2n k l) " t }  exp (27rik • x )  and ck
(u) = 24, then (1 1 )  is written as ( 5 )  and

(12) I ck (u) <111t1I<Ek ck (u )  .

I f  u E Pr(C) , we have

c,. (u) <Cexp { — (2g1)" T) (k E ,

So Lemma 1 is applicable w ith  1)1 =  C e x p  {  (2n1)" T }  . In this case

(13) P„--- (S2—ins/s) {1+ 0(n - 1 )}

-where 12s, 27rsiVr(s/2). And we have

(14) E7-0d1l2 =EkEs„1k1 2 1'
= (2 ,n "+1 2 p +s)  { 1 + 0 (n ) } .

(see [2, P. 59))

We now give an estimate for n ( e )  satisfying (7 ).
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Et>.bidt<CE a”.1exP — (27r 1k 1 )"

< C iS n
- r 'e x p  —  (2nr) 2 T) dr

<CO2"exp {— (27rn) 2 T ) (s ' positive number)

(henceforce Ci are constants, not affecting our final resu lts). So  w e
can take n(€) satisfying

{27rn (e)} " T = log (1/ e) /loge+ 0(log  log 1/e)

(see  [2] , P46) ,
therefore

(15) n(e) = (270 - 1  {log (1/e) / T loge) 11" + 0(log  log 1/e)

By Lemma 1  with estimates (1 3 ) , (1 4 )  and (15), we have

H(e, P
(16)

{4P2 1/s(2P+ s)(27r)s (T loge) ' 12P) (log 1 /e) ( si" ) +1 .

Given 4 > 0 , define C (4 )> 0  such that

C(J)Ek exP {— (27r1kl)" 4} <C .
If

ick(u) i <C(d)exp {— (27r k DaP( T+J)} ,

we have u (x, t) = Ekck(u) • çe'l: E PT ( C ) .  So Lemma 2  is applicable to'
b = C(4) exp (27d) 2P ( T + j)) •

We can take m (e )  such that

(17) m(e) -= (270' {log(l/s)/( T + 4) loge))' 1" + 0(1).

By Lemma 2  with estimates (1 3 ) , (1 4 )  and (17) , we have

(18) C(2e, P T (C)),_
[4ps 2 s ,/ s (2P + s) (27r) {(T + d) loge) s/"] (log1/s) ( si 2 P ) '

Combining (1 6 )  and (18) by (1 ), we have the desired result (4)..

§ 5 .  The e-entropy o f se t in  some classes
o f  harmonic functions.

We denote a point x= (x,•.•, x) in  q-dimensional Euclid space
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- w ith (p, s) where p= Ix I and s  is  the intersection of the unit sphere
S  and the line Ox.

Function u (x) which is harmonic i n  I x I < r  and continuous in
X  K r  can be expanded into hyperspherical harmonics i n  I x I < r

(see [1] )

(19
u (x) = u (p, s)=13 - 1 E7- 0(21+ P)(P/r) l ui(s)

)
ui (s) —  u (r, s') VP' )  (cos/s0s9 ds' ,

where q= P +2, ds' i s  the normalized uniform measure o n  S  and
VP' ) (x ) is defined by

(1 - 2ax + a2 ) - P I 2 =E T - oal  V Y') (x)

We list here some properties o f the above expansion for later
-u se  (see [1] )

(A) I V  (cos r )  ‹ c  where (1) = (1, p)/(1, p ),
(2,k) r (A+ k) / r (2) 2 ( 2 + 1 )  (A+ k —1).

(B) Hyperspherical functions o f order I  form a  d ,  —dimen-
:sional vector space H,, where cl, = (21+ p)(1 +1, p -1) / (1, p) .

(C) riP) (cos ZN 0 s) 2 ds= pc,/ (2+ P),

where N= (0,- • • , 0,1) .
Henceforce by P,(1) we mean polynomials with positive coefficients.
•We choose P1 (1) such that {Pci/ (2/ +P)} l i a <P,(/).

(D) If y ( s )  H  „ then

(20) I 3, (s) I
2

< P - 1 (2 /+P )c i y (s) lads.

In  fact, putting u(x) = pi y (s )  in  (19), we have

( s )  P- 1 (21+ (s) V (IP ) (cosZs Os')ds'.

:So by Schwarz' inequality and (C ), (20 ) follows. We choose 13
 2 (1)

such that {P - 1 (2/ +P)ci} 1 /2 <P2(/).
Now define a  norm for bounded functions u  on  S  b y  NI!' =

:sup E s u (s) I. Then, for expansion (19) ,
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(21) ilull< r iZI:0(2 /+P)Iruir

and

(22) M111'<P1(/) i lull.
L e t { 3 (s ) ,1 <k <d ,}  be a  complete orthonormaj system in  H;-

and u i (s) E  H  be expanded i n  {y`;(s)}: ui(s)=EV-ib lkyk(s), where.

b/k = u , ( s ) y `,,(s )d s . We have

(23) lu, r<P2(/)E akLi (by (D))

and

(24) 1M,

Therefore we have, combining (21) and  (23) ,

(25) iluii<E7-0E%1 1 3 8(/) blkI (P3 (/ ) =P - 1 (21 +P)P2( 1 ) )

and, combining (22) and  (24),

(26) b,l <13 ,(1)!luil.

Now le t u E .H (C ) .  It has an  expansion o f th e  form (19) in
G R , where r  in  (19) is substituted by R .  By equating coefficients
in  this expansion and in (19) , we get

ut (s) = (r/ R) 1
 . s te(R, s) .rP ) (cosZsOsr)ds'

So i f  uEH 'R (C),

(27) Ilui (s) II ' < CP,(1) (r/ R)`

Taking ul(p, ) = (p /r)'),(s)/ P 2 (1) and -IT', =1)P(1), we have

(28) u(p, s)=E7-0EL ,R u lk(p, s)
and

iittli<E7-0E dki-, I  I

and for u(p, s) PR (C ), we have, by (27) ,

IRI<CP1(1) P3 ( 1) WRY =  b,.

For large 1 an d  n , we have
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d i = 21P / p! + 0 (1P- 1) ,
( 2 9 )  P„= do + ••• +d„=2nP"/ (P+1)! +0(nP)

and

(30) E7-odi logbi = 2nP+2 1og(R/r)/ (p + 2)p ! + 0(nP'logn)

We can take n =n (e )  satisfying E i > „b1di<e/2C and

(31) n(e)— log (1 /e) /log (R  /r)+ 0(log log1 /e)

Applying Lemma 1 with estimates (29) , (30) a n d  (31), we

have

(32) H (e , H  (C ))< {4/q ! (log R /r)a - '} (log 1 / e)a
+ 0( (log1 /€) 'log logl/e).

Put h= log R / r .  Let, for J>0,

(33) Tkl<C'Aexp { — (h+ d)1} /
i.e. dexp{—  (h+ 4)1}  /d,P(l)

and define u  by

(34) u(p, s)=13 - 1 E7-0(21+P)(P/r)'ui(s),
u i(s)= bify(s).

We have II tt, II' < P(2/ + P) - 1 C'A exp {— (h+ 4)1}  , so

u(x)I<ET-0(R/r) / C'Aexp {— (h+ A)1} = C' ,61/ (1— e - 4 )

in  GR.

So we can choose C ', independent of A in  (0, do) ,  such that u
defined ay (34) with N  satisfying (33) a re  in  I-PR  (C ) .  So Lemma
2 is applicable with 1);=C' dexp {— (h+ A)1} / Putting A= h/log (1/-
e )  and estimating WO defined there, we may take

m(e) = log (1/e) /log (R  / r)+ 0(log log 1/e).

So we have

(35) C(2s, H (C ) )>  {4/q! (log R /r)g - i} (log 1 /e)°
+ 0 (( (log 1 /e)g- llog log 1 / e).

Combining (32) an d  (35) by (1), we have the desired result (2) .
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