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§1. Introduction

The compact simply connected simple Lie groups are classified
as follows:

A,=SUn+1), B,=Spin(2n+1), C,=Sp(n), D,=Spin(2n)
62) F4y Eﬁ; E7) ES)

whnere A;=B,=C,, that is, SU2)=Spin(3)=Sp(1),
B,=C, , that is, Spin(5)=Sp(2),
and As=D, , that is, SU(4)=Spin(6).
The first four types are called the classical Lie groups, and the last
five are called the exceptional Lie groups.

The purpese of this paper is to determine the first 23 homotopy
groups of G., F,, and of B, and D, of low raak.

This paper is divided into two parts. The first part consists
of §2 and §3. In §2 we calculate the cohomology groups of the 3-
connective fibre space over G, and F,. In §3, we compute the odd
primary components of the homotopy groups of G, and F, by the
killing-homotopy method [6].

We study in §4 some properties in tie homotopy theory of the
fibre spaces, especially, of the bundles. These are used in §6 for
the determination of =;(G,).

Section 5 is an intermediate one. It is the preparation for the
second part, which consists of §6, §7, §8 and §9. In §6 we deter-



132 Mamoru Mimura

mine the 2-primary components of z;(G,) by making use of the
exact sequence asscciated with the well-known fikering G,/SU(3) =
S°. F, operates transitively on the octonionic projective plare IT, and
the isotropy group is isomorphic to Spin(9). Hence F,/Spin(9)
=T1I. The homotopy groups of IT will be determined in §7. The 2-pri-
mary components of =,(F,) will be computed in §8 by making use
of the exact sequence associated with the homogeneous space F,/G,.

The last section, §9, is devoted to the determination of the
homotopy groups of spinor groups of low rank.

The results are summarized in the following table:

zi(G)

ot 1 o2 3 4 s 6 7 8 9 10 1
Spin() | 0 0 e 0 0 0 e (2 (2 8 cot2
Spin(® | 0 0 e 0 0 0 e (2 (2 8 w+2

G 0 0 o 0 0 3 0 2 6 0 cot2

F, 0 0 e 0 0 0 0 2 2 0 co42

n 0 0 0 0 0 0 0 e 2 2 2
o~ l1z 13w 15 16 17 18
Spin(T) | 0 2 25204842 (2 (@7 ()42 945+16+8+2
Spin(® | 0 2 842 k(@' (D°  8+(2)° 2835+16+8+2

G | 00 168+2 2 6+ 842 240

F. 00 2 © (@ 2 720+3

n 00 2 120 (@ @ 24+2
o] 1 20 21 22 23
Spin(l) | 2 @ 24+4 10395+ B+ GH(@)*
Spin(®) | 2 2 12 111/32+8+(2)? G+(2)?

G: 6 2 0 1386+8 G+2

F. 2 o @ 27 or 9 Gteo

m o |su+z 0 6 4 00 +120+(2)?

where G=4 or (2)%.

In the above table an integer » indicates a cyclic group Z, of
order #, the symbol “co” an infinite cyclic group Z, the symbol
“+” the direct sum of the groups, and (2)* indicates the direct
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sum of k-copies of Z,.
For the other spinor groups of low rank we have the iso-
morphisms
m:(Spin(3))=n: (5%,
m:(Spin(4))=r.(Spin(3) X S,
m; (Spin(5))=n:(Sp(2)),
7 (Spin (8))=n.(Spin(7) xSV,

so that the homotopy may be obtained from the known results;
[13], [14], [15], [16], [18].

For the convenience of the reader we indicate the various fiber-
ings used in this paper in the following diagram.

Vi

S° N
SU®3) G,
s&/‘ \57 \S’ g
S'=Sp(1) =SU2) = Spin(3) SU(4) = Spin(6)—Spin (7)—Spin(9)
ST\\I //S5 SG ln
Sp(2) = Spin(5) F,

Here FEE denotes the fibering E—B with fibre F.

All spaces considered in the present work are those which have
the homotopy groups of finite type. Let X be such a space. Then
7:(X) is isomorphic to the direct sums of free parts F acd p-
primary components of =;(X) for every prime p. We denote by
7:(X: p) the direct sums of a certain subgroup ¥’ and the p-primary
components of =;(X), where the index [F: F’'] is prime to p.

Given an exact sequence for such spaces A, B and C:

ﬁ;(A) ”i(B) ﬂi(c)

"
we can form the following exact one in our cases by suitable choice

of m;( :p):



134 Mamoru Mimura

o (A: p)— (B p) — i (Cip) — .
The notations and the terminologies of [14], [15] and [18] are
carried over to the present work.
The author wishes to thank Professor A. Komatu for his en-
couragement and Professor H. Toda for his advices and criticism

throughout the preparation of the manuscript.

§2. The cohomology of the 3-connective fibre space
of G, and F,.
Borel [3] calculated the cohomology groups of G, and F, and

their results are stated as follows.

Theorem 2. 1.
() H*(Gs; Z)=2,]%] /(DR A(Sq*x5).
H*(Gy; Z,)=A(xs, x01) for each prime p>3,
where x3=Sq'Sq*xs, Sq'x; is trivial for the other cases, Pix,
=xy, and P, is trivial for the other cases.
(i) H*(F; Z)=2,[%:]/ (x) K A(S¢%a, %15, S¢°%15) .
HY(F,; Z)=Z;[6P %3] / (08 %5)*) R A (%3, L5, X1y, P'%x11).
H*(Fy; Z,)=A(Xs, Xu, X1, Xus) fO¥ each prime p=>5,
where Pixs=xy,; and Pixs= %y
Note that the following relations hold:
2.1 Sq'Sq*x,=0 in H*(Fy; Z,).
(2.2) PP x=0 in H*(Fy; Zs).
(2.1) follows from Théoréme 19. 2 of [3] and (2. 2) follows from
the fact that there are no primitive elements in H¥(F,; Z;).
Recently Kumpel [12] has proved the following
Proposition 2. 2.
(1) Pixu=xs in H*(F,; Zy).
(i) Pixu=2xp in H*(F,; Z)).
(i) Puxs=xs in H*(Fy; Zu).

Denote by G, the 3-connective fibre space over G,, so that,
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S P
Then we have two fiberings
(2.3) K(Z,2)—>G,—> Gy,
(2.4 G—G—K(Z,3),

where G, has the same homotopy type as G, and K(Z,m) is the
Eilenberg-MacLane space of type (Z, m).

Let {E}} be the cohomology spectral sequence with Z,-coeffi-
cient associated with (2.3). Then we have

Ex=H*(Gy; Z)QH*(Z,2; Zy)
=(Z.[%:] / (x5)Q4(Sq*x5) )Q Zs[u].

Clearly d,=0 and we have Ef=FE}. We have d;(1Qu)=x,, since
G, is a 3-connective fibering over G,. This implies

Ef=HEN=Z[1Q0u|R4(S¢ %31, xi3u).

d, is trivial by the dimensional reason, and hence E}f=FEF.
Next we get d;(1Qu?) =Sq*x,X1, since the transgression commutes
with Sq¢* and since S¢*u=u*. It follows that

Ef=H(EN=Z[18u' | Q4(S¢° %K u’, x:3u).

By the dimensional reason d,=0 for »—>6 and hence EX=FE¥. As
E* is associated to H*(G,; Z,), we have obtained

H*(Gy: Z)=Z,[95)@A(¥s, Y1)

To investigate the relations among these elements we consider
the spectral sequence {E Y} associated with (2.4). Then

Ex=H*(Z, 3; Z)QH*(G,; Z,).
It is known that
H*(Z, 3; Z,)=Z,{u, Sq*u, Sq*Sq’u, -],

where # is a fundamental class of H*(Z,3; Z,). It is easy to see
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that d,(1Qys) =0 for »<<8, whence E{*%0. Let p be the projec-
tion G,—K(Z,3). Then we have p*Sq*Sq*u=Sq*Sq*x;=0 by Theo-
rem 2.1, whence S¢'Sq¢’u’X)1 must be a d,-image, that is, dy(1&¥s)
=S¢'Sq’u@1. By the Adem’s relation, Sq'Sq‘Sq*u=Sq°Sq’u=
(Sq*u)®. As Sq'ys is also transgressive, so we have

diw(1QSq'ys) = Sq* (Sq'Sq*u) Q¥1 = (Sq’u)*Q1.

Here (Sq*u):R1+0 in Ef, since it is not a d,-image for r<<9. Thus
Sq¢*ys=Yy,. Moreover, by Adem’s relation we have Sq¢*Sq'Sq*Sq'u=
S¢*Sq°Sq*u=Sq¢°Sq*Sq*u= Sq¢°Sq*u=u'. As Sq*Sq'ys is also transgres-
sive, we have

dis (AR S¢*Sq*ys) = S¢*Sq*Sq* Sq*uR1 = u'R1.

The fact that #'®130 in E}, implies the relation y,=S¢*Sq'ys.
Thus we have shown

(2.5) H*(Gy; Z)=Z,1y)®4(S¢"ys, S¢Sq'ys).

Next we will calculate H*(GNZ; Z,) for p=%25. For this, we

consider the spectral sequence over Z, associated with (2.3). We
have

Ef=H*(G,y; Z)RH*(Z,2; Z,)=A4(%s, 1) QZ,[u].

Clearly d,=0, whence Ef=FE¥. We may choose uc H*(Z, 2;
Z,) so that d:(1&u) =x5x1. Then

E¥f=Z,[1Q0u*1 XA (x:KRu*?, x,R1).
Obviously, d,=0 for »r>>4. Hence E*=E}.
Thus

H*(é;; Z)=Z,[ 1) QA(Yu, Yors1) -

One can easily see that 6,,=¥:+1 by the same argument as above.
Thus we have shown

(2.6) H*(Gy; Z)=Z,1 9] @A(yu, 030) for p25.

Finally consider the case p=5. The calculation of the spectral
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sequence is quite similar to that of the case p=2,5 until EF.
Namely, for tihe spectral sequence of (2.3), we have
Ef=Z,[1Qu° ] QA(xsQu*, x,,Q1).

Obviously d,=0 for 4<r<{10 and hence E¥=FE}. The relation
P'xs=xy; implies d;; (AQu") =2, X1, since u°=Pu is also transgres-
sive. It follows

Ex=Z;[1Qu”1 QA(x:Z u*, xu,Ku™).

By the dimensional reason d,=0 for »>>12, and hence E*=E}.
Thus we obtain

(2' 7) H* (52; Zs) =7, [ybo] ®A(yn , ym) .

The relation y;=20Yys is easily seen.

Thus we have shown the following

Theorem 2.3. Let G, be the 3-connective fibering over G..
Then we have

(i) H*(Gu; Z)=Z.[3|@4(Sq'ys, S¢*Sq'ys).

(ii)  H*(Gs; Z)=Z:| ¥ @4(1, 8¥).

(iil)  H*(Gs: Z,)=Z,| 9] @A(yn, 0%s») for a prime p2,5,
where deg.y;,=1.

Next we study the cohomology of the 3-connective fibering F,
over F,. We have two fibering:
(2.8) K(Z,2)— F—F,

~

(2.9) F—F.—K(Z,3),

where F; has the same homotopy type as Fj.
First we consider the spectral sequence {E*} over Z, associated
with (2.8).
Then
E}=H*(F,; Z)KRH*(Z,2; Z,)

=(Z,[%:) / (x) R A(SG* %3, %15, Sq°%15) )R Z, [u] .
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As the degree of x;; is 15, so the computation of this spectral

sequence is done by the same way as that of G,. That is,
Ef=Z,1Qu'1 QA(Sg* 2K w’, i&u, x:KQ1, Sq°%:5K1).
But by the dimensional reason it is easily seen that d,=0 for »>>15.

Thus EX=F7}, and hence
H* (1?47 Z)=2Z,y) Q@ A4(Ys, Yu, Y15, S¢°¥15).

By the same argument as that of G,, one can obtain the relations
Yo=S¢"ys and Sq*Sq'ys=3yu. Thus

(2.10)  H*(F; Z)=Z19]QA(Sq'ys, S¢°Sq' s, Y15, Sq*%1o).
Now we introduce the transgression theorem due to Kudo [11].
Let {E}} be the cohomology spectral sequence cver Z, associated
with a fibre space (E, p, B, F) in the sense of Serre. Fcr a€E?),
let 6=606(a) be defined as follows:
dp(e)=0 for p=w,v+1,-- 6-—1,
F+0 for p=4.
a is called trangressive if 6(a)>b=DF(a) (the fibre degree). If
a is transgressive, there exists a base element g E3***° such that

db+1(0¢') =p.
Theorem 2. 4. (Kudo) Let acEY* be transgressive, then we
have
(i) LPa=a? and raQa’™" are also transgressive
(ii) the following velations hold:
(2. 11) dzpk+1(1®afp) Zg”ra@l,
(2. 12) d2(ﬂ—1)lz+1 (Taf@a'p”l) = 39»7&’81,

where & denotes the Bockstein operator associated with an exact

sequence 0 Z, Zy Z, 0.

For the proof see [11].

Let us consider the spectral sequence {E£}} with Zscoefficient
associated with (2.8). Then
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Ef=H*(F; ZoQH*(Z,2; Zy)
=(Zs [0 %] / (0P x5)°)
RA(xs, P'x3, X1, P x1))R Zs [u].
Clearly d,=0 and hence E¥=F}. We may choose uc H*(Z,2; Z,)
so that d;(1Qu) = x,X1. It follows that
=27, [1Qu’, 0P x:R1] / (0P %:K1)")
RA(xQu?, P xR 1, 2,1, Py @1).
Clearly d,=0 and hence Ef=FE}. It follows from Theorem 2.4
that d;(xsXu?) =0P'x5X1. Hence
Ei=Z,[1R u®| QA((0P x5)*x:K 1?, P x5R1, 2,1, P'x,X1).
E¥=FE¥, since d;=0. As the transgression commutes with %! we
get d;(A1QRu*) =P'x2,K1 and hence
E¥=Z,1Qu’) @A(P'x:Ru’, (6P %) 2, RQus?, 2, 1, P2, R1).

By the dimensional reason it is seen that d,=0 for »>8, and hence
E¥X=FE¥. Thus we obtain

H* (E; Zs) =7, [yls] ®A (yu , EPlyu » Yo, y23>-

In order to see the relations among ¥, ¥ and .3, we consider
the spectral sequence {E}} associated with (2.9).
Then

Ef=H*(Z,3; Z)QH*(F,; Z).
According to Cartan [5],
H*(Z,3; Z)=A(u, P'u, PPu, - )R7Z;[6Pu, 6P*Pu, --+].

It is easy to see that d,(1Qys) =0 for »<18. Then E%®=0.
Let p be the projection F;—K(Z, 3). Then the element x;(0%F'x;)?
of H*(F,; Zs) is the p*-image of u(8%'u)?. On the other hand the
element P*P'u@1 is not a d,~image for r<<19. Thus it must be
a drimage, since P*P'x;=0 by (2.2). By changing the coefficient
of ¥, if necessary, we have diz(1Q Y1) =P PuR1. As 8y;s is also
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transgressive, we have dy(1Q0y5) =0P*PuX1. Here d0P*PuR1 is
not a d,-image for »<<20, whence dP*PuQ130. This shows 8,0,
and so 8¥:s=Yy. Similarly '8y, is transgressive and so du(1QP'0Y1s)
= PP PuR1, where LPIPPu=PoPu=(6¢u)* by the Adem’s
relation. It is easily seen that (0%'u)’Q1 is not a d,-image for
r<<23 and hence (0Pu)*R1=0 in EJ%, which indicates P'0y,=0.
Thus P'6ys=Yus.

Next we will show $y,=%%,=0. Note that p*x;,=y, for
the projection p:ﬁ»ﬂ of (2.8). The elements of the degree 19
in H*(F,; Zs) are (0%P'x3)xy and (0%'x5)°xs. These two elements
are mapped to zero by p*. Hence P%y,=p*(P*x,;)=0. Similarly
P3y,=0 follows.

Thus we have shown

(2.13) H* (F.t; Z)=17, [ 315 @Ay, -CPlyu , 0Yis, g)layw) ,
where Py =Py, =0.

Consider the spectral sequence {E}} over Z; associated with
(2.8). Then we have

Ef=H*(Fy; Zs)QH*(Z,2; Zs)
=A(%Xs, P'xs, X5, P'x15) R Zs [1t] .

Clearly d,=0 and hence Eyf=F¥. We may choose the fundamental
class u€ H*(Z,2; Zs) so that d:(1Qu) =x,&1. It follows that

Er=Z,[180u] QA(x:Qu*, P21, x1,K1, P'x:5Q1).

By the dimensional reason d,=0 for 4<#<{10 and hence E}=FE}.
There we obtain dy(1Qu") =F'x3R1, because the transgression com-
mutes with $'. Therefore

Ex=Z;[1Q0u*] QA(xs3u*, P2, Ru”, 251, P'x:15R1).

It follows from the dimensional reason that d, is trivial for r>>12,
and hence EX*=FE}¥. Thus we get

H*(Fy; Z) = Zs[90) Q@A(Yu, Y16, PYss, V).
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It is easily checked by the spectral theory associated with (2.9)
that Bym:ya].
Thus we have shown

(2.14) H*(Fy; Z)=Z,[ ) @A, Y15, PV1s, 89s:).

The same calculation as that for the case p=5 shows

(2.15)  H*(Fo; Z)=Z:[ys] @4(¥u, Y15, P'Yu, 6ss).
(2.16) H*(ﬁ4§ Z) =2 Y] ®A(_y11 , Vis, Yesy 0Vas)
The calculation for the case p>>13 is easier than the other

cases, since there are no relations among generators of H*(F,; Z,).
The results are stated as follows.

217 H*(F; Z)=Z,[3:) @43, Y, s, 3s0).
Summing up these results,

Theorem 2.5. Let F, be the 3-connective fibering over F..
Then we have

(i) H*(Fy Z)=Z19)Q4(Sq"ys, Sq*Sq'¥s, Y15, S¢¥ss).

(ii) H*(Fy; Z)=Z [y @A, Py, 891, P0%1s),
whefe g)zyu:g)syu:().

(iii) H*(E, Z)=Z,[3:2) QA(Y11, Y15, Y5, 0Y207)

for p=5"711, where Piyu="2u, Piyn=>3xs.
(iv) H*(E; Z)=Z,[9:1 QA(Yu, Y15, Y23, 0¥25) for p=>13.
In the above deg.y,=1.

Theorem 2.3 and 2.5 give much informations for the homotopy

groups of G, and F,. In the below we will investigate them.

§3. The odd primary components of z,(G,) and x;(F;).

Let G be a compact connected, simply connected, simple Lie
group. According to Hopf, we have

H*<G; R) :AR(xn‘, xnz'"y xnl)y
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where deg. x,;,=#;: odd(1<i<]), I=rank G and n=dim G=:Zln,-.
We set X(G)=8"1X------ X S™,

Serre defines a prime p to be regular for G if there exists a
map f: X(G)—G such that f,: H(X(G); Z,)—>H,(G; Z,) is an
isomorphism for 7>>0.

Put N(G)=(dim. G/rank G) —1. Then the following theorem
is due to Serre [17] and Kumpel [12].

Theorem 3.1. A prime p is vegular for G if and only if
P=N(G).
For the cases G, and F,, we have
H*(Gz; R) :AR(xa, xn),
H*(F,; R)= Az(%3, %11, X15, X03).
Hence N(G,)=6 and N(F,)=12. It follows from these facts
Corollary 3. 2.
7:(Gy: P)=m;(S**xXS™: p) for each prime p>T7.
i (Fy: p)=n,(S*x SUX S¥*X S8*: p) for each prime p>13.
In the below we will compute =;(G,: p) for p=3,5 and =;(F,: p)
for p=3,5,7,11 by making use of the Serre’s C-theory [17].
(1) n(Gy:p) p=3 and 5.
It follows immediately from (i) of Theorem 2.1
(3.1) 7, (Gy: p)=n,(S* p)
for i<9 and for each prime p>3.

The 5-components of 7;(G,) are deduced immediately from (ii)
of Theorem 2.3 and the results are the following

Proposition 3. 3.
TL','(Gz: 5) %’TE[(SHZ 5) f07’ 3<i<49.

Further results are seen in [19].
In order to calculate the 3-components of =;(G,), we consider
the fibration G./S®= V;,. Associated with it we have the exact
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sequence:
A/
"'—>77:n(S'9’: 3)_)7511(62: 3) _)7I11<V'7,2: 3)”_>7T10<83: 3>_>7T]0<62: 3)-’"'

where 7,,(S*: 3) =0 and #,(S®: 3)=7, by [18]. And m(G,: 3)=0,
since we have 7,0 (Spin(7): 3)=n,(Sp(3): 3)=0 by [8] in the fol-
lowing exact sequence which is associated with the fibering Spin
(1/Gy=8":

O:Tf11<S7)'_)7710(62)—)7310<Spin<7>>_>'".

Next we need

Lemma 3. 4.
7111( V7.23 3)22.

This follows from the exact sequence associated with the fiber-

ing V;.,/S°=8°":
""‘"ﬂu(ss)_)?"-‘u( V7.z)“’MJ(SG)_’TL’m(sﬁ)_’”'7

where 7,(S°: 3) =7 (S%: 3) =0 and =,,(S%: 3)=Z by [18].

We choose a map f: S"— V,, representing a generator of m;;( V7.:
3)=Z, then f*: H*(V,,; Z,)=H*(S"; Z;). We consider the in-
duced bundle f*G, of f from the bundle G,/S*=V,,.

’

7l'u< V’7'2: 3)i>71'10<53: 3>—)0
I
71 (8™ 3) ——my0(S?: 3)=Z,.

The characteristic class of the bundle (f*G,, p, S*, S*), 4y, equals
to A'fyty by the commutativity of the above diagram, where 4’ is
the boundary homomorphism of G,/S*=V;,. So 4¢; is a generator
of mp(S?: 3)==27,, since the map f induces an isomorphism f,: my;
(8": 3)=nuy(V;,: 3). Consider the homomorphism between the exact
sequences associated with G,/S*= V;, and f*G,/S*=S". Then the
homomorphism is identical on #;(S*) and Csisomorphic between
7:(Vey) and z;(S™). Hence it is also Csisomorphic between =;(G,)
and 7,(f*G,). Thus we have
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(3.2) 7:(Gy: 3)=m.(f*G,: 3).

In order to calculate this group we need some results in [18].
(%(Gy: 3) for i¢<9 are obtained from the known results of [18]).

i 10 11 12 13 14 15 16 17 18 19 20 21 22 23

7ia(81:3)| Z 0 0 Zs 0 0 0 Zs 0 0 Zs Zs 0 Zs
gen. L1 a1 a; B1 as a1B

zi(S§%*:3) | Zs 0 0 Z3 Zs 0 Zs Zs Zs Zs Zs3 Zs Zs O

gen. [+ %) sty A3 aifr A as aipy B a5 s

In the above table, the generators of =;(§%: 3) for :=10,14, 16,
18 and 22 are given in Chapter XIII of [18]. The other generators
are checked as follows.

Consider the exact sequence in Proposition 13.3 of [18];
Y| G H
""—>7T,'+2(SY: 3)'—>TL’;(85: 3)—>7I;+1(83: 3)’—)7'['“.1(81: 3)""‘,
where G(B) =a0SB for BEx;(S°: 3).

Note that H(a,) =«;. Then we have H(ayp) =ayf:=F0. Thus
a3, 0. Moreover we have

dzafée {wly 3‘) al} aI,S: —a {3!y aq, ag} = —al{aéy ay, 3‘} > oy .

Hence avai=—aja,; mod {3aym,(S°: 3)Parm,(S°®: 3)ai} =0. Here we
have a;a,==0, since a, is not a 4-image. Thus ayai=F0. We have

the relation ai= — ayas, since abt€ {ay, 3¢, ar} ay= —a1{3¢, a1, an} Dajas
mod 0. So 7s(S®:3) is generated by asa;. Similarly it follows
from the relation ajay= —asa; that 7(S®: 3) is generated by asaq.

We have a28,=G(asp;) and a8, is not a 4-image. Hence «iB;==0.
So 7, (S?%: 3) is generated by aip;.

Now the characteristic class of the bundle f*G, is dey=a.. By
making use of the above table one can obtain

(3. 3) TC;<G2: 3)’57[,’(]“*62: 3)
Zs for i=(6,9,)14,16,18,19
Zy for 1=22

Z for i=(3)11
0 otherwise for i<<24.
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The only difficulty to determine =;(f*G,:3) will be found in
the case 1=22. In this case one has the extension
)
0——’23L)ﬂ22(f*62:3)p_*)23—_“)0.

It follows from Theorem 4.3 in §4 that for an arbitrary element &
of {ay, as, 3¢} Cru(S®: 3), there exists an element ¢S, (f*G,: 3)
such that pye=a; and i,0=3c. Consider the stable secondary com-
position {ay, as, 3¢)=S"{a;, as, 3¢}. Then we have
{ay, as, 3y =Las, a1, 3¢, as, 3¢
= +<{ay, {as, 3¢, asy, 3¢)
= <111, ay, 3‘>
= 5.
Hence the order of ¢ in the above is 9. Thus we have shown
ﬂzz(f*Gzz 3)EZQ.
Remark 3.5. Analogously one can calculate the 5-components
Of ﬂ;(Gg).
D) = (Fi:p) p=3,57 and 11.

Hereafter we denote by F{” the (#—1)-connective fibre space
over F,, so that

m:(Fy)  for i>n

(F)=] .
i (F4) 0 for i<m.

~

For example F{¥=F,.
It follows directly from (iii) of Theorem 2.5 that

(3.4) 7 (Fy: 11)=n,(S"x S® X S§*: 11) for 3<<i<<241l.

Consider the cohomology spectral sequence over Z; associated
with the following fibering: K(Z, 10)~>F§”’—>F‘4. Then
Ef=H*(F; Z)QH*(Z,10; Z7)
=7, [yss] ®A (yu y Vs, gﬂyu , 5}’93)
RZ; (u, Pu, Pu, -] Q4(6Pu, 6P u,-++).
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Obviously Ef=FE}. We choose uc H*(Z, 10; Z;) so that d,,(1Xun)
=y,X1. Hence
Ef=Z10%u, 18%Pu, -]
@A(yw@l, .Cioly11®1, 1@5@174, 1®6£qu, "') for dim.<70.
By the dimensional reason d,=0 for 11<r<<23, whence E}=FE}%.
Here we have du(1Q%Pu)=%Py,K1, since the transgression com-
mutes with ¢'. Thus
E}=Z,[18%u,--]
RA(3R1, 1 Q0P U, 1 Q0P w,---) for dim.<<70.
It is easily seen that d,=0 for #>>24, and hence E}=FE} (dim.<<

<C70). The degree of the elements 6%'# and $*u are 23 and 34
respectively. So we obtain that

H* (F‘(‘ﬂ); Z7) = {215, 223} for dim.<34,
where { } represents the additive basis.
It follows that
(3.5) m(Fo; =, (S*xS®: 7) for 11<<i<32.

Recall that H*(F}: Zy) = Zs [ Y50l LAY, Yis, P15, 6¥5:).  Let f
be a map: St—s F, representing a generator of =, (Fy:5)=Z. We
may regard this map as a fibering. Let F be its fibre. Then it is
easily obtained that

H*(F; Z,) = {2z, Pz,y  for dim.<<25.
Associated with it we have the exact sequence
"'—)71','(811: 5)—‘)77.','<F4: 5) *‘>7'L','._1<F: 5)_)71',‘_.1(811: 5>‘>"'.

Z for =14 and 22
Here we have =;(F: 5)%{ . .
0 otherwise for <Z24.
It follows directly that
Z for i=11,15,23
(3. 6) TE,'(F4: 5)E Zb f01’ 1218
0 otherwise for 3<<Ti<<23.
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As to the 3-components of =;(F,) we need more computations.
Consider the spectral sequence with Zs-coefficient associated with

i ~
a fibering K(Z, 10)—>F§”’£F4. Then we have

Et=H*(F; Z)QH*(Z,10; Z,)
=Zy| Y1) QA(Y1z, Py, 0Y15, P'0Y1s)
RZs\u, P'u, Pu, Pu,-- ] QAP U, 3Pu, 6Pu, ).
We choose an element us HY(Z,10; Z,) so that it may satisfy the
relation d,,(1Qu) =y,X1. (Obviously d,=0 for <11, and hence
F=FE¥). The element P'u is also transgressive and d(1QPu) =
Py, Q1 holds. The other elements of E}* are d,-cocycle for r>11.
Hence we obtain
Ex=Z,[9X1, 1Q%Fu, 1Q%P%, -]
R 433X, Py R1, 1 Q0P u, 1Q 0P u, 18P, +-+)
for dim.<<30,

where 1Q®%Pu and 1Q0%Pu are of degree 4i+10(:>>2) and 4i+11
(i>1) respectively. Thus

H*(F{?; Zy) = {2, 02, P02, A1, A, 15, by, by}  for dim.<26,

where a5, @, correspond to 1R Pu, 1 P*u and by, by, b to 1
0P, 1R0%Pu, 1R 0P respectively. Here we have the relations as
follows:

i* (E_Plbw —blg) - O, and hence E’Plbmzb]g mOd 6ym.
1*(P%y—bys) =0, and hence Pbi=b, mod LY.
1*(das—byw) =0, and hence odaps=b, mod §¥s.
1*(8ay,—by) =0, and hence odan=b; mod L0Ys.
But it is easily seen that one may choose appropriately ais, & and
b,; so that the next relations hold:
(3. 7) C_Plbm: blg = 36118
g‘)zbm:bzs‘*‘ A@lﬁym, b23=6a22' (A:()) ]-y 2')

(We cannot determine whether or not A is zero.) Thus we have
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shown
(3.8) H*(F{™:Z5) = { ¥, 3}’18,-@153’18, bis, Pbis, b, Gis, A}

for dim.<<26, where the relations (3.7) hold.
It follows from (3.8) that

7t,'(F4: 3) :O fOr 12gi£14
=7 for i=15.

Case 1. A=0.
By calculating the spectral sequence associated with fiberings
F{—=F{® and F{”—F{® one may easily obtain that

(3.9 H*(F{®: Z;) = {35, 0Yis, P'0Ys, Qus, 0218, Ay, 8280 =P5,0s5}
(3.10) H*(F{: Z)) = {dn, 0ds, Gy, €21, 0¢41, Ay, 82y}
for dim.<<26,

where 4§, is the Bockstein operaticn associated with an; exact sequence
0—)Z3—>Zs"*l'~>Za”_>0. (8]=6>
It follows (3.9) and (3.10) that

0 i=16,17, 19, 20
J ZPZ, i=18
n(Fe:3)={( ZPZ, i=21
Zy 1=22
Z 1=23.
Case 2. A=0.

Similarly one may easily obtain that
(3.9) H*(F{®: Z)) = { ¥, 0¥18, P'0Y1s= 0013, G5, 0s15, P05, A2}
(3.10)" H*(F{:Zy) = {dn, 0dy, @x, 0:as, €1, 0€4:, €53}
Sfor dim.<26.
It follows from (3.9)" and (3.10)' that

0 t=16,17,19, 20
Z,PDZ, i=18

2i(Fy: 3) =
| ZBDZ, i=12
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Z 1=23.
In any way we have shown

i Za@Zg l:18

ZPZ, =21
(3.11) n(Fy:3)= 1 Zy ov Zyy 1=22
IZ ¢=3,11,15,23
0 otherwise for i<<24.

$§4. Some properties in the fibre theory.

We denote by =(A, B; C, D) the set of the homotopy classes of
maps f:(A, B,a,)—(C, D, c,) for topological pairs (A, B, a,) and
(C, D, cy).

Let X be a CW-complex with a base point x,. Let S"X=XA\S"
the smashed product of X and the unit n-sphere S” and let CS*X
be the cone over S*X.

Then for an arbitrary topological pair (A, B, @) we have the
following exact sequence:

. o .
(4.1) i . & A)]—>n(CS”X, S"X; A, B)—=(S"X, B)Zi---.

Let (E, p, B) be a fibre space with a fibre F in the sense of
Serre, that is, it has a covering homotopy property. Then we have

a one-to-one correspondence
(4.2) Dy: n(CX, X; E, F)==(SX, B).

Define a boundary homomorphism 4: =(S"X, B)—»=(S"X, F) by
the commutativity of the following diagram.

e (STX E)];tn(CS"X, S'X; E, F)inr<S”X, F)—...

S~ D 7
D« (S X, B)

For this boundary homomorphism 4, we have

Proposition 4.1. Let Y be another C W-complex with a base
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point y,. Then
A(@oSB) = (da)oB for acsza(S""X,B) and pe=(S'Y,S"X).

Here S is a suspension homomorphism given by the commu-
tativity of the diagram:

S
z(S"Y,S"X)—n(S"MY, S"MX)
=N\ /b,
z(CS"Y,S"Y; CS'X, S"X)
where p pinches S"X.

As to the secondary composition (the definition is referred to
[18]) we have the following

Proposition 4.2. Assume that aoSB=For=0 for ac=(S"™X,
B) psa(S'Y,S"X) and vr€=(S"'Z,S"'Y), where X, Y, Z are CW-
complexes with base points. Then we have

A{a{y SB’ ST}IC {Aa:) B) T}'
The proof may be found in §5 of [15].

Theorem 4.3. Assume that acz(S"X, B), pe=(S'Y,S'X)
and y€x(S*Z, S’Y) satisfy the conditions (da)oB=0 and Foy=0.
Then for an arbitrary element & of {da,B, 1} Cn(S*Z, F), there
exists an element ¢=a(SMY, E)such that pye=a°SB and i.6=
eoSy.

This is a generalization of Theorem 2.1 of [14] but proved by
the quite similar manner.

Let G be a compact Lie group. For a principal G-bundle (E,
p, S**'=E/G) the element 4¢;,,=x(E)<n,(G) is called the charac-
teristic class of the bundle and it determines the bundle up to eq-

uivalence.

Theorem 4.4. Let j=>2 and let C, be the class of finite ab-
elian groups without p-torsion (p a prime).
Suppose that qu(E)=q'x(E') for two G-bundles E, E' with the
same base and for q, q' prime to p.
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Then n;(E) and n;(E") are C,isomorphic to each other for all
7.

This is Lemma 2.3 of [14]. The following is a direct con-
sequence of this theorem.

Corollary 4.5. If the order of x(E) is finite and prime to
p, then we obtain

m;(E)=n;(§")Pn;(G).
C

»

Propesition 4.6. In a fibve space (E,p, B, F) we suppose
that 2B has the homotopy type of a CW-complex. Then there
exists a map h: 2B—F such that the following diagram is com-
mutative:

i}
7Ti+1(B> —’ﬂi(F)
o [

7,(2B)

where A is the boundary homomorphism.

Proof. Consider the following commutative diagram:
0

n(Q(E, F)) = m.(& F)
I, \ 8
= (2P m(F) ==|p,

Y

T (52}3) = iy (BS

where [/ is the projection of the canonical fibering Q2(FE, F)—F.
There exists a map b: 2B—2(E, F) such that b, is the inverse of
(2D) 4, since 2p: 2(E ,F)—0B is the singular homotopy egquivalence
and 2B has the homotopy type of a CW-complex. Put h=/ob.
q.e. d.
As is well known [3], the exceptional Lie group G, contains the
subgroup SU(3) such that

(4.3) G.,/SU(3)=S"



152 Mawmoru Mimura

According to [14], =(SU(3)) is isomorphic to Z and generated by
such an element [2¢]that p,[2:] =2¢ for the projection p: SU(3)
—=S*=8SU(3)/SU(2). The characteristic class of the bundle (4.3)
is then dew=[2¢]), since n;(G,) =0, which follows from Theorem
2.3.

It follows from Theorem 4.3

Corollary 4.7. Assume that [2¢;)oB=np=0 for R<nx;(S%)
and an integer n>>2. Then for an arbitrary element 6 in {[2:],
B, ne;y Cr(SU(B)), there exists an element ¢ in n;,(G,) such
that p.e=SB and i,0=ne.

It is well known that the classifying space Bs of S® may be
considered as the infinite quaternion projective space Q P~ = S*Je*lJ---
and that Bsys, has the cell structure S*e®lJ---, where €° is attached
to S* by a generator %, of =;(S*) =Z,.

In the homotopy class of a generator of ms(Bsues))=Z we choose

a map f: S*—>Bswe so that the diagram may commute.

rin (S, (SU(3))
lf * /ﬂ dsue
i1 (Bsuesy)

where 4sys) is the boundary homomorphism in the exact sequence
of the universal bundle of SU(3).
It is easily seen that f represents a coextension of 2.
Consider the following commutative diagram.

s (8D <A (SU(3)) o (59
f*\ EI"SUG% ETAS’
i (Bsu) — Tiv1 (Bs3)
Tox T4
7a(SY
where i,, %1, i, are inclusions and 4s is the boundary homomorphism
of the universal bundle of S*

We note here that the next formula holds:
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4.4 Ass (i34 (Sa)) =a for any acn,(S?).

Suppose that aEr;(S?) satisfies 2¢;,04=0. Then the secondary
composition {y, 2t;, a} is well defined. According to Proposition
1.8 of [18] —iu{ns, 25, @} coincides with the set of all composi-
tions Coext.(2¢) oSa=fy(Sa). Therefore A(Sa) = dsys(f«(Sa))
belongs to — dsucsylox {74, 2t5, @} which is equal to @y dsifay {94, 2t5, a}
by the commutativity of the above diagram. Thus we have shown

Proposition 4.8. For any element asn;(S*) satisfying 2uoa
=0,
A(Sa/) (S5 i*ods:’iz* {7741 215) a}

mod i*ﬂ5(83> o+ Z* 0453°i2* (774°”i+1 (85))

Corollary 4.9. Suppose that a=n, ,(Ss) satisfies 2a=0.

Then
H(i;1°A°S3IZ) 552w mod H(Asal.2*7]4°7'f,'+1(sb>),

where H is the Hopf homomorphism: =,(S*)—=,(S°).

Proof. The above proposition says that 73'(4S%) is a subset
of Asstuy {74, 2¢, S2a}. On the other hand, the secondary compesition
{93, 2ts, Sa}; is equal to dsiyy {ns, 265, S*a}, by (3.4), which is a
subset of dssiyy {75, 2ts, S?a}. Thus we obtain

i;1<483£¥> = {773, 254 N Sa} 1 mod A53i2*774°71';+1<sﬁ) + 77:5(83) OSza.
Hence we have that

H(i;l°d°ssa> —=—H{7]3, 2‘4» Sa}l mod -H(As3l'z*774°7'5£+1<55>)

= —A(29,) oS*a by Proposition 2.6 of [18]
= S’a. q.e. d.
Remark 4.10. It is easily checked that .o, (S*) C S%:(S% for

1<<26. and hence H (dsiyumion;i,1(S?)) is easily obtained by making
use of (4.4) and the relations in [18] etc.

§5. Some lemmas.

This section is a preparation for the following one. Let Xi;
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be a cell complex S™(Je* where ¢* is attached to S™ by a generator

o1 Of m==Z1;.

Lemma. 5.1. First few groups =,(Xi: 2) arve listed as fol-
lows.

i \igm 15 16 17 18 19 20 21 22 23

T; (Xll'): 2) i O Z Zz Zz Zg 0 0 Zz 0 Z@Zz

gen s M M Y Vis (1663, &5

where p{16¢;5y =160 E 7,5(S*) for a shrinking map p: S*e*—S%

Proof. Clearly n;(Xy)=nr,(S*) for i<_21. We have the next
exact sequence, since 7;( Xy, S®)=n;(S*) for i< 36.

1»2* D« 23

_’7722_’71'23_“’77'3()(1) — T 3—>71'22’—>71'u(X16> — =0,

where ni=Z,= {yu}, no=Z,DZ,= {es, vis}, ni=Z= {t;5} and ===
Zyw={osy. By the difinition of Xy, 4:znfi—ni is epimorphic and
hence 7., (X35) =0. It follows from Proposition 4.1 that dys=oupe
=ep+7y; and its cokernel is Z,. Thus ms(Xy) = ZDZ,= {{16¢ss), €15} .

Consider the Stiefel manifold V;, of orthogonal 2-frames in eu-
clidean 7-space. There associates a fibering

S'— V5.~ S,

whose characteristic class is 2¢. Let SL be the reduced product
space of S° in the sense of James [18]. This space S2. has a cell
structure S®Je®U---, where ¢ is attached to S° by the Whitehead

preduct [es, 5] =vgps, which is of order 2. Then we have the fol-
lowing

Lemma 5.2. There exists a map f: S.—S° such that f|S°
has a mapping degree 2 and the following diagram is com-
mutative:

141 (S° )——>7r (SUB))

afl >~ |

m;(S%) —> 7 (S?),
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where 4 and 4 are the boundary homomorphisms associated with
the fibering G,/SU(3)=S°and V,,/S°=S® respectively and p is
the projection: SU(3)—-S*=SU3)/SU2).

Proof. By Proposition 4. 6 there exists a map 4: 25°—S°® such

that the following diagram commutes:

(S (59

A

7: (289

Let 7: SL.—0S° be a canonical injection. We set f=hoi: S5L—0S°
—S® Then the commutativity of the lemma is clear, since £2,=
R0ty m(SL) =7 (2S%) >, (S%).

The map f|S® represents an element f,e, where Em:(S%) is
identified with its image in #;(S.). By the commutativity, we
have fyois= 4 2¢s. Here 25 is obviously equal to ¢. Hence fyu=
2¢, since A'ts=2¢; (the characteristic class of the bundle V;,/S*=
S9. qg.e. d.

Remark that the restriction f|S°Je™ is an extension of 2¢ in
S°Ue® whese attaching element is [¢s, ¢5] = vays.

Let us recall that =, (SU(3):2)=Z, and generated by [vs7i],
where [vs7i] is such an element that p, [vsmi] =viys for the projection
p: SUB)—S* ([14]). Then we have the following

Corollary 5.3. For the boundary homomorphism A: my(S®)
—>7rw(SU(3)) we have A(A(13):[V577§].

Proof. First we show that 2,(Ac¢s) is a coextension of 2¢ in
S°Ue®. For this it is sufficient to show g (@A ) =2¢, for the
pinching map ¢: S*Ue"—S". The restriction of %, (for the defini-
tion see [18]) on S°®Je is the map ¢q. By Proposition 2.7 of [18]
we have H(Aas)=2¢;. By the definition of H this is equivalent to

..Qi—lhb*.gl( A {13> :2(11.
Hence hr,*.Q]( A Cl3> :;.91 <2l11) = 2(]0.
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Thus q*91( A lm) =2ty.

It is already seen that the map f|S°Je™ is an extension of 2¢. So
fs2:(Acz), which equals p,A(Acs), belongs to {2¢, vsps, 2ty by
Proposition 1.7 of [18]. This secondary composition is ymi by
Corollary 3.7 of [18]. Thus we have shown p44(A ;) =vsys, which
implies the corollary. g.e. d.

Next we consider some elements in =;. We have relations 2y,
=0, 20"=0,8'=0,16013=0,8%=0 [18]. So the secondary composi-
tion {ns, 2¢5, 0"}, {e’, 8t1s, 2015} and (s, 8ews, 2014} are well defined. We

will prove

Lemma 5. 4.

(i) HE)=¢.

Cit)  {m, 26, 0"} =704 mod {piusons, 2S¢’} .
(iii)  {¢, 8us, 2013} =p'ors  med {V'es, mazas) -
(iv)  {Ds, 8w, 2014} =C’ mod { s} .

Proof.

(i) We apply Lemma 5.2 of [18] for the element &Enl. Then
H(B) =¢s for an arbitrary element f of {ys,2¢,e}:;. Such a B be-
longs to =¥, and 2B8=1%;=2¢. Hence we have f=¢ mod {7z, yspuos,
2¢’}. Note that 7 survives in the stable range. On the other hand

we have
S=e'=2uk=0
and STRE(y, 2¢, &) =7, 2¢, )
Dy, 26,k

52v=0 mod {yp*, yus}.
Thus &= mod {psmois, 2¢'}, whence
H(E)=H(B) =5 mod {H(pmou), 2H(E)} =0.
(ii) We have
{4 265, 0™} = {4, 205, {6™, 2025, 8o} }
= — {n, {2t5, 6" 201}, Bous} — {{ms, 25, "}, 2013, 8o}
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by Proposition 1.5 of [18]
= {1, 203, 8a1s}, since {2, 6™, 26: =0
=p, mod G,
where G=1y,0mh+ {:0S0"} +7ls: 861+ pomsi = {papso1s, 2S¢’} .
(iii) We have
H{e', 8us, 2015y C {H(e"), 8tss, 2015} = {5, 8t13, 2013}
by Proposition 2.3 of [18].
Moreover we have the following relations in the stable secondary
composition (note that the equality holds, since the largest composi-
tion (ys, 8¢, 26) is a coset of {yoe, 2us} =0).
e, 8¢, 26) = {5+ 7q, 8¢, 20)
=<3, 8¢, 2¢) + {50, 8¢, 2¢)
={yo, 8¢, 2¢), since {3, 8¢, 2¢>=0
=a{7, 8¢, 2¢)
=g by the definition of ..
Hence {es, 8t1s, 2013} = pso1a= H(4'61,) mod {e=;%}, since the kernel
of S”:75,—(Gy: 2) is generated by 7:5. Thus

{51’ 8513, 20‘13} E/A’du mod {V'Es, 773;74} .

(iv) We have H {zs, 814, 201} T {H(s), 814, 261} = {11, 8t1s, 2611} by
Proposition 2.3 of [18]. According to (9.2) of [18], &= H(")
is equal to {wu, 8c, 2614y. The kernel of H: n),—n} is generated by
7e6; and ueo5. Thus we have
¢'={vs, 8es, 201} mod {y&;, teo1s} .

Though x40y survives in the stable range, but &', 7, and {ms, 8t1, 2014}
do not. For, S<¢'=207e=0, S™p&;=c*=0 and S~ {5s, 8t1s, 201} =<2,
8¢,26>=0. Hence &'= {5, 8t1, 201 mod {pees}. q.e.d.

Next we will prove the following lemma which is due to Toda.

Lemma 5. 5.
TL'14(F4> 322-
Proof.
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Consider the following commutative diagram where the horizont-
al sequences are exact ((11.4) of [18]).

s (SOATY) —> s Vir) o1 (S O9) s (SOUTY) —
e l= L,/ & 1/
—> 75, (S™) —>my (£°SY, S°) _>n23(59)__>n31(517)——

—’7'514(‘/;7.8)—’7&3(50(9))—’0
= |7 S8
— 7y (2°SY, §%) — 70, (8°) —> 715, (S') —0,
where
s (SOAT))=Z, m,(SO0(17))=0, 75,(SY)=Z D Z,,
71723(89):213@24, 7r31(5">522@22, ﬂzz(sg)gzsy ﬂso(sn)zza
and S®: 7;(S%) —>m;,s(SY) are epimorphic fer i=22, 23 and Cokernel
of S%: 1, (S%)—m3,(SY) is isomorphic to Z, ([18]). It follows easi-
ly from the lower exact sequence that the sequence

0—>Zz—>n15(Vn.s)i>ZgEBzz—>0 is exact and that

m:(S0(9))=Z, and ]71'13(50(9>>§Zz: {ooric} .
As the image of Z, in the above sequence into n;;( Virs) coincides
With that Of ]7'[15(80(17))22480, we haVe 7'[14(80(9)):25®Zg and
Jr.(SO(9)) is generated by {26, 2k= g} .
Thus we have shown that
(5.1) 1(SO0))=ZDZ,, ns(SO(9))=Z,, and that J-homo-
morphisms on these groups ave monomorphic.
Let a be a generator of #n,;(SO(9))=Z. Then J(a)=g,, if it is
restricted on 2-components. It follows that
J(a-6") =0408% =26% which is of order 8,
J(a- %) =000 which is of order 2.
Consider the exact sequence associated with a fibering F,/

Spin(9) =1I. It follows from Proposition 4.6 that there exists a
map Ah: QIT—Spin(9) such that the following diagram commutes
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2 (I1) o2, (Spin (9))
T (.QU)

Let f=hoi be a composition of /4 and a natural inclusion 7: S™—2II.

Then we have the following commutative diagram:
nm(H) — 1, (Spin(9)) —n (F) —nu(I1) — w15 (Spin (9))
e /7 o) /7
S e

Here fyc; is a generator of n;(Spin(9)), since we have =;(F))
=0 by Theorem 4. 4.

Let P be a covering map Spin(9)—S0O(9). Then we have
JP.fi(6") = J(acs’) =267 and hence fin (S)=Z,
and JPy [ O = J(ao®) =6pi; and hence fy: m3(S7)

—m3(Spin(9)) is monomorphic.
Thus we have obtained

77.']4<F4) EZz. q. €. d.

§6. The 2-primary components of z.(G,).

In this section we compute =;(G,: 2) by making use of the ex-
act sequence associated with the fibering G,/SU(3) = S°:

(6.1) ---—>n,-(SU(3))—Zin,-(Gz)&n;(sﬁ)—étni_l(SU(B))——»--
Theorem 6. 1. =,(G,: 2) are listed as follows

i |12 3 4 5 6 7 8 9 10 1 12 13
7ri(Gz: 2) 00 A 0 0 0 0 Z, Z: 0 Z@Zz 0 0
gen. It3 <ni> <ni>ns <2u13>, iw[vi]
i 14 15 16
ti(GzZ 2) Za@Zz Z> Zz@Zz@Zz
gen. <et+E>igx[vi]un <be+E6>mu <m¥>usee, <mepr>>, is[vsvs]
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i 17 18 19 20 21
7i(G2: 2) ZsDZ: Z1s Z> Z> 0
gen. B>, <qi>ps <2As>o1 ix[vsvsvie <Dev1s>vi7

; l 22 23

7":’( G: 2)
gen.

ZsPZ., GCD®Z,
<Y+ pso1s>, <ne€r>  <nepr>o1s

where G=17, or Z,DZ, and generated by {{ A SO+ verop} 0v {{ A SO
+uete), Lyvegsy 7espectively.

We have the following relations

Aserey =14 [¥2] V1
82 A tizpon =14 [vspsrs] mod ms(Gy: 3)
24 A SO0+ veroy =14 [viEs] in the case G=Z,.

Here the notation [a] means such an element of =;(SU(3): 2)
that ¢4 [a] =a<=;(S%: 2) for the projection q: SU(3)—=S*=SU(3)/
SU(2), and the notation (8> means such an element of =;(G,: 2)
that p,.(B>=p=n=,(S% 2) for the projection p: G,—S°.

In order to prove this theorem we need the following results on
7:(S°: 2) and #,(SU(3): 2) ([13], [14] and [18]).

For simplicity we denote =,(SU(3): 2) = U}

(6.2)

i l 1 2 3 4 5 6 7 8 9 10 11 12 13 14
7!'?.,.1 0 O 0 0 Z Zy Z: Zs 0 Z Z: Za Zs@Zz Zz@Zz@Zz
gen. t M6 ME ve Atz v &' Us, &, Vi, Me, m6E7
U l 0 0 2 0 Z Z 0 Zi 0 Zo Zi Zi Ze Z®Z>
gen. l Tgt3 [2¢5] 2407 [2L5]Us [vsn?] [VE] [oll] 748 [wiv, iep’

i ' 15 16 17 18 19
| 2@z Z@DZ: Zu Z Z@2:
gen. V6as , Mo Lo, Jsv14 Aoz Veaavic 13, vevis
U? Zs ZDZ» Z:DZ: Z:DZ: Z\DZ,
gen. [2¢s]vsas  [2e5]8s, [vsvs] [v2]vd,[vsms€s] 143, [vsmspee] [ W] o1z, [vsvs]vis
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i 20 21 22 23
W?, 1 24@22 Zs@Zz@Zz Zz@Zz@Zz@Zz Zz@Zz@Zz
gen. pn}Z:s ¢, peais, megr A SO, vere, s, nepro1s A SOon2s, Leo-17, Meir
U‘? 24@22 Z> Zz(-DZz ZA@ZZ
gen. [pIV],i*e’ Tl 014 ixp, [2¢5]vsks [2¢5]8s016, [5Es]

The exact sequence (6.1) induces an exact one:
(6.3)  0—Coker.(4: el UD—57,(Gy: 2)
—p—*>Ker.(A: n—Ul,)—0.
It follows from Proposition 4.1
Proposition 6. 2.
ASa=[2¢)ca  for acSm_,(S%).
Furthermore we will prove

Proposition 6.3. For the homomorphism 4: n%.,—U? we
have the following table.

a= ms M ve At v o’ ve & v3 767 e P
da= \z’*u’ 0 [2¢s]vs [wsmi] 2[v3] [ 1] i4&’ ix€’ 2[vi]vrr 2[vE]v1r igp’ [2es5]vsos
a= l NeMr s UsV14 Aoz versvis  o'’g1s Tevis  pIL &
da= | 0 [26)s 0 [Dh+Dwme]  isda [oMlews 0 [pV] i
a= \ ¢ peors me€7r  ASO VKo Ps meprare ASOn2s ge017
da= \ i*ﬂ«'a‘u i*/l«/a'n 0 [2L5]VsICs [245]95/03 Z*/—b/ 0 0 [2&5](50‘15

Proof. The cases a= v, ve09, Cs, voko, Coo1r are easily obtained by
Proposition 4. 1.

For the cases a=1vs, e, s, &, zs We apply Corollary 4. 8.

H(i dne) =7, mod H(%}) =0, on the other hand H(w) =z by
(56.3) of [14]. Hence dps=i4r'. Similarly we have

H(i' des) =es= H(c') mod H({ysyi, 73, 7365} ) =0 by Lemma 6.6
of [18], whence Ades=1y¢'.

H( dp) =ps= H(y') mod H(eswn+1v'es) by (7.7) of [18],
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whence Aue=1*y' mod 7y (esvn+v'es) =0.

H(iy gey) =&,= H(g") mod H({ywlr, navabrvisy ) =0 by Lemma 5. 3,
whence dg=1,%".

H(i3 dme) =ps= H(#') mod H(v ye01s) by Lemma 12.4 of [18],
whence Azs=i.7 mod 41 ste01,=0.

"' we use Proposition 4.8. By Lemma

For the cases a=1}, 6", p
5.14 of [18] we have 24" =3Ss"". Hence we can apply Proposition
4.8 for 24'=Ss". We have 246" =4S =1y Astlss {ps, 2¢5, 6™},
which contains 7y dsifyxxs by the definition of u,. By (4.4) Z4dsilogrs
=1.us, which is equal to 2[¢™] by (4.1) of [14]. Thus we have
obtained

ds"’'=[6"] mod 2[s"].
Similarly,
AZPIH:ASPIV: i*Assiz* {ns, 2¢5, PIV} Bi*ﬁssiz*/_uz i*/_l3
mod {2048, typsposy =0 by (ii) of Lemma 5.3, whence we have
40" =1[0"] mod {2[p"],ix&'}, since i,m=2[p""] mod i*¢.
It follows from Proposition 4.8 that
AVgEi*Asdz* {774, 2e5, Vi} mod {i*ﬂgvg‘i‘i*ds’iz*"?wul} =0
STy dsilyxes by (6.1) of [18]
which is equal to 4es=2[12] by (4.4) and (4.1) of [14]. Thus
Mie=2[43].
The cases a=1m Ve, 71, ollz, Fevu, 0 O13, Pavii, VeEr, Neltr01s, teors and

yem; are proved by making use of the relations of elements in U}
and =% as follows (see §4 of [14]).

Ani=0, since Ui=0.

Aneer = i*VIEG = i*eal/u: 2 [V%] v in f-: .

Avi= A(qevr) =15V P6=2[1i]vy in 4.

Avs=148, since Avi= A(yev;)F0 implies Are=-0.
Ayeptz= Z'»clil,us: 0 in U134 .
Avgva=1txe'vis=0, since ¢vy=0 in Uji,.

do"'63= (do'")o1s= [6""] 615, by the above.
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Aveis= A(Pev1) vis=0.
Ay =1,'8=0, since Ve=0 in Uj.
Apert016= 4 (776#7) o1s="0.
A1te015= T 12" 614.
Ay =14V 1s=0, since Vg=0 in U.
Corollary 5.3 says that 4(Aes) = [vsys). This relation indicates that
A(CA 613) = [v3] v + [vsmees], since pu(4(A 013) ) = Vsso10 = V5 + Vsmecs.
Next we will prove 4(veoevis) = ExEs.

Consider the exact séquence associated with the fibering

.

i
SU)/SUB) =S8": - — Ui Ui—>ry—,
where U§§Z4= {[2!5] Vs} y gng: {[%@777] } y ng%’Zz= {771} (See §4
of [14]). There we obtained already 5 [2¢]vs=2[vsPDn:] and 2[vsP
7]1] ogl15 — i;‘i*gs . It fOl]OWS that Z'/* (A)Jso'gl/le) = (Z;Aue) OgV15 — 2 [V{,@?ﬁ] OgV15—
14048 and hence A(veosvis) =148, since iy is monomorphic.
For the cases «=¢', A SO we apply Proposition 4.2. By (iv)
of Lemma 5.3 we have
A8 = A{ve, 8trs, 2614} mod {4y, =0}
C {4vs, 8t1s, 2015} by Proposition 3.2
= {ix¢, 813, 2015}
- i* {5’, 8t » 2013}
where {¢, 8us, 2015} =p'01s mod {V'5, 7smy. Hence A'=i,4'0y
mod {iye'ers, 14€'Vis, 205 t'ora} =0.
It follows from Lemma 12.11 of [18] that
D+ 4(A SO) Epyd{ A 613, vis, 71},
which is a subset of {Pxd(Aa), vir, 720} = {¥i+ vsnaco, vi7, 70} . Here
we have
{Vg + vgnRgg, Vir, ot = (V5178+ V5€s> {me, vz, 720y mMod {msuteo1s}
= s (Ts+es) 13 by Lemma 5.12 of [18]
= Vul_Jans by (7. 13) of [18]
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= 2usks by Lemma 10.1 of [18].
Thus p,A4(AS0) =2y, mod {ysuo}. Hence we obtain
ACA 860)=[2¢]vses mod {247} .
It follows from this relation that p,A( A Sfz,;) =0 and hence 4( A S¢
7s) =0, since py: Uk—nj; is monomorphic. Thus the proof is
completed. q.e. d.

The following lemma follows directly from the table (6.2) and
Proposition 6. 3.

Lemma 6. 4.
i)  The homomorphisms A: 7%— U? are epimorphisms for 5<i
<10 and i=12,13,15,20, 21,22. For the other values of i, 4<<i
<24, we have the following table of the cokernel of 4.

i 11 14 16 17 18 19

Coker-4 Z, Z, Z, Z, Z, Z,
repr. of gen.| {viy {vvn, {vevay {vipvii={<vemses) {vemsts) {vsPayvis

z 23

Coker-A Zz
repr. of gen.| {vssy

i) The homomorphisms A:n'— U2, are monomorphisms for i=
6,7,10,12,13,19,21. For the other values of i, 4<<i<<24, we have
the following table of the kermnel of A.

) \ 8 9 11 14 15 16 17
Ker-4| Z, Z, Z Zs Z, YASYA ZDZ,
gen. 7% e 200 Tetes (TDetes)yu 7809, Yotz Yolts, Vevrs

i l 18 20 22 23
Ker-4 Zs Zz ZSEBZz Zz@zz
gen. 2A O13 I’GV?A CI + Me015, V61 ( A Sa + Vﬁ’CQ) » Nel7016
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We prove Theorem 6.1 by dividing into three cases.

Case 1. 5<i<C10, 1=12,13,15, 20,21 and 22.

For these values of 7, it follows from the exactness of (6.3)
and i) of Lemma 6.4 that =;(G,: 2) is isomorphic to the kernel
of 4: «i— U?_; under the projection homomorphism p,. Thus Theorem
6. 1 is established for these values of 7 by making use of ii) of Lemma
5.2.

Case 2. i=19.
For this case, =;(G.: 2) is isomorphic to the cokernel of 4:

nt.i— U? under the injection homomorphism i,.

Case 3. i=11,14,16,17,18 and 23.
For these values of i, we must determine the extension (6.3).
For the case i=11, the kernel of 4: zf,— U3 is isomorphic to

Z, so the sequence obviously splits:
1 (Gy: 2)=ZPZ,= {{2 A1), t4[13]}.

Consider the case i=14. Suppose ix[v?]v1=8{vs+¢e, then
ix AV =8{Ps+espviu=0. This contradicts the fact that 7, [»?]v}i=0.
So there are no relations between iy [vi|v; and {(ps+ep, which im-
plies

77-'14(Gz: 2) EZ@eaZz: {(Pote6), Ta [V3] v} .

Consider the case i=16. Obviously the order of {yi)ysss is 2.
We apply Corollary 4.7 for the element ;. Then for an arbitrary
element & of {[2¢], ysus, 205y C U, there exists an element () in
716(Gy: 2) such that pu{yemr) =7rerr and ,0=2{ye;>. On the other
hand we have that p, {[2¢s], yss, 205y is a subset of {Py[2¢:], nsuts,
205y = {2¢5, ysus, 20155 Which contains 4¢;. This means that the se-
condary composition {[2¢], psue, 265) contains 2{2¢18s. But 2[2¢4]8s
is already known to be zero in m(Gy: 2). So {yeury is of order 2,

whence

m6(Gy: 2)=Z,PDZ,PDZ,= {{ztyys0, (popa), T [vsis] }
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As we have the relation 2w, =@, which is a suspension ele-
ment, we may apply Corollary 4.7 for 2pes;. Corollary 4.7 says
that for an arbitrary element 6 in {[2¢), vsUs, 206y, there exists an
element {ygDey = 2{veu1sy such that p,{vebe) =201 and 7,0=2{yey) =
4{veuy. As the secondary composition {2, vsbs, 206 1is equal to
vsme=vi, so we have {[2¢], vobs, 206 = [v3]v5; and hence iy [vi]vh=
4{pgsy. Thus

T (}Gzl 2) EZS@Zzz {<176V14>y <7]§>#8} .

Consider the case 7=18. Since the relation 8 A 613=verto=S (vsuts)
holds, we can apply Corollary 4. 7 for this element. For an arbitrary
element & of {[2¢5], vsus, 267} there exists an element {veus) Em1s(Gy: 2)
such that py{vens) =vette=8 A o1z and 14,0=2{veue) =82 A t35)611. Since
{2¢s, vsps, 2011} =vsmapte mod 275(S®) by Corollary 3.7 of [18], we
obtain {[2¢s], vstts, 2617} = [wsmsus]. This implies that the order of
{2 A espo; is 16, and hence

ms(Gy: 2)=Z1 = {{2 A t3)011}

and i* [V;,‘Y}e,ug] E-8<2 A 113>du mOd 71'13(62: 3).
Obviously {(yeuryos is of order 2. But we cannot determine
the order of ( A S6+veryy. In any way

77.'23(62: 2) EZ‘)@ZQ@Z2 or 24@22. d. €. d.

§7. Homotopy groups of the octonionic
projective plane II.

As is well known the homogeneous space F,/Spin(9) is the
octonionic projective plane I7. It has a cell structure S®U e in which
e* is attached to S® by the Hopf-map /s: S¥—S°®.

Let @ be a base point of II. We set Ey.,.= {f: [-II; f(0)=a,
fQ) 1} with a compact-open topology. Then we have a fibering:

7.1) RI—Ey ,—1I.

Obviously Ey,. is contractible. ~We will calculate H*(QI) by
making use of the spectral sequence {E}} associated with (7.1).
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We have EX=H*(I)QH*(QI)
=Z[x]/(xDQ H* (o)

First there must exist an element y,€ H'(QIT) such that ds(1Ry:)
=xsQ1, since E* is trivial. The element x}®Xy; is cocycle, since
ds(23Ry.) =0. So xiQy, must be killed by a certain element, say,
Y€ H2(QIT) ; namely di(1QY:) = 25QY;. The third element which
will appear in H*(QI) to kill 23X y:y.s is of dimension 44.

Thus we obtain

(7. 2) H*(QI)=A4(y,, ¥») for dim.<<44.
It follows from (7.2) that

(7.3) (D =n;(2I1)=r;(S") for i<20.
Consider the exact sequence of the pair (I7, S®):
---—>n;(88)ﬁ>n,~(17)it>n,-(l], ss)im_l(sw—»--.

By Blakers-Massey theorem (or Theorem 1.4 of [10]) we have
the commutative diagram for {<{22:

0
R;(U, SS)_)”;—I(SB)

= g Nax

K;(Sm) e 77;_.1(515).
First we show that j,: mu(IT)—mu (I, S®) is trivial. For, A S(k)
=oai; is non-trivial for a generator 1} of 7, (S™)=Z,=n,, (11, S*).
Thus we have the exact sequence:
0 ) j
oy (1T, §%) s 10 (S%) P e (1) L5 g (11, %)
0 )
——>n22(sa)—*>n22(ﬂ)—>0.
Let €7, (1T, S*) be a characteristic map, whence 05 is repre-

sented by /%s and it belongs to ms(S®)=Z@Z. Then it follows
from Theorem 1.4 of [10] that

71'23(”, SS) EZ*N;;s(CSm, SIB)@ { [‘8’ 2] } .
We have 05,ms(CSY, S™) = hgyny(S®)=Z,. According to the for-
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mula due to Barcus-Barratt (Corollary 7.4 of [1]) we have

(7.4) 0[¢s, ] = [es {hs}]
= (ths— Sd’)dls‘*‘ [ [es, ts], ts) SH( {hs})
:2(1?;—56,0'15_“ [[‘By [B]v [S]y

where [[s, ], ] is non-trivial and belongs to Sn,(S": 3)=Z; by
Corollary 2.4 of [9].

Thus Omss(IT, S =Z,,PZ,;, and hence
o (H) EZ4 = {'C7} .

Let 2, be a cell complex S’ Je* with an attaching map a&
72(S7) such that there exists a map g: 2,—2IT and

(7.5) gx: mi(Qn)=n,(QI) for i<27.

We should investigate the attaching map a&nr,(S").
It is easily seen that there is an exact sequence associated with

2, for i<27: (dtn=a)
4
(7.6) o, (S — w1, (2) —m, (S8*) — w1 (S) —> -+

Consider the following commutative diagram:
4
-_—> 7722(-97) - ”22(522) - 71'21(57) I 71'21(-97) —0

0
N Nm(@n S l

I
- 71'22(-917) I 7722(-9”» 57) - 7!21(87) — 7121(!2”) —0

Il Vi Vs Il
i 7':22(!2[1) —> 71.'22(.911, .QSB) i 77.'21(.988) —> 71:21(!317) _‘—)O

— nzg(usl) — nzs(”;I, S — nw(ga) — 71:22221]) —0
where ¢: (@I, ST)— (@I, 2S*) is a natural injection and the third
vertical homomorphism 7, (S") —>7,(S®) is a suspension S.

The fact that n,(2)=n,(T)=Z, indicates {du,}=7Z,, since
(SN =Z,DZ,. It follows from (7.4) and the commutativity of
the diagram that

(7. 7) dtyy=a= -‘6,0'14+ [[fsy ‘8]; 38]-
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Thus we have shown
Proposition 7.1. For i<27, we have the isomorphisms
(i) mn(@:2)=nr,(QII: Z)En,-(Sl’Je”: 2)
(i) o (0T: 3)==r,(@1: 3)=r,(SJe™: )
(iii) (T p)==n,(QI: p)=r,(S"XS*: p) for any primes
p%2,3, where o' =S"([[tw, ], s]) Ena(S": 3).
Finally we determine ns(IT). We have the exact sequence:

"’—_’”23(822) >y (SY} '_’7!22<'Q7) —Z—0,

Where 7523(822)§Z;;: {7722}, 7'[22(57) EZ]z@@Zg@Zz@ZZ and the gene-
rators of m(S7: 2)={p", 6'Pu, o’ens, &y. By (7.7) we have
dyn=0 ‘s 14721

=¢'pu+to'ey, by Lemma 6.4 of [18].
Hence

T3 <H> = Tyy (-97) = Z@leo@zz@zz-
Thus we have shown

Theorem 17.2. The homotopy groups of the octonionic pro-
Jective plane for i<23 are stated as follows:

: <7 8 9 10 11 12 13 14 15 16

T; (U) 0 Z Zg Zz 224 0 O ZZ ZIZO Z2®Z2@Zﬂ

) 17 18 19 20 21 22 23
71’.'(”) ZZ@ZAEBZz@Zz ZuEBZz Zrm@zz 0 Za Z4 ZEBleo@Zz@Zz

§8. The 2-primary components of =;(F,).

In this section we compute =,(Fy: 2) by making use of the exact

sequence associated with a homogeneous space F,/G,:
(8. 2) -"—;n;(GQ—*TE;(F.i) —’ﬂ;(F4/G2)_""i—1(Gz)_’"'-

It follows from Theorem 2.1 that
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H*(F,/Gy; Z,)=A(%15,Sq"x1;).

Hence, by the Serre’s C-theory [13] the 2-primary components of
n;(Fy/G,) are isomorphic to =;(Xi5: 2), which are already computed
in §5 to some extent.

Thus (8.1) is reduced to the following

) 4

(8. ].), "'—")ﬂ;(Gz: 2)-1"71?;(F4: 2)&;7!;(X15: 2)“_>7T,~_1(Gz: 2)'—‘)"‘.

As 7;(Xy5) =0 for <14, it follows directly
(8. 2) TL','(Gg: Z)ETL’;(F.;: 2) for i£13.

Moreover, as to the so-called boundary homomorphism 4, we
have the relation

(8.3) Aey=<Ps+ eo) + Qi [Vi]vn where a=0 or 1,
since m(Fy: 2)=Z, by Lemma 5. 5.

By making use of (8.3) one may easily show that A: m;.,(Xs:
2)—r;(G,: 2) is a monomorphism for i=%14, {<<21 and that the
kernel of 4 is isomorphic to Z for i=14. Hence we obtain
(8.4) m:(Fy: 2)=Cokernel of 4: ni1(Xy)—m:(G,: 2)

for i=¢15, <22,
The easy calculations show that the cokernel of 4: 71 (Xis: 2)—
7:(Gy: 2) are as follows.
(8.5)
) ‘ 14 15 16 17 18 19 20 21 22 23

lZz 0 Z®D2Z 7. Zu Z. 0 0 G

where G=Z, or Z,PZ,. It follows that m,;(Fy: 2)=2Z.
Next consider the case {=22:

A:me(Xis: 2) =7 (G 2),

where 7ms(Xis: 2)=ZPZ,= {{(16t), €15} and 7 (G,: 2)=ZPZ,= KL
+ 1015, {petry}. Obviously des= {5 %), since ei=xe; in 7 (Ss: 2).
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Let X, be a cell complex S*\Je* with an attaching map ouE
7 (SY: 2), a generator.. Then SX,,=X,;. Let g be a map repre-
senting an element vs+es in 7,(S®: 2). Then g may be extended
to Xu, since (vg+e)©du,=0 by Lemma 10.7 of [18]. We denote
by Z this extension of g, g: X, —S"

Let p be the projection map in the fibering G,/SU(3) =S®. Then
we have a commutative diagram.

S
77-’22(X143 2) “_’ﬂza(Xw: 2)
2 4
77.'22(86: 2) <_*7722<G2: 2)

The element {16¢,,) may be considered as a coextension: S2—S*| Je*®
of 16¢,;. Hence S7*{16¢;) is also a coextension: S#—S™Je® of 16¢y.
Thus the element p,d({16es)) =F.S({16¢,5)) forms a secondary
composition {Ps+ e, 014, 16¢s;} by Proposition 1.7 of [18]. By apply-
ing the Hopf homomorphism H for this secondary composition we
have
H {ps+eo, o1, 165} C {H(To+¢s), o1, 16001}
= {Vu, 014, 16{21} by Lemma 6.1 Of [18] s

which contains x¢;; for an odd integer x mod 8Gy. Thus the order

of {Ds~" =y, o1, 16¢5}, and hence that of 4({16c3)), is 8. This implies
that 4: ms(Xis) > me(G,: 2) is epimorphic. Therefore we obtain

7'L'22(F4: 2) :0.
We have shown

Theorem 8.1. The 2-primary components of =.(F,) for i<
23.

i \ 1 2 3 4 5 6 7 8 9 10 11 12

m(ﬂ:z)\o 0 Z 0 0 0 0 2 Z 0 Z®Z 0

7 l13 14 15 16 17 18 19 20 21 22 23

W(Fi2)| 0 Z Z Z®Z Z Zu 20 0 0 G
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where G=Z, or Z,PDZ,.

§9. Homotopy groups of spinor groups.
As to the spinor groups of low rank, there exist homeomor-
phisms as follows:
Spin(3)=Sp(1)=SU2) =53,
Spin(4) =Spin(3) X S*=8°% S?,
Spin(5) =Sp(2),
Spin(6) =SU4),
Spin(8) = Spin(7) x §".
Thus =;(Spin(k)), k<6, are obtained from the known results in
[13], [14,] [18] for j<C23.
In this section we calculate =;(Spin(7)), which also gives
7;(Spin(8)), and =,(Spin(9)) for j<23.
Let p be odd prime for the moment. Then, according to
Harris [5], we have the isomorphisms:
9.1) m;(Spin(2n+1): p)=n;(Sp(n): p) for all j.
Hence =;(Spin(7):p) and =;(Spin(9):p) are given by the
known results of =;(Sp(3): p) and =;(Sp(4): p) for j<<23 [15].
So we compute 2-components of these groups.
(D #;(Spin(7): 2).
Consider first the fibration Spin(7)/G,=S". The characteristic
class of this fibration belongs to =,(G.) which is isomorphic to Z,.
‘Therefore by Corollary 4.5 we have

Proposition 9.1. For each prime p=3,
7;(Spin(7) : p)=n;(G,: p)Dn;(S": p).

Thus =;(Spin(7)) will be obtained from the known results;

Theorem 6.1, [15], [18].

For later use we list their 2-primary components and their gener-
ators. (For simplicity we omit the homomorphisms ¢}, the inclu-
sion one, and 2, , the cross-section one of 2-components.)
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(. 2) r (Spin(T): 2)
i |12 3 4567 8 9 10 11 12
00 A 000 Z Z2:DZ. Z:DZ: Zs Z®Z: 0
gen T fats o mr, <nE> nd, <nE>m v <2Aus>, ix[v3]
i3 14 15
Z2 ZDZ:DZ» Z:PDZ:PDZ:DZ:
gen. v} a1, <Us+8E>>, ix vilvu a'n14, v1, &1, <Vs+ E6 >n14
i 16 17
ZPZDZ:DZ:DZ-DZDZ: ZsPDZ:DZ:DZ-
gen. o'nly, V3, 1, mEs, <nE>Nsas, <<nepr>>, ix[vsvs] via10, Mrps, <Vevis,>>, <ni>ps
i 18 19 20 21
Z@DZDZ16 Z2 Z:DZ» Zs®D2Z:
gen. &1, bvis, <2Ac13 >0 15[ vsvs v1e V1o 10v17, <vewl > o014, K7
i 22 23
ZDZ:DZ:DZDZ-DZ: Z:PDZ:DZ:DZPZ-PDG

gen. P, @'V, 0’814, E1, <O H peois>, <mek1> ' ps, ST, proie mEs, <nepr >0 16

where G=Z,= {{ A SO+ ukop} 0r =Z,DZ;= {450+ vers), svses} .
D  #;(Spin(9): 2)

Consider the well known fibration Spin(9)/Spin(7)=S". The
characteristic class 4 of this fibration belongs to m:,(Spin(7)).

Thus, if one restricts it to the 2-primary components, it is
written as follows (cf. (9.2)):

(9. 3) Al]5=x<f‘5+es>+yd,+2i* [V%] Vi1,
wherve x,y,2z are integers.

In order to study the integers x and y, we consider the exact
sequence associated with Spin(9)/Spin(7)=S":
£

Asra(Spin(1): 2)—>om,
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where m, (szn (7) : 2) %“Zs@zf: {0',614, 'ﬁ} ’ ﬂzo(Spin (7) : 2) 5226922:
{V10'10V17, <I_JGV12>} y nég%’za= {615} and ﬂ;iEZZZ {st} . It ‘fOHOWS from
(9. 3) that 4615 = yd'dlq and AV§5 = x<l76V;4> +yll10'101117 and hence

0—>Z(a.,)@Z4——>77:21 (Spin(9): 2) —>Z e, y—>0.

Here (a,b,c), (d,e) are G.C. M of a, b and ¢, or d and e respec-
tively. Note that Z, is generated by «;.

Next consider the exact sequence associated with a fibration

F4/Spl7l(9) =]II:
_)71'22<H: 2) "‘_‘)71'21<Spin(9) . 2) __’7f21(F4: 2>_’TL'21(II: 2>—_>"'.

If we take a map f in the proof of Lemma 5.5, the above 4
is equivalent to the homomorphism f,.

r (112 2) o (Spin(9) : 2)

! o
7521(.911:: 2) //,’/ f*
i
71'21<ST: 2)

And a generator x; of mn(IT:2)=Z, is mapped by it to x; of 7n
(Spin(9):2).

Thus 7, (F,: 2) has (8,3)(x,» 2) elements at least. On the
other hand, according to Theorem 8.1 n,(F,: 2)=0, which implies.
(8,y)(x,5,2)=1. Hence y must be odd.

If one supposes x even, the cokernel of 4: mi—my(Spin(7): 2)
is Z,= {{ve}}, and hence we obtain m(Spin(9): 2)=2Z,= {{Zeis)}-
Then the kernel of 7, (IT: 2)—ny(Spin(9)) is Z, and hence =y (F,:
2)=Z,. This is also a contradiction. Thus we have shown

Proposition 9.2. The characteristic class of Spin(9)/Spin
(1) =S5 {5 dus=x{vs+esy+ Yo'+ 2t [Vi]lvu, where x and y are odd
integers.

Now we compute 7;(Spin(9): 2) by making use of the follow-
ing exact sequence:
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oo, (Spin(7) : 2) —n;(Spin(9) : 2) —>n,;(S¥: 2) —>--.

Since 7;(S¥) =0 for j<C(15, we obtain
{9.4) ;(Spin (7)) =n,;(Spin(9)) for j<13.

Furthermore it follows from Proposition 9.2 and (9. 2) that 4:#}%,—
7 (Spin(7) : 2) is monomorphic for 15<¢<(23 and the kernel of 4
for {=14 is isomorphic to Z.
Hence we have
ZDCoker. A(: nf—n;(Spin(7):2)) for j=15
Coker. A(:n¥u—n;(Spin(7): 2))
otherwise for j<<23.

., (Spin(9) : 2)g{

‘The cokernel of 4 are easily obtained and their results are as follows.
) 14 15 16 17 18 19 20 21
ZS®Z2 (Zz)a (Zz)e Zs@(Zg)z Zm@Zg@Zz Zz Zz Z4

i 22 23
(Z)*D(Z)* GB(Zy)*

‘where (Z,)* denotes the direct sum of k-copies of Z, and G is same
.as in Theorem 7.1.

Kyoto University.
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