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Let &€ be a quasi-coherent sheaf, of finite type, on an integral
prescheme X, and denote by V(&), P(&) the vector and projective
fibres of & respectively. Then each non-zero rational section o of
V(&) over X defines a rational ssction @ of P(&) over X (section
2), and we can construct a closed subscheme {w) of X whose points are
the non-regular points of @ (Prop. 5). Denote by [w] the X-pre-
scheme obtained by blowing up centered at {w). On the other hand
we can construct a quasi-coherent fractioral Ideal Ox(w) of the sheaf
of rational functions R(X) of X which is invertible when X is
UFD (Cor. of Prop.4) and which corresponds to the Cartier divisor
of the rational section o.

In this note, we shall prove some relations between these schemes
or sheaves (Th. 1.2). In the case that X is a non-singular quasi-
projective algebraic scheme, they give an explicite formula of Chern
classes of vector bundles of rank 2 (Cor. of Th.2). And, as a special
case, if X is a surface and V(&) is the bundles of simple differen-
tials, then our formula proves that the Severi-series of X coincides
with the second Chern class ¢.(X) of X (last Remark).

1. Rational maps and rational functions (EGA. 1.7) Let
X and Y be S-preschemes, and Uy the set of dense orea subsets
of X; then the family of sets of S-mophisms (Homs(U, ¥)) veuy

*  This work was partially supported by a research grant of the Sakkokai
Foundation.
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forms an inductive system (with natural restriction of morphisms),

and each element of the set Rats(X, Y )=Iim Homs(U, Y) is
—Ucux
called a rational map from X to Y over S (or a rational S-map

form X to Y). We shall call the rational S-maps from S to X the
rational sections of S-prescheme X: Rats(S, X)=r,.,(X/S). Let &F
be a sheaf (of sets) on a prescheme X, for each open subset U of

X, put (U &) =lim r(V,<4); each element of I, (U, &) is
— Ve,

called a rational section of F on U. It is easy to see that, for
tow open subsets U and V of X, if VcU and V is dense in U,
then I (U, F) =T (V, ), and that, if U is irreducible, then I
(U, &F) is nothing but the stalk at the generic point x of U. In
case of F =0y, the structure sheaf of X, the rational sections of Oy
on U are called the rational functions of X on U, and we denote
R(U)=r..(U Ox). The sheaf associated with the presheaf U~>R(U)
is called the sheaf of wvational functions on X and we denote
it R(X). The canonical map I'(U, Ox)—R(U) defines the canonical
homomorphism ¢:Ox—>R(X), and, by means of it, R(X) is consid-
ered as an (Ox-Algebra.

Let & be an Ox-Module, U a dense open subset of X and f:
G| U—-Ox| U an (Ox| U)-homomorphism. Then, for each open subset
W of X, consider the following I'( W, Ox)-homomorphism obtained
as the composition map:

1 F(W):r(w, fr’)ist'r( wNu, Ef*)m»r( wWnUCOx
V0w 22 2 ow, &)

(note that WN U is dense in W, hence the restriction '( W, R(X))
—-I'(WnU, R(X)) is an isomorphism). Obviously f( W) commutes
with the restriction maps of the sections of & and R(X), hence
the collection (F( W))wex gives an Oy-homomorphism f:F—R(X),
and, thus, we get a map

Ay HOmOx|U(g|Uy OX|U):F<U» E\E/)—>Homox(g, g{(X>>v
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(\ézﬂ{omox(g, Ox), the dual of the Ox-Module ). Moreover, it
is clear that ay is a I'(X, Ox)-homomorphism and commutes with
the restriction map a¥: I'(U, F)—T(V, %) (U, VEl, UD V) iay=
ay.ay. Therefore, passing to the inductive limit, we have the canon-
ical (X, R(X))-homomorphism

@i To(X, F)—Homox(F, R(X)).
The following proposition is well known (EGA.I.7.3).

Proposition 1. Let X be an integral (i.e. reduced and ir-
rveducible) prescheme. Then, (i) R(X) is a quasi-coherent Oy-
Module, (ii) R(X) is a constant sheaf, hence (U, R(X))=
R(U)=R(X), for each open subset U of X, (iii) the canonical
homomorphism ¢:Ox—R(X) is injective, (iv), for each point x
of X, R(X).,=R(X) is the quotient field of Oy.., and at the ge-
neric point % R(X),=R(X)=0x;: and (v), for any quasi-coher-
ent Ox-Module F, FQRQo,R(X)=R(X)® (direct sum).

Corollary. If X is integral, then, for each Ox-Module F of
finite type, the canonical homomorphism a:I'..(X, F)—Homo,(Z,

R(X)) is injective. Moreover, if F is quasi-cohevent, then « 1is
an isomovphism.

Proof) Since X is irreducible, I'..(X, é) =\E/F;= Homey,; (¥,
Oy, 7), where % is the generic point of X. Since R(X):=0y; (Prop.
1 (iv)), by the definition of «, it is easy to check that the compo-
sition map

Ioo(X, F) = F2—> Homoy (F, R(X))— Homo,:(Fs, R(X):) =F:

is the identity map, where the last arrow is the map which corre-
sponds each sheaf homomorphism f to its restriction f; at the ge-
neric point %. Hence a is injective. Moreover, assume that & is
quasi-coherent. When that is so, in order to prove that « is surjec-
tive, it is sufficient to prove that the last arrow is injective, i.e., for
feHompy(¥F, R(X)), f:=0 implies f=0. To show this, we may
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assume X to be affine. Let X=Spec(A4), 9’=]l~4, M is an A-module;
then A is integral and R(X ) is the shef associated with the quo-
tient field K of A, and f:F—R(X) corresponds to an A-homomor-
phism ¢:M—K. But, by tensoring K, ¢ can be decomposed into
MEM@.E =
K, hence, f,=v=0 implies ¢=0v.=0.

P11 .
-K and v is exactly the same to f,:¥,—0Ox .=

2. Rational sections of vector- and projective fibres.
Let £ be a quasi-coherent Ox-Module of finite type and denote by
S(€) the symmetric Ox-Algebra of £(EGA. II. 1.7.4). And put
V(&) =Spec (S(&)) (resp. P(E&)=Proj (S(&))); V(&) (resp. P(&))
is called the vector (resp. projective) fibre over X defined by &
(EGA. I1. 1. 7. 8,4. 1. 1).

Proposition 2. Let X be a prescheme. For each quasi-
coherent Ox-Module & of finite type, (i) we have a canonical
isomorphism

oV () /X) ST (X, 8),
and moveover (ii), if X is integral, the canonical homomorphism
e:é/ﬁé/@oxR(X) induces a canonical isomorphism

07 (X, D) 3T (X, ER0x R (X)),

Proof) (i) I“,M(V(é’)/X)—hm Hom, (U, V(8))~11m Homey | U
U0k |U)=T..(X, (_f’) (EGA. II 1.7.8,1.7. 9). (ii) AssumeXto
be integral. Since ERoOxR(X) is a constant sheaf (Prop. 1,(v)),
for any pair of open subsets U, V of X such that UD V, we get a

commutative diagram:

ra 5P rw Eorc) — -
) Ve wvy .l T (X, EQR(X))

rv.e) S5 r(VEQR(X))

Passing to the direct limit, this defines our z. Consider the following

canonical R (X)-homomorphism

B: ERQOrR(X)=IHomos(E, Ox) ROxR(X)—IHomox (€, R(X)),
obtained by tensoring R(X) to the natural Ox-homomorphism &=
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Homox (&, Ox)— Jlompey(E, R(X)). Taking the global sections,
we get an R(X)-homomorphism

B(X) T (X, Qo R(X))—Homoy (&, R(X)).

It is easy to see that a=p-7, where « is the canonical homomorphism
defined in the section 1. In our case « is an isomorphism (Cor. of
Prop. 1), hence ¢ is injective. Moreover z is surjective; in fact, for
any s€T'(X, EQR(X)), at the generic point 1, s.€ (EQR (X)), —
A

&,, hence there exist an opuset U and an (Ox|U)-homomorphism ¢:
&| U—0Ox| U such that ¢-«(U) = (s|U) in 1'(U,EQR(X)). Q.E.D.

Remark. In the above proof, we may replace X by any open
subset U of X, hence pB(U): r(U EQRQR(X))—r (U, Ilompy
(&, R(X))) is a I'(U, R(X))-isomorphism. Therefore we have the

following

Corollary. For any quasi-coherent Ox-Module &, of finite
type, on a integral prescheme X, we have a canonical R(X)-
isomorphism

B: ERorR(X) =Homoy (&, R(X)).

3. Now we shall give some fundamental notions and notations
needed for our study. From now on, we shall assume the base pre-
scheme X to be integral. Let & be a quasi-coherent Ox-Module of
finite type; then, by Cor. of Prop. 1 and Prop. 2, we have canonical

isomorphisms
F(V(E)/X) = 90mox (&, R(X)SI(X, EGoxR(X)).

For each ratiornal section weTl,.(V(&)/X), we denote by i and
w¥ the images of » under these isomorphisms in Home, (&, R(X))
and in 1I'(X, E@ER(X )), respectively. Now fix a rational section w
er.(V(&)/X). Then, the Oy-homomorphism of Oy-Modules i :
E—R(X) can be uniquely extended to a homomorphism of graded
Ox-Algebras (of homogeneous degree 0)

0*: S(E)-RX)[T|=R(X)RZ|T].
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Put I(w)=Image of wf and J(w)=Kernel of o*; then I(w)
is a quasi-coherent fractional Ideal of R(X), and Image of
0*=P,sl(0)". J(w)=P.s0/.(0) is a quasi-coherent homogeneous
of S(&), and it is generated by the component of degree 1:
J(@)=Ji(0)-S(E).

Thus, we have exact sequences

(3 0—J(0)—=8(E) =Dzl (0)"—0,
and
(3" 0—Ji(w) —>E—I(w)—0.

Put [0] =Projd.»(I(»)"); then [o] is a closed subscheme of
P(&)=Proj(S(&); [a)]—l>P(8), and it is the X-prescheme obtained
by blowing up the fractional Ideal I(v) of R(X) (EGA. IL 8. 1.
3), and the canonical projection [o)]—Z>P(8)-Z>X is birational (EGA.
II. 8. 1. 4). Note that [w] is not empty if and only if «}=40, i.e.,
w5=0.

If w=%0, there exists an open subset U of X such that «* in-
duces a homomorphism S(&) U—(O;|U)[T] (take a defining ho-
momorphism &|U—Ox|U of »f (Cor. of Prop. 1) and extend it to
SEIU)=8(E)|U-(Ox|U)[T]). This gives a rational map U=
Proj ((Ox|U)[T1)—Proj (S(&) | U)—P(E) (cf. EGA. II. 2. 8. 1),
hence a rational map

@: X—P(&).

By the definition of rational maps and the fact that X is integral,
this does not depend on the choice of U. And, since w* is an Oy
homomorphism, the rational map @ is a rational section of the pro-
jective fibre P(€)/X, and, obviously, it can be decomposed into X—
[w]—l>P(8). @ is called the induced section of o to the projective
flore P(€)/X, and [w] is called the image of @ or the projective
image of w. Hence we get a correspondence

= [Fa(V(E)/X)] — {0} =T (P(E)/ X).
Proposition 3. Let a,: U-P(E) be an X-morphism which
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represents @, then the closure of the image o,(U) in P(E) co-
incides with [v].

Proof) Since n-i: [w]—X is birational, @,: U—[w] is also
birational, hence the closure of @,(U) in p(E)=the closure of
@, (U) in (o] =o]. Q.E.D.

To each open subset U of X, associate a subset G(U) of (U,
R(X))=R(X) consisting of the rational functions f such that
f-r(U I(o0))cr(U,Ox). This correspondence U to G(U) gives,
with natural restrictions, a presheaf & of sub-Oy-modules of R(X).
The sheaf associated with & is called the sheaf of o and denoted
by Ox(w).

Proposition 4. (i) The presheaf G is a sheaf, i.e., G=0;(0).
(ii) For each open subset U of X, G(U)=r(U, Ox(v)) coincides
with the set of rational functions fER(X) such that f-(w;|U)
elmage of (r(U,&)—r(U EQR(X)).

Proof) (i) Easy. (i) By the isomorphism g: E®R (X) =
Hom (&, R(X)) (Cor. of Prop. 2), f- (o | U) corresponds to f- (| U),
hence, by the commutative diagram

& — Jlompe,(E, O)

l B

EROR(X)==  Homo (&, R(X)),

it is easy to see that f(o¥|U)EIm[r(U &)—r (U EQR(X))] if
and only if Im[ f- (o |U)| COx|U. On the other hand Im[ f- (v} | U)]
=f-Im(o}|U)=f-(I(w)|U). This proves (ii). Q. E.D.

Corollary. If, for each point x of X, Oy. is an unique
factrization domain (in this case, we shall say that X is UFD),
then Ox(w) is an invertible sheaf on X.

Proof) Let x be a point of X. Then
Ox(w).={feR(X) such that f-I(w),COy, .}.

Let ;€ R(X) (i=1, -, 7) be a set of generators of I(w), over Oy, ..
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Since R(X) is the quotient field of Ox,. and Oy,, is an unique fac-
torization domain, we may write @,=gc; such that geR(X), ¢,
Oyx.. and ¢;s have no common factors in Ox,.. Then, for fe R(X),
fis in Ox(w). if and only if f-g-c; is in Ox,. for every ¢. This
proves that Ox(0).= (1/8)0« .=0%... Hence, Ox(w) is invertible.
Q.E.D.

Remark. The fractional invertible Ideal Ox(w) of R(X) de-
fines a Carier diviser (w) on X, and g (of the above proof) is its
local equation at x (cf. [7]). This (w) is called the divisor of the
rational section o.

From now on we shall assume that our integral prescheme X is
UFD. By definition, Ox(w)I(w)(COx) is an quasi-coherent Ideal of
Oy, we denote it I(0) =0Ox(w)I(w). Then, since Ox(w) is invertible,
we have a canoical isomorphism of X-preschemes (EGA. II. 3. 1. 8)

g:[0)1=Proj (B..J(0)") =s[w] =Proj(B...Jd(»)"),
and (EGA. II. 3. 2. 10)
(4) &+ Oy (1))=0,, (1) R, Ox ()"

By means of g, we shall identify [w], and [w]. Moreover, we shall
denote by {(w) the closed sub-prescheme of X defined by the quasi-
coherent Ieal [(0) of Ox (Ocus=0x/I(w)), then [0] =[w], is the X-
prescheme obtained by the blowing up centered at <{w).

4. Some results. We shall give here some relations among

th sheaves and preschemes defined in the above section.

Proposition 5. The underlying space of the closed sub-pre-
scheme {w) of X is the set of points of X at which the rational
section & is not defined, i.e., X —<{w) is the domain of definition of

@,

Proof) Since the question is local, we may assume that X=

(1) We shall say that a rational map f: X—Y is defined at x& X, if there exist
an open nbd. U of ¥ and a morphism fo: U—Y which represents f, and the set of
points of X at which f is defined is called the domain of definition of f.
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Spec(A) is affine and that & =F is generated by its global section
E which is of finite type over A. Let e, -+, ¢, be a set of genera-
tors of E over A and put a;=owi(e,)ER(X) (of :E—-R(X)). Let
x be a point of X and p the corresponding prime ideal of A; and
write a;=g-a; where geR(X), a,A and a/s have no common
divisors in Ap =0y . Consider the following commutative diagram:

%
E-25 R(X)

*
Tll _~7multiplication by g,
A

where ¢ is the A-homomorphism defined by rf¥(e;)=a; It can be
extended to the following commutative diagram of graded A-algebras:

E3

_Su(E) = Alg-TICR(X)(T]
ol
AlT]  »*

and, passing to the associated projective fibres, we get the following:

p<E>=Projl<sA<E>> <2 Proj(Alg T1)
v _
Proj(ALT Da, <

where @, ¢ are rational maps. While Proj (A[7T]) and Proj(Alg-T))
can be canonically identified with X, and, by means of this
identification, x is the identity morphism of X(EGA. II. 3. 1. 7 and
3.1.8). Hence r=a&, in this sense. Now, since [(0).=0x(0).=
3.a.0x.. (Cf. Proof of Cor. of Prop. 4), we see that

reloyesl(0),7#0x. ¢ all a’s in b () p=E

¢ t=a@ is not defined at x. Q.E.D.

The prescheme structure of <{w)y (i.e., the sheaf O_,.) may

involve more detailed nature of the singular part of the rational section

w(or @). The following two theorems will tell us some of these

aspects.

Theorem 1. The Ideal I(w) O, of the closed sub-prescheme
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T No)=[w]) XxKe) in O, is isomorphic to the O.,-Module

i*(ep( 5)(1)®OP( 5)7T*Ox("))) = (@p( &) (1)®OXOX(U)>) | [e], i e., we
getan exact sequence of OP(&)-Modules

(5) 0—>z* (Op( &) O oOp; 5)77*0:: (0)) =0 =1 7*0c>—0.

Proof) We have an exact sequence (EGA. II. 8. 1. 8)
0—0r.1, (1) =000 —>0ru1xx<a>—0.
By this and the isomorphism (4), we get our assertion. Q. E. D.

Proposition 6. If & is locally free of rank 2, then J(») is
an invertible Ox-Module and J(w) (the Ideal of [w] in OP(&))
is also an invertible Op(e)-Module.

Proof) At any point x of X, we have an exact sequerce
o
0—/,(0).—E,—1(w),—0.

Take a basis (e, e,) of &, over Ox,,, and put a;=wi(e) (i=1,2);
then, if we write a;=g-a; as in the proof of Cor. of Prop. 4, we get
the following commutative diagram

A
0—a,0.0,50.80.5 0.0, + a,0.—0
, Wf WWh

0—Ji(w),~ &, — I(w). — 0,
where A(a,a.c) = (a.c, —aic), ulc,d) = ac+ax, f(c,d) =c-e,+d-e,
and h(a,c+a.d)=g (aic+a,d). And it is easy to see that the upper
horizontal sequence is exact, hence [, (0).=a@,2.0.=0,, i.e., Ji(») is
invertible. Moreover, since [(o) = fi(w)-S(E), J(0) =/]i(0)OP&).
This proves that J(w) is invertible. Q. E. D.

Remark. When & is locally free of rank 2, by the above pro-
position, we may regard [w] as a Cartier divisor on P (&), and
j(T;)z@p(e)(— [@]), the invertible Op(¢)-Module corresponding to
the Cartier divisor — [w].

Theorem 2. When & is locally free of rank 2,
J(@)®0x4E=0x () (@07-0).
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Proof) Take an open covering (U,)« , of X such that &| U,
@
= O% | U, for each «cl. Let t*=(i7,¢7) be the basis of £|U, over
Ox | U,, determined by ¢a, and ®=(zf,r¥) the dual basis of \él U,
of t*, then =¥ A\cj is a basis of /\2\5:’1 U,. When that is so, the homo-
morphism of:E—>R(X) can be expressed, locally on U,, as

of =A% P+ A1y, APer (U, R(X))=R(X).
Note that, 540 (i.e., of=0) implies AY=~0 for i=1 or 2, and that,
for e=3b7-tcr(U, &), eer (U, Ji(»)) if and only if SAZ-52=0.
Consider the map
(@) @0x \'€) | U= R(X) | Us

given by the correspondence

(bF -t + 05 t3)Kc* ey Ny -~~=bic* /Ay = —bjc* /AT = k*.
At any point x of U, let A’=g-a;,, geR(X), a,€0, such that
a, and a, are relatively prime to each other in ©,. Then a;-b,+ a.-
b,=0, hence b,/a,= —b,/a, is in O,. Therefore k* is an element of
(1/2)-0,=0x(w). (cf. the proof of Cor. of Prop. 4). This means

that the above map induces an (Ox|U.)-homomorphism

A

0q: (Ji(0)Q0x N\ (&) | Us—0Ox (0) | Uy,
and it is easy to see that this is an isomorphism. If G*¢=(G%
are the transition matrices of & (with respect to ¢.), then (G*#)'=
G** and det(G*?)'=det(G**) are the transition matrices and func-

AV N

tions of & and A*€, respectively. Hence,

c*=det(G**)-c® b¥=GiP-b+ G- b,
and A =det(G*) - (-G - AP+ G3P- AD),
therefore, by easy calculation, we get the identity A2*=£%°. This shows

that the @.’s can be patched together and give a global isomorphism
0:1(0)QNE=0x(w). Q. E. D.

Corollary. Under the same assumptions in Th. 2,

Op&)([0] )=0P&) (1) Q0x N\ EQOxOx(w)™*
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(cf. Remark of Cor. of Prop. 6).

Proof) Since J(0)=Ji(0)-S(E)=]i(0) ®0xS(E) (—1), we get,
by Th. 2, an isomorphism

J(@)R0x NE=S(E) (—1)R0,0x ().

Hence, passing to the associated sheaves on P(&), we get an iso-

morphism
J(@)®0x N 'E=0PE)(~1)®0:0x ().

On the other hand J(w)=0p(€) ([w])™?, therefore, combining these
two isomorphisms, we get our assertion. Q. E. D.

5. The case of algebraic schemes. Let X be an algebraic
scheme over an algebraically closed field 2. We denote, for each non-
negative integer p, by X” the set of points % of X such that codim xx
=dimOx .=p, and by Z’(X) the free abelian group generated by
the irreducible closed subsets {x} of X, where x are in X?, and we
shall say each element of Z’(x) a cycle on X of codimension p.

Let C?(X) (p=0) be the abelian category of coherent Ox-Mod-
ules whose supports are of codimension= p, and

70:C?(X)—K*(X)

the universal solution in the category of abelian groups satisfying
the following axiom (i.e., the Grothendieck group of C?(X)):

(Additivity) If 0—>F'—-F—F"—0 is exact in C*(X), then r,
(F)=7:(F") +7,(F").

The immersion C?(X)—C'(X) (for p=q) determines a canon-
ical homomorphism K?(X)—K*(X). By means of this homomorp-
hism, we shall consider that every element of K*(X) lies on K*(X),
especially on K°(X)=K(X). Defining the product by

(&) 7(D) =3,:0(=D*r (Lo (T, §)), F, G 0bC*(X),

K°(X)=K(X) has a ring structure (cf. Borel-Serre[1]).
For any F=0bC*(X), put
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2,(F) = S.ex,lengthe, (F,) - {2} € 2°(X),

and call it the cycle of codimension p associated to F (cf. Serre
[8]). Since the map z,:C*(X)—Z*(X) is clearly additive, it de-
fines a group homomorphism z,: K?(X)—Z?(X) such that z,(y,
(F))=2z,(F). We denote, for any closed subscheme Y of X, 2z,
©Oy) =Y, (p<codimY), it is easy to show that, if Y is reduced
and irreducible of codimension p, z,(Oy) =Y,=Y, i.e., the underlying
space of Y with multiplicity 1. Moreover, if X is regular (i.e., non-
singular), the Cartier divisors on X are identified to the elements of
Z*(X) (i.e., the Weil divisors), hence we have a bijective canonical
correcpondence between Z!'(X) and the set of invertible sub-Ox-
Modules of R(X) (D~-~>0Ox(D)), and it is easy to see that, for any
positive divisor De ZY(X), 2z,(0,)=D,=D, where O,=0x/O0x(—D)
(Cf. Mumford. [7]). The following theorem has been proved by
Serre which is very usefull for our study.

Serre’s Intersection Theory (Serre [8], Prop. 1 of V, c.).
Assume the algebraic scheme X to be regular. For elements ¢
K*(X) and y=K'(X) such that & y=K"™*(X), the cycles z,(¢)
and z,(y) intersect properly to each other and

Zpe(&-9) =X,(&) -2,(3) (the intersection product in
usual sense).

Lemma 1. Assume X to be rvegular. For closed subscheme
Y of X and any divisor D on X, if we have an exact sequence
of cohervent Ox-Modules

(6) 0—0Ox ( - D) ®0x@r—’@y"g“‘>0

then there exsets a divisor D'eZ'(X), linearly equivalent to D,
such that the intersection product D'-Y, is defined and, for any
p=<codimy Y,

2,,(&)=D"Y,.

Proof) Take a D'eZ*(X) which is linearly equivalent to D
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and intersets properly with Supp(Y). Let D'=E,—E, E.>0 and
they have no common components. Then, since exact sequences

0'—)@)(( - E,) “’OX_*)OEi“)O (i: 1, 2)
are locally free resolution of O, we get
0—>g07‘10}( (@E; , @y) —*0)( ( — E,) ®0X6yﬁ@y'—>@g‘®@x0y'—)0 (eXaCt)
and Yor,0x (O, Oy) =0, if p=2.

Since E; intersect properly with Supp(Y) and Supp(OFK0Oy) C
Supp(Or,) NSupp(Oy), we have codim. Supp (OF&Qy)= codim.
Supp(Oy) —1. Hence, by Serre’s intersection theory, the intersection
product z;,(Og,)-2,(Oy) =E;- Y, is defined and is equal to

Zpi1 <@E,~®@Y) - zp+1(g07'10" (OE,~®0Y)
| =2,1(Oy) _zﬁ+l<0x(_Ex')®0Y)'
Therefore
D-Y,=E;Y,—E,Y,=2,,(0x(— E;)Q0y)
_ZP+I(@X(_E)®@Y>’
while Ox(—D)=0x(—D")=0x(— E,;)QOx(E,), hence, by tensoring
Ox(—E,) to the exact sequence (6), we get an exact sequence
0—0Ox ( - El) ®OY—’OX ( - Ez) ®@Y_)Ox ( - Ez) ®g—)0’
and, taking z,.,
25,1 (Ox(— E)QOy) — 2,11 (Ox (— E)Q0Oy
=2,u(Ox(— E)KYG )= 2,,1(9).
Thus we get the proof. Q. E. D.
Now we shall apply this result to Th. 1.

Theorem 1'. Let X be a regular algebraic scheme, £ a lo-
cally free Ox-Module of rank p+1 and H a divisor on P(E)
such that Ope)(H)=0pe)(1). Then, for any non-zero rational
section w€lw(V(E)/X), there exists a divisor D on P(E) such
that it is linearly equivalent to H+n'(w) and that the intersec-
tion product D-z,(0;)=D-[w], is defined and is equal to
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— 2y (0, =1 Ko))=— ({7 X)) p, t. €., tn the Chow ving
A(P(E))of P(E) (f X is quasi-projective, cf. [2]),
(i—ln—l<w>),+1= (_H—”*(ﬂ’)) o],
Moreover, if £ is of rank 2,

(mXw))s=—D- o], te, (z7Xw)),
=(—H-n"(0)) o] in A(P(E)).

Proof) Note that, P(£€) is also a regular algebraic scheme
and that the projection =:P(€)—X is flat; then it is easy to see
that z,(z*Ox(w)) =n""(w). Then the first part is straightly obtained
applying Lemma 1 to the exact sequence (5). The second part is

an immediate consequence of the following lemma.

Lemma 2. Under the same assumption in Th. 1, if £ is of
rank 2,

(1) codim. Supp (Oc,>)=2, and (ii) *2*Ocp>=n*0_,>.

Proof) (i) For any point x of X, I(»), is generated by rela-
tively prime two elements of (,, hence dimO_,.,.=dim(O,/I(»).)<
dim O,—2. This proves (i).

(i) Since *71*O>=0pP&)/I(®). OP())RO,.y, in order to get
our assertion, it is sufficient to prove that
J(@) (8(&)/1(0)-S(E)) = (J(w) +I(w)-S(£)) /I(0)-S(E) =0,
i.e., J(o)cI(w) -S(E).
At any point x of X, any element e< J;(w), is expressed as
e:b1t1+b2t2, b,‘E@,, Such that blal+b2a2:0

(with the notations used in the proof of Th. 2). Since I(w),=a0,

+a,0. and @, and a, are relatively prime to each other,

eS, (&) ChS,. () +b.8.(E) CarS,.(E) + a8, (E) =1(0).S5.(&).

This proves J,(0)-8,.(&)Cl(®)S.(E),1. e, I(o)=](0)S(E)C
I(0)S(&). Q. E. D.
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In the algebraic scheme case, Cor. of Th. 2 also can be transe-
lated as follows

Theorem 2'. Under the same assumptions in Th. 1, if €
is of rank 2, the divisor [w] is linearly equivalent to the divisor
H+71"'K—7n%(w), where K is a divisor on X such that Ox(K)=
NE.

Corollary. Under the same assumptions in Th. 2/, if X is
quasi-projective, for any locally free Ox-Module £ of rank 2, the
first Chern class ¢, (€) of &€ is equal to clx(\*€), and the second
Chern class c,(E) of &€ is equal to {w)—c,(E) () — (w)? where
o 1S non-zero rational section of the vector fibve V(E)/X (The
Chern classes are in the sense of Grothendieck, cf. (4], [5]).

Proof) Combine the results of Th. 1’ and 2’, we get an
equality in the Chow-ring of P(&)

H+72*K- H+7*({o)+ (0) - K— (0)*) =0.
This identity shows, by the definition (cf. [4], [5]), that

(@)= — (&)= —K=—cly(N&) =clx(\E), and
£(8) = (&) = (oY + (@) - K — (0)? |
=L{w)— (0) (&) — (w)2 Q. E. D.

Remark. We shall now apply the result to the case of surfaces.
Let X=F be a non-singular projective surface and &= ,=Homoy
(24,0r) the tangential sheaf on F. Then, for any linear differential
form o on F (i.e., an element of I'(F,2:QR(F))), we can express
it, at any point x of F, as w=h(f -dt,+g-dt,) (¢'s are local param-
eters at x) where %, f and g are rational functions on F such that
f and g are regular at x and are relatively prime in Of.. Denote
by m. the intersection multiplicity of the divisors (f) and (g) at
x, and put {w)=3,m.-x; then the O-cycle {(w) is just the same
thing of ours. And the second Chern class

a(dr) =6(F) =<0y + (0) - K— (o)’
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(K=cl (/\2§ r) =cl(2%) =the canonical divisor class on F) is called
the Severi-series which has been defined by F.Severi in [9], and
used by J.Igusa, in (6], in order to prove the in-equality B, =p
where B, is the second Betti number of the surface F and p is the
Picard number of F?.

Appendix

U3
Let V—Spec(k) be a non-singular projective algebraic variety
of dimension # and 2,= A\’Q) the sheaf of germs of holomorphic
p-forms on V. Then we get

(V)= qu](— 1)**h?e, h**=dim,H'(V,2!).
In fact, let |
a(V)=3ret'=3(=Dic(@)t'=T"(1+at)
be the Chern polynomial of V. Then we have
¢ (20) =i, (DD = 2 (A—(anta,+-t+ay)t)

1Si1<iz<- - <ipsSn
(cf. [5]). Hence

Ch(.Q{})= E exp(_ail—aiz—'“_ah)'

1501 <ia< e ipSn
Applying this result to the theorem of Riemann-roch ([1])
we get

x(V, 20) =n.(ch(2))-T(V))
=, (3 exp<_an—aiz—“’_aip)‘H(‘xi/l—exP(_aiD)
(put) =Ti(a, ¢, -, Ca).

Therefore, the polynomial
Sh-x(V, 20 y*=33.0T ey, -, €) ¥ (= Tu(er, -+, €4)
is the n-th term of the “m-Folge” belonging to the power series

Q(y, x)=x(y+1)/(1—exp(—x(y+1))

2) Igusa difined B: by the classical fact F(_1){Bi=c:(F). On the other hand
we can show ¢:(F)=2(-1)?"%%9(F) by means of the Riemonn-Roch theorem of
Grothendieck ([1]) (see Appendix).
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(cf. [10]p. 16, note that =, ( )=« 1).
This proves that

€= (1) Ti(cy, -, €) =3(=1)"x(V, 28)
= 2; 1_0(_1>1’+ahﬁ'q.

(cf. ibid. the formula (16) of Chap. 1, sect. 8, p. 17).

[1]
£2]
3]
[4]
£5]
£6]
[7]
{81
[6]
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Kyoto University.
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