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0. Introduction

In a noetherian ring, every ideal can be represented as an irre-
dundant intersection of finitely many primary ideals. There are several
uniqueness properties associated with such a representation, for ex-
ample see [11; Chap. IV, §5, Theorems 6, 7, 8]. The major part of
this paper is devoted to constructing examples to show that these
uniqueness properties do not hold when an ideal is an infinite irre-
dundant intersection of primary ideals.

We begin with a discussion of the notion of associated prime
divisor of an ideal. We consider four definitions of associated prime
divisor which appear in the literature, and show that that of Nagata
[8; p. 19] is the most general. However the Zariski-Samuel charac-
terization, that P is an associated prime divisor of the ideal A if
A:(x) is P-primary for some x, is the one which is relevant when
we study irredundant primary representations.

In §2 we study irredundancy in the representation of the radical
VA of the ideal A as the intersection of its minimal prime divisors.
We find that, if A has infinitely many minimal prime divisors, these

* This paper represents a portion of the author’s Ph. D. thesis for the University
of Wisconsin. The thesis was written under the direction of Prof. Jack Ohm, now
on the faculty of the Louisiana State University. The author is grateful to Prof.
Ohm for his encouragement and helpful suggestions.
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may be irredundant and redundant primes in almost any combination.
If P is a minimal prime divisor of A, P is irredundant in the inter-
section of all minimal prime divisors of A iff P=v"A : x for some
xevVA. We show in §4 that VA has an irredundant primary
representation iff /A is the intersection of the irredundant minimal
prime divisors of A, and this is the only irredundant primary re-
presentation of VA .

In §3 we examine briefly the representation of any ideal A as
the intersection (N A(M), where M is a maximal associated prime
divisor of A and A(M)=A-RyNR. We show that A(M) is irre-
dundant in this intersection if M is an irredundant minimal prime
divisor of A.

By definition, the representation A=, of A as an intersection
of primary ideals is irredundant if no @, may be omitted and if
ay #a, implies P, ,# P,,, where P.=vVQ.. In case {a} is finite, the
following hold: (1) {P.} is uniquely determined by A. (2) For
any ay, QQPQazA(PaO). (3) If S is a multiplicative system in the
ring R wlnlic;; does not meet A, then A(S) is an intersection of some
of the Q., where A(S)=A-Rs\R. (4) If P is a prime ideal, then
P contains A iff P contains some P,. (5) VA =P,. In §4 we
show that none of these properties holds in general for infinite re-
presentations, thus answering some questions of Krull in [6]. We
answer another question of Krull by exhibiting an integral domain in
which every ideal has an irredundant primary representation, but in
which the @-condition (see §4) does not hold.

We also obtain some conditions under which some of the unique-

ness conditions of the previous paragraph hold.

Notation and preliminary observations. By a ring R we
always mean a commutative ring with identity. An integral domain
(or simply domain) is a ring without zero-divisors. We use C for
proper or improper containment, and < for proper containment. We
write x&S\T for xS and x& 7T, and A:x instead of A: (x). If
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an index set I is specified or understood, (B, represents the inter-
section of all B, for ac .

In several of our examples we use the relation between lattice-
ordered groups and certain integral domains as given by Jaffard in
[4; p. 78]. Let G be an (additive) Abelian group together with a
partial order < compatible with the operation in G. G is lattice-
ordered if ¢, b=G implies inf(a, b)=G. A segment of the lattice-
ordered group G is a non-void subset A of G*= {xG|x >0} which
is closed under > and inf, i.e., a€ A and b>a imply b= A, and
a,be A implies inf(a, ) A. A is a prime segment if @, =G\ A
implies a+bes A.

Jaffard shows that to each lattice-ordered group G there corres-
ponds an integral domain D. D is obtained from G as follows: Let
F be an arbitrary field, and let R be the group ring of G with
respect to F. R may be regarded as the set of formal sums Za X
a,€F, g=G. Define a map ¢ from R\{0} onto G by ¢(Ean')
=inf{g;}. R is a domain, and ¢ may be extended to the non-zero
elements of the quotient field K of R by 9(p/q)=¢(p)—2(q).
Then D={0}U{y=K|¢(y)>0}. It is easily seen that there is a
1-1 inclusion-preserving correspondence between proper segments in
G and proper ideals in D, and that prime segments correspond to
prime ideals, and conversely. In fact, if A is a segment of G, it is
immediate that B={Q}U¢ "(A) is an ideal of D. To see that
#(B\{0})=A is a segment of G when B is an ideal of D, we must
see that A is closed under inf. In [3], Heinzer shows that given
a,be B, there is an element ceD such that (¢)=(a,b), and ¢(c)
=inf(¢(a), ¢(b)), thus showing that A is closed under inf. We
construct several examples by finding a lattice-ordered group G with
the desired prime segment structure, and then pulling back to D.
On occasion, we will apply the language of rings to ordered groups.
For example we may speak of the radical of a segment, or of a
minimal prime divisor of a segment.
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1. Associated prime divisors of an ideal

We set down four definitions of associated prime divisor of an
ideal which are found, either as definitions or characterizations, in
[1; p. 131], [11; p. 210], [1; p. 165, Ex. 17] and [8; p. 19], respec-
tively.

(1.1) Definitions.

(B) P is an associated prime divisor of A (in the Bourbaki
sense) if P=A:x for some xER.

(Z-S) P is an associated prime divisor of A (in the sense of
Zariski-Samuel) if A:x is P-primary for some xER.

(Bw) P is an associated prime divisor of A (in the weak
Bourbaki sense) if P is a minimal prime divisor of A:x for some
xeR.

(N) P is an associated prime divisor of A (in the Nagata sense)
if P-Rs is a maximal associated prime divisor of A-R. for some
multiplicative system S which does not meet A. (P is a maximal
associated prime divisor of A if P contains A and is maximal with
respect to the property of being contained in the set {x&R|xycA
for some y& A} of zero-divisors modulo A).

The above definitions are equivalent in case R is noetherian.

In general we have

(1.2) Theorem. Let A be anideal of R, and let P be a prime
containing A. Then P satisfies (B) implies P satisfies (Z-S) im-
plies P satisfies (Bw) implies P satisfies (N).

Proof. If P=A:x, then A:x is P-primary, and if A:x is P-
primary, then P is a minimal prime divisor of A:x, hence the first
two implications. For the last, since P is a minimal prime divisor
of A:x, A-Rp:x has radical P-R,, and it follows that P-R, is con-
tained in the set of zero-divisors modulo A-R,. Also P-R, is a
maximal ideal of K», so we have the third implication.

We note that it follows from [8; p.20] and [11; p. 210] that
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definitions (Z-S), (Bw) and (N) are equivalent when the ideal A
has a finite primary representation. Example (1.5) shows that (B)
is not equivalent to the other definitions in this case.

To show that none of the implications in (1.2) can be reversed,

we list the following examples.

(1.3) Example. (N) does not imply (Bw). Let R=K[x,, x.,
-++], a polynomial ring in infinitely many indeterminates x; over the
field K. Let A=({x;x;};~;). If P is a prime divisor of A, P must
contain x; or x; for each pair (7, j) of positive integers. Moreover
each prime P,= (X, X, ***, X4_1, Xss1, --+) contains A, so the, P.(k=1,
2,--+) are the minimal prime divisors of A. The maximal ideal
M= (x4, %,, ---) is an associated prime divisor of A in the Nagata

sense, for if f& M, we can write f=>,c;x;, ¢;€R, and x,..¢< A but
i=1
fx...€ A, so f is a zero-divisor modulo A.

Now we show that A=v"A. Since VA = P,, it is sufficient

to show that (M P,C A, the opposite inclusion being obvious. Suppose
n(1) . n(m) X

we have fe R\A. We write f=a,+ > a1 21+ -+ > @, x,+ X, where
i=1 i=1

a,, a; < K and each monomial term in X has a factor of the form
x:x; with i>7, so X A. Since fe& A, a,#0 or a;;#0 for some j, 7.
if a,#0, f belongs to no P,. If a,=0, then ¢;+#0 for some 7, i,
and we see then that fe&P;. Hence f=R\A implies f& NP, or
NP,=v'ACA, and we have A=vV'A.

If x€A, then A:x=R, and M is not a minimal prime divisor
of A:x. If x&A=vV'A, then x& P, for some k But then if
yeA:x, yx€ ACP, so yP,. Therefore A:xCP,C M, and we have
that M cannot be a minimal prime divisor of A:x, so M is not an

associated prime divisor of A in the weak Bourbaki sense.

(1.4) Example. (Bw) does not imply (Z-S). Note that any
minimal prime divisor P of an ideal A=A:1 satisfies (Bw). Let P

be a redundant minimal prime divisor of an ideal A=1v"A (see §2).
If A:x is P-primary, then x&A=v'A, and P=vA4:%. But then
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P=v'A :x by 2.3, so P is an irredundant minimal prime divisor of
A by 2.1, a contradiction. Therefore P does not satisfy (Z-S).

(1.5) Example. (Z-S) does not imply (B). Let R=R, be a
rank one valuation ring with the additive group of real numbers as
value group. Let A= {z€R,|v(z)>1}, and let P={ze R,|v(z)>0}
be the (only) proper prime ideal of R,. For any x€R,\A, A: x is
P-primary, so P satisfies (Z-S). If v(x)>1, then xA and A:x
=R,#+P. If O0<<v(x)<<1l, there is an element y=P such that
v(x)+v(y)<<l. Thus ye&EA: x, so A: x+P. If v(x)=0, A: x
=A+P. Therefore P=A:x holds for no x€R,, so P does not
satisfy (B).

2. Semi-prime ideals and irredundant minimal prime divisors

Let us call a minimal prime divisor of the ideal A an MPD of
A. TFor any ideal A, v'A is the intersection of all MPD’s of A.
We say that the MPD P of A is an irredundant MPD of A if it is
irredundant in the intersection of all MPD’s of A.

(2.1) Theorem. Let A be an ideal of "the ring R and let P
be a prime ideal of R. Then P is an irredundant MPD of A iff
P=v'A :x for some x&V'A.

Proof. If P is an irredundant MPD of A, let x= (NP I\ P,
where {P,} is the set of all MPD’s of A except P. If yevA:x,
then yxvV A cCP. But x&P, so yeP, and VA:xCP. If zeP,
then zxe PN(NP)=VA, or 2V A :x. Hence P=V'A :x.

Conversely suppose that P= VA :x. P is a prime divisor of A,
and since x&V'A we have x& P, for some MPD P, of A. Then
ye P implies yx & v'A c P, implies ye P,, so PCP,, and we must
have P=P,. Thus P is an MPD of A. If Pg#P is any MPD of
A, there is an element z& P\P;. Then ze€V'A : x, or zx€V A CP,,
so x€ P;. Therefore x belongs to all MPD’s of A except P, so P
is irredundant for A.
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Theorem 2.1 shows that the irredundant MPD’s of VA are just

the associated prime divisors of v'A in the sense of Bourbaki.

(2.2) Theorem. If P is an MPD of A, P is vedundant iff
VA:P=vA4.

Proof. It is sufficient to show that VA : P=P,, where {P.}
is the set of all MPD’s of A except P. If x&\P,, then xPCV'4,
so MNP,CV'A: P. Conversely for each « there is an element y& P\P,.
Hence if x&VA:P, xyeV ACP,, so x€P,. Hence VA:PCNP,,
and we have equality.

If we examine the discussion of associated prime divisors in
[11; p. 211], we find that the associated prime divisors of an ideal
A which has a finite primary representation are just those primes P

of the form P=v'A:x for some x. This condition is close to the
condition in 2.1. In fact:

(2.3) Proposition. Suppose x&vV'A. Then vV A:x cVA :x.
If VvV A:x is prime, VA:x=vVA: x.

Proof. Let yev'A:x. Then yxcA for some integer k.
Therefore y*2*c A, or yev'A :x. Hence VA:x VA :x.

Now suppose V' A:x is prime. If yevV'A :x, we have (yx)'e4
for some integer &, so (yx)'€A:x, or yxev'A:x. But x€vVA:x
would imply x&1v A, contrary to hypothesis. Therefore yev'A:x
since V' A:x is prime, hence A : xC1 A:x, and we have equality.

Any prime ideal P of R is an irredundant MPD of some ideal

A of R, namely A=P. There are some primes P such that if P is
an MPD of an arbitrary ideal A, then P is irredundant for A.

(2.4) Theorem. Suppose the prime ideal P is the radical of
a finitely generated ideal. If P is an MPD of an ideal A, then
P is irrvedundant for A.

Proof. Let P=1v'(x:, ---, x,) be an MPD of A. Then
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A(P)=A-R:NR={reR|rs€A for some s& P} is P-primary, so
P=1v'A(P). TFor each x; there is an integer m (i) such that
x'P= A(P), and there is an element 7;&P such that rx/"eA.
Let rzfllr,., m=§nlm(i).

Let z&P. For some integer £ we have z*e(xy, -, x,), say
Z*=tx+--+tx,, LER. For each 7, r,x7€ A, so rz¥c A for suf-
ficiently large j, and z“&A:r. Then we have zevVAircvA:r
by 2.3. Hence PcV'A :7. But r& P, so ¥s€vV' A c P implies s€ P,
or VA :rcP. Therefore P=vV'A :7, so P is irredundant for 4 by
2. 1.

The examples which follow show that redundant and irredundant
MPD’s may be present in almost any combination when an ideal has

infinitely many MPD’s.

(2.5) Example. An ideal with infinitely many MPD’s, all irre-
dundant. Example 1.3 is such an example. We saw that the primes.
P, (k=1,2,---) are the MPD's of A, and since x,,e(ﬁkPi)\\Pk for

each %, each P, is irredundant.

(2.6) Example. An ideal A with infiritcly many redundant and
infinitely many irredundant MPD’s, with the property that VA is
equal to the intersection of the irredundant MPD’s of A. We obtain
our example by constructing a suitable lattice-ordered group G and
segment A of G, then using the domain and ideal corresponding to
G and A as outlined in §0.

Take G to be the group of all real-valued left-continuous step
functions (finitely many points of discontinuity) on (0, o) whose
points of discontinuity are of the form #z or n—1/k (=1,2,3,+--; k=2,
3,4,---). We call these points admissible points, and denote them
by «. G is a group under pointwise addition, and is lattice-ordered
by the relation <, where f<{g iff f(x)< g(x) for all x=(0, ).

For each x= (0, 0), P,={feG"|f(x)>0} is a prime segment.
In addition, we have the prime segment P,= {f&G"| there is an M
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such that f(x)>0 if x>M)} of functions which are eventually
positive. If « is the smallest admissible point which is greater than
or equal to x, then f(x)=f(a) for all f€G*, hence P,=P,. Thus
we have a prime segment for each admissible point, and we have P,.
We will show that there are no other prime segments in G.

First we show that each P, is maximal. Suppose M>P, is a
proper segment. Then there is an f'eM\P,, so f'(a)=0. Then
f’ is zero on an interval (&, a] where either &’ is an admissible
point or a’=0. Let >0 be the maximum value attained by f’,
and let f be defined by f(x)=0 on (&, a], f(x)=a elsewhere.
Then f>f', so feM. Let g be defined by g(x)=a on (, a],
g(x)=0 elsewhere. g=P,, so geM. Hence 0=inf(f, g)EM, so
M=G" is not a proper segment. Therefore P, is maximal.

We also see that P, is minimal, for if not there would be a
prime P<<P,. Let feP\P. Then f(a)>0, so f(x)=a>0 for
all x in some interval (a&/, a]. Define g by g(x)=0 on («, a],
g(x)=a elsewhere. Then ge&P,, so g€ P, and h=f+g& P. But
h(x)>a>0 everywhere, and he P. However for any f'P we can
find an integer # such that nh=h+h+---+h_>f’, which implies
nhe P, and hence A€ P, a contradiction.

We now show that P, is the only proper prime other than the
P,. Suppose P is a proper prime, P#P, for all «. Then P.& P
for all a, so for each a there is an fo.€ P,\ P, i.e., fo(a)>0.

(2.7) Lemma. Given any positive number N, there is an
element gyeG*'\ P with gy(x)>1 for all x=(0, N].

Proof. We may suppose that N is a positive integer. For any
integer n, 1<n<(N, we have f,€P\P, so f, is positive on an
interval (n—1/k,,n)]. We also have f,_., €€ P which is positive on
(n—1/(k,—1),n—1/k,], and so on to f,.i2€E P which is positive on
(n—1,n—1/2]. Then h,=f,+f.—1p,+ "+ +fu is not in P, and is
positive on (n—1,n]. Let g=h,+---+hy. g P, and g is positive
on (0, N]. Then a suitable multiple gy=g+--+g can be found
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which is not in P, and which satisfies gy(x)>1 on (0, N]. This:
completes the lemma.

Now each g=G is eventually constant. Suppose g€ P is even-
tually zero, say g(x)=0 for x>>N. There is an integer £ such that
kgv>g, so kgve P. But gy P, so P is not prime, a contradiction.
Therefore g P implies g is eventually positive.

If heG* is eventually positive, we may assume that A(x)>1
for x>N, some N. Then (gy+4)(x)>1 for all x. For any fE P,
there is an integer & such that A(gy+h)>f, so gy+heP. Since
gveE P, it follows that Z€ P, and P=P,.

For our example we take the segment A=\ P,. Then f€A
implies f(x)>0 for all x. Therefore ACP,. P, is an MPD of A,
and is certainly redundant for A, so we omit P, from further con-

sideration. Since A is an intersection of primes, A=v"A. We show
that P, is irredundant for A iff « is not an integer.

Let g be an admissible point which is not an integer, and let 5"
be the largest admissible point which is less than B, or /=0 if
B=1/2. Let fs be defined by fz(x) =0 on (#, 8], fa(x) =1 elsewhere.
Then fa& P, but fge P, for all a#p3. Therefore P; is irredundant
for A.

Let # be a positive integer. If fe P,, then f(x)=0 for all x
in some interval (a,#], so there is an admissible a’, a<<a’<#, such
that fe& Py. Thus we have fe (P, implies f€P,, or P,O P,

oFn @*n

and P, is redundant for A.

By the argument of the previous paragraph we see that if
fe N P., where Z*=1{1,2,3,---}, then feNP.,=vVA. It follows.

agZr

that VA = N P, ie., VA is the intersection of the irredundant

agZr
MPD’s of A.
We now pass to the domain D (see section 0) to obtain the
desired example.

(2.8) Example. An ideal with infinitely many irredundant and
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N (a positive integer) redundant MPD’s. It is only necessary to
restrict the functions used in 2.6 to the interval (0, N]. The prime
segments are just the P, for «<(N. Py takes the place of P, as
the set of all functions which are eventually positive.

(2.9) Example. An ideal with no irredundant MPD’s. Let R
be the polynomial domain K |[xi, X,, ---] in infinitely many indeter-
minates x; over the field K, and let A= (%1%s, X3X4, ***, X2ue1 Xaw, *** ).
We see immediately that the primes P= (X14,, Xs1aps ***s Xouetsdnr ***)»
where d;=0 or 1 for each 7, are the MPD’s of A.

Let f€R be written as a sum of monomial terms, no two of
which can be combined. Then no two monomial terms of f’, the
image of f in R/P, can be combined unless one term is 0, because
R/P is a polynomial ring over K in the indeterminates x; which are
not generators of P. We see then that f belongs to a particular
prime P (an MPD of A) iff each monomial term of f does.

To see that each P is redundant, it is enough to see that if a
monomial f does not belong to one of the MPD’s of A, then it does
not belong to at least two of the MPD’s. Suppose then that f is a
monomial not belonging to P,. Let us illustrate with a specific
prime, say P.=(xi, X3, X5, ***, X2.—1, **-). Now f can be written
f=axt®xi®--- 3¢, since fe& P,. But then also fe& Po= (%1, %3, -+,
Xon-t, Xonpz, Xonps, +) F P, It follows that P; is redundant for A,
and by symmetry, all MPD’s of A are redundant.

(2.10) Example. A suitable modification of 2.9 gives an ideal
with N irredundant MPD’s and infinitely many redundant MPD’s.
We merely need to take R=K|t, -**, tn, X1, X2, -] and A= ({)
)N NEDN (X1 X2, X3%4, -=-). The prime ideals (¢;) are irre-
dundant for A, and the primes of the form (Xi,4,, X344, ***) as in
2.9 are redundant.

Because of 2.4 we might conjecture that a finitely generated
ideal A would have only irredundant MPD’s. To see that this is
false we need only reduce to R/A in the above examples. Then we
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have A’=(0), where A’ is the image of A in R/A.

3. P-components of an ideal

Let A be an ideal of R. We will call a maximal associated
prime divisor of A (in the sense of Nagata, see §1) an MAPD of
A. If Pis an MPD of A, the ideal A(P)=A-R,NR={x=R|xycA
for some ye& P} is called the P-component of 4. An element x=R
which is not a zero-divisor modulo A is said to be prime to A.
In [5], Krull proves the following:

(3.1) Theorem. Let A be an ideal of the ring R. Then:

(a) Every element or ideal of R which is not prime to A is
contained in an MAPD of A.

(b) If P is a prime containing A and x=R\P, then x is
prime to A(P).

(c) Every MPD of A is contained in at least one MAPD
of A.
(@) A=NA(M), where M runs over the set of all MAPD’s
of A.

(3.2) Theorem. If {M,} is the set of all MAPD’s of A and
M,, is an irredundant MPD of A, then A(M,,) is irredundant in
the representation A= A(M,).

Proof. Since M,, is an irredundant MPD of A, there is an x
belonging to all MPD’s of A except M,,, and M,=vV A :x. For
each a+#a,, M, contains an MPD (not M,,) of A, hence we see that
x€ N M,. Note that xe& M,, implies x*e¢E A(M,,) for all £>0.

astao

Since M,, is maximal with respect to being contained in the set
of zero-divisors modulo A, and since xe& M,,, the ideal (M, x)
contains an element m-+rx(m.=M,,, ¥ R) which is prime to A.
Then m+7rx belongs to no MAPD of A, so m& M. for each a#ay,
because meM, and x€M, would imply m+rxeM,. Now
meM,, =V A:x, so ms*<A for some integer k. But m*& M, for
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all a+#a,, so x*€A(M,) for all a+#a,. Therefore we have
e N AMH)N\AM,,), and A(M,,) is irredundant in the represen-
tationmg% 3.1(d).

If M,, is a redundant MPD of A, A(M,,) may be either re-
dundant or irredundant in the representation above. For examples,
see [10; p. 29].

We need one further observation about the ideal A(P).

(3.3) Proposition. If P is any prime containing A, and if
A=V'A, then VA(P) =A(P).

Proof. Since for any ideal B and multiplicative system S not
meeting B we have V' B(S) =vB(S), it follows that A(P)
=vVAP)=VAP).

4. Irredundant primary representation

In this section we consistently use @ for a primary ideal and
P for a prime. If we use P, in context with @, we mean Py,=1" Q..
We say that the ideal A has an irredundant primary representation
A=NQ, if (a) for each ao, QaOID(aQ Q.), and (b) P, #FP,, if
a#a,. Except in Lemma 4.10, the n(;tation A=NQ. is used to
denote an irvedundant primary representation of A. With A= NQ,
we call {P.} the set of primes corresponding to this representation.

In [6] Krull proves that if R is a ring with @-condition, every
ideal of R has an irredundant primary representation. The Q-condition
is this: for every multiplicative system S of R, and for every
ideal A of R, there is an xR such that A(S)=A:x, where
A(S)={reR|rs€ A for some s€S}. When R is an arbitrary ring
Krull then raises questions 4.1 (a-d) below, to which we add 4.1
(e-g).

(4.1) Questions.

(@) If A=NQu=NQs, is {Po} ={Pa}?

(b) Suppose A=Q.. Let M be a non-void subset of {P,}
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with the property that P, cP,, and P,,=M implies P, =M. For
each such M, is Pﬂ Q. independent of the particular @, used in the
primary represent;:;”on of A?

(¢c) If A=NQ., is every ideal A(S), where S is a multipli-
cative system not meeting A, an intersection of some set of the Q,?

(d) Is there a ring R which does not have the @-condition,
but in which every ideal has an irredundant primary representation?

(e) If A=NQ, and P is a prime ideal containing A, does P
contain some P,? '

() If A=NQ., is VA=NP.?

(g8) If A=NQx=Nqs, is NP.=MNPs?

In the case of finite primary representations, the answers to these
questions are yes, except for (d). We will show that in general the
answer to (d) is yes, and the answers to the other questions are no.

Our examples, moreover, are in integrally closed integral domains.

(4.2) Proposition. Suppose A=NQ.. For each « there is
an element x such that A:x=Q«:x and A:x is P.-primary. Each
P, is an associated prime divisor of A in the (Z-S) sense, hence
also in the sense of Nagata.

Proof. Fix ay, and let x&( N Q)\Qo,. Then A:x=(NQ):x
=N (Qa:x). Butif x€Q,, Qa:x:;é), s0 A:x=@Q,,:x. Since x&Q,,,
Qo,:x is P,-primary.

We see then that if P is a prime corresponding to an irredund-

ant primary representation of A, there is an element x such that

P=vA:x.

(4.3) Theorem. Suppose A=Q.. If P is a prime ideal of
the form V' A:x, in particular if A:x is P-primary, then PCP,
for some a.

Proof. From A=Q. we have A: x=N(Qu: x)= N (Qu:x).

*EQa
Since x€ @, implies V' Q.:x = P,, we take radicals and get
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(4.4) P=vVA:x=vN (Q.:x) CNVQu:x =N Ps.

x€EQqy 2EQqy x€EQqy
Since x€Q, for some a (otherwise we would have x=A and
VA:x =R+P), P is contained in at least one P,.

Note that the containment in 4.4 becomes equality if the inter-
section is finite. Since P=ﬁl P, implies P=P, for some 7, 4.2 and
4.3 yield the well-known ’;esult that if an ideal A is a finite
irredundant intersection of primaries, the corresponding primes are
uniquely determined, and are just those primes of the form V'A:x.

Several corollaries to 4.3 show that some primes corresponding
to a particular irredundant primary representation of A must corres-
pond to every such representation. In 4.5—4.8, we suppose that
we have two representations A=NQ.=&: of A. We omit the
proofs of 4.5—4.7.

(4.5) Corollary. Any P. which is maximal in {P,} is in
{Ps}, and is maximal in {Ps}.

(4.6) Corollary. If the P, and the Ps are all MPD’s of A,
then {P,} = {Ps}.

(4.7) Corollary. If the P, are all MPD’s of A, then so are
the Ps, and {P,} = {Ps}.

(4.8) Corollary. If only finitely many P, are not MPD’s of
A, then every P is a P,.

Proof. Fix a P;. P;,=1 A:x for some x, and by 4.4 we have
PBC:(;Q P,. If x&Q, for only finitely many «, the inclusion becomes
equalit;, and P; must equal some P,. If x&@Q, for infinitely many
a, then there is an a, such that x€@,, and P,, is an MPD of A.

Moreover P;C P,,, so Ps= P, by minimality of P,,.

(4.9) Corollary. If A=NQ. and M is an MAPD of A of
the form M=V A:x, then M is a P,.

Proof. By 4.3 McCP, for some « But P, is an associated
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prime divisor of A in the sense of Nagata, and M is maximal among
the associated prime divisors of A4, so M= P,.

We insert the following lemma for later reference.

(4.10) Lemma. Suppose Q is primary and Q=NQ. (nol
necessarily an irvedundant representation). If Q.,D DQ"" then
VQ =vQ.,.

Proof. We may assume that there is more than one §.. Since
QoD N Qq, there is an x€ (N Qa)\Qq,- As in the proof of 4.2 we

aFag aFwy

have Q:x= Q(Qa:x)=an:x. But VQ:x =vQ, and vV Q. : x
=V Qu, 0 VQ =VQ:x=vVQ.: x=VQ.,.

We return for a moment to the problem of semi-prime ideals

which we considered in section 2.

(4.11) Proposition. Suppose A=vV'A =(\P., an irredundant
prime representation. Then {P,} = {irredundant MPD’s of A}.

Proof. Fix P,,. By irredundancy there is an x& () P,)\ Py,

aFag

and A:x is P,-primary. Since x&P,,, x&vV A =A. But then
P.=vVA:x=vVA:x by 2.3, and by 2.1 P,, is an irredundant
MPD of A.

No intersection of MPD’s of A can equal vV'A =A if an irre-
dundant MPD of A is missing, so we see that {P,} is the set of all
irredundant MPD’s of A.

(4.12) Theorem. If A=V A=NQ., then {Q.} = {irredundant
MPD’s of A).

Proof. By 4.11, it is sufficient to show that Q.= P, for each
a. Fix Q.. With x an element of all the primaries except Q., we
have VA:x =P, by 4.2. But x&A=v"A, so P,=vVA:x by 2.3,
and P, is an irredundant MPD of A4 by 2. 1.

Since P, is an MPD of A, A(P.) is P,primary. Moreover
ye A(P,) implies yze ACQ, for some z& P,. But then yEQ., so
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A(P)cQ.,cP,. By 3.3 A(P)=VvVA(P,) =P., so we have
P,c@Q.,cP,, or Q.= P,, and the theorem is proved.

Our next theorem and its corollary have a relation to question
4.1 (b). In a finite irredundant primary representation A:!’”WQ,-,
we have ﬂQ A(P,). Although the “component” QQPQ,- i;=1IlOt

Qi =Py

generally independent of the particular representation in the infinite

case, we see that () @, may be replaced by A(P,) to yield an irre-
Q;CP;

dundant (not primary) representation of A in the sense of the next

theorem.
(4.13) Theorem. Let A=NQ., and fix ay. Then
&) A= A(Pa.,)ﬂ( N Q)

Qa T Pag

is an irredundant representation of A in the sense that if A(P.,)
or any Q. P,, is omitted, the iniersection of the remaining ideals
is not A.

Proof. We first note that A(P,)C M @.. This follows im-

RaTPag

mediately from the fact that ACQ,C P,, implies A(P,,) CQ.. Since
AcC A(P,,), it follows that (*) is valid. Also N QD N @, sO

QaTPag Qa T Pas

A(P,)D ﬁ Q., and A(P.,) is irredundant in (¥).

QT Pao

If (*) were not irredundant, there would be some @, & P,, such

that QoD [A(Pe,) N ( ﬂPQa)]- Let ZE(ﬂQa)\Qm If z were in

a#Fal
a%ou

A(P,,), we would have ze [A(Pao)ﬂ( N Q)] CQ.., a contradiction,

Qud Pay
as*ay

so ze£ A(P,,). Let s€Q.,. Then sze A, and since z& A(P,,) we
have s P,,. But then Q. CP,,, a contradiction. Therefore (*) is
irredundant.

(4.14) Corollary. Let A=NQ.. If P, is an MPD of A, then
A has the irrvedundant primary representiation A=A(P,)N( ﬁ Q.).
Corollary 4.14 shows that if A has an irredundant p;z;;)zary
representation A= NQ., any Q, whose radical P, is an MPD of

A may be veplaced by A(P,), and the result is still an irredundant
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primary vepresentation of A. In the finite case, Q, must be A(P,),
but this is not true for infinite representations.

There is a condition which implies an affirmative answer to
4.1 (b) in case M is of the form M= {P,| P,CP,, for some a}.

(4.15) Proposition. Let A=NQ. and fix ao. If Pao;bo ﬂp Qx,
a L Pagy
then N Qu=A(P,,).
QaCPay

Proof. We have seen that A(P,,) CQ ﬂp Q.. Let ye (Q N Q\ Py, .
«CPay

ad Pay

For any z€ N Q., yz€ A. But y&P,,, so z€ A(P,,). Therefore

QaCPao

N Q.CA(P,,), and we have equality.

QaCPao
The Q-condition implies that certain primaries in a representation

A= Q. are uniquely determined by A. To prove this we need the
following lemma. This lemma is a generalization of a result of
Nakano in [9]. Nakano’s proof is easily generalized to our case with
the help of 3.1 (b).

(4.16) Lemma. If P is a prime ideal containing A, and if
there is an x such that A(P)=A:x, then x&vV A(P).

(4.17) Theorem. Suppose R has Q-condition, A= Q. is an
ideal of R, and suppose that P., is an MPD of A which is con-
tained in no other P.. Then Qn,=A(Py,).

Proof. We know that A(P.,) CQq,.

By the Q-condition we have A(P,,)=A:z for some z&V A(P.,)
=P,. If a¥a,, A(Py,)E P, as A(P,,) < P, implies P,,C P,. Thus
for any a+a, there is an element ye A(P, )\ P,. Since ye A(P,,)
=A:z, y2€ ACQ.. But y&EP,, soc z€Q,. Hence z€( N Q)\ P,
or P,, N Q.. Then by 4.15, Q. =A(P.). e

a#ay

We are now ready to give the examples which answer the
questions 4.1. We use K¢, x;, X, *+] to denote the polynomial
ring in the indeterminates f{, x,, X., --+ over the field K of charac-
teristic zero.
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(4.18) Example. This example shows that the answers to
4.1(a, ¢, e, f, g) are no.

Let R=K[t, %1, %2, -], Qo= (&3, X3, Xy, X5, --+), and Q= (¢, 21— &,
KXoy, X, *+*y Xnpt, Xows, Xaes, -++) for all E>1.

The @, are primary with radicals Po= (%2, &5, X3, ---) and P,= (¢,

— Pk, %, X3, ) for E>1. Let A= ﬂQ The P, are all different,
and for each £>0 we have xme(ﬁQ)\Qk, so A= ﬂQ is an irre-
dundant primary representation.

For k>1, let, Q.= (" xi—k, &2, X5, X4, ) Xrsz, ). @i is Pr
primary, hence so is @:=Q.NQ, for £>>1. Moreover xme(ﬂQ')\Qk
for each k>1. It can be seen that Qo—ﬂQ., and it follows that
A= ﬂQ is another irredundant primary representatlon of A.

Then A= ﬂQ ‘—ﬂQ P, corresponds to the first, but not to
the second, of these representatlons, giving a negative answer to
4.1 (a).

Consider A= 6({),{. We have P,D A, but P,D P, for i1, hence
a negative answerl_tlo 4.1 (e).

We see that teaV Q!, but tEEﬁI/ Q;, so we have a counter-
example to 4.1 (g), 'S;) also certainly’jcz) 4.1 (f). In fact it is easy
to see that VA = P,, because if f€P,, f*€A.

Turning to 4.1 (¢), we consider the representation A= DQ,, and
let S=R—P,. Then A(S)=A(P,). P, is an MPD of A, so A(FP,)
is primary for P,; but A(P,) is not the intersection of any set of
the @;, as such an intersection would be irredundant, and by 4. 10
we would have P,=P; for some i. Hence the negative answer to
4.1 (o).

Professor Ohm has suggested how the above example might be
modified to give a counterexample to 4.1 (a) in a two-dimensional
domain. In a one-dimensional domain, every proper prime ideal is

maximal, and from 4.7 we see that 4.1 (a) cannot be contradicted
in dimension one.
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First we omit the indeterminate ¢ from 4.18. With this change
we still have a counterexample to 4.1 (a). Choose K to be the field
ko(ts, ti, t5, -++), where the {, are indeterminates over the field k,.
Let P=(xi—tyx3, xi—toxi, -, 25—t x2, ---). Pc@Q, for i>0, so
Pc A. We will show that P is prime, and that there are not three
prime ideals O;, O,, O, in R such that P<<0,<<0.<<0O;<<R. Then
it follows that D=R/P is a two-dimensional domain, and reduced
modulo P 4.18 gives the counterexample to 4.1 (a) in a two-
dimensional domain.

To see that P is prime, let T={t;, t., -}, X={x1, X2, X3, ***},
and consider the ideal P'=(x}—ty43, xi—t.23, ---) in R'=k [T, X].
Let %A [X]* be the multiplicative system of non-zero elements of
k[ X], and let P”=P’-R"”, where R” is the ring of quotients Rjxr*.
If we regard R as k(X)[T], we see that the generators xi—¢,x?
of P” in R” are first-degree polynomials in 7, so P” is prime in R”.
It follows that P’ is prime in K’. P is the extension of P’ to
R=R; %, so P is prime in R.

Suppose there are prime ideals O, such that P<<0,<<0,<<0,<<R.
Let f,€O0\P, f.€0,)\0,, f;€0,\0,, f,R\0O;, and choose # so
that f,€K[x,, -, x,] =R, i=1,2,3,4. Denoting BNR by B for
any ideal B of R, we have P<<0,<0,<<O;<<R. We see that
P=(xi—t,x3, -, x2—1t,2). Let P, be the prime ideal of R generated
by the first ¢ generators of P for i=1, ---,7—3. Then (0)<<Puy<<Pr
<< Py<< P<<0,<<0,<<0,<<R, a chain of n+2 primes (including
(0)) in R. But this implies that R has dimension greater than or
equal to #—1, while we know that R has dimension #. We conclude
that D=R/P has dimersion two, and we Lave the modification of
4.18.

We turn now to 4.1 (b). We ses immediately that 4.1 (b) must
be altered because of the negative arswer to 4.1 (a). If we consider
the two representations A=6OQ,~='[?11Q§ from 4.18, the set {P,} is

a valid choice for M in the first representation, but not in the second.
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In fact the only situation in which 4.1 (b) is an unambiguous question
is when we have A= NQ.= N with {P.} = {Ps}, and in this case
the question becomes: is PQMQOL:P,QQMQB? Let us, then, strengthen
4.1 (b) to the following: Suppose A= NQ.= Mg implies {P,} = {Ps}.
Is PﬁMQa=PD”QB? The answer is still no. In 4.20 we will have
an iacfeal A”e\;\"ith the irredundant primary representation A= Q«,
with each P. an MPD of A. It follows from 4.7 that if A= Qs
{P.} = {P;}. We will show that one of the primaries @, is not equal
to A(P.,). However, we know from 4.14 that A=A(Pa0)ﬂ(aQaQa)
is another irredundant primary representation of A, and we may 10:ake
M= {P.} to find our counterexample.

We need the following proposition.

(4.19) Proposition. Suppose that A=NQ«, Ps, is an MPD
of A, and (a) Ps,D( D P, and (b) Q«d ( &J Q). Then
Qu, # A(P,).

Proof. Let x€Q.\(UQ.). If xyEA, then xyEQ« for each a.
But if a#ay, x&EQy, SO yEPa. Hence xy<= A implies y= ( O P.)CP.,
so x& A(P.,), and Qu,#A(Py). o

(4.20) Example. We find a counterexample to the strong form
of question 4.1 (b) by finding an ideal A=Q. satisfying the
hypotheses of 4.19, and with all P« MPD’s of A. By the remarks
preceding 4. 19, this gives the reguired counterexample.

This example is based on an example given by Gilmer in [2].
Let R=K[{X.,}], where @ 1uns over all rationals in the interval
(0,1), and the X, are indeterminates over the field K. For the
remainder of this example, a subscript @, b, or # will denote a rational
in (0,1).

For the primes we take P=({X.}an.) and, for each 7,
P,=({X}c,, {X.—1},00).

Our primary ideals are @ = ({X,“} .1 .), where m(a) =2 if a<{1/2,
and m(a)=1 if a>1/2, and, for each 7, Q,=({X.)"}.,, {X.—1},..),
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where n(a) =1 if a<1/2, and n(a)=2 if a>1/2. @ is P-primary,
and @, is P,primary for each 7.

Let A=QN(MNQ,). To simplify the discussion, we list several
facts about these primaries.

(1) For each 7, X,,€Q,, but X;.€Q.

(2) X.:€Q, and X,.—1& P, hence X;:(X:2—1)EQ.

(3) XiueQ, if 1/4<r. X,p—1€Q, if r<<1/2. Therefore
X:(X1:—1)EQ, for all 7.

(4) For fixed 7, X’€Q, so X (X, —1)eQ.

(5) For fixed r,, X2€Q,, if n<<r. X,,—1€Q, if r;>r.
Hence X:(X, —1)€@, for all r+7,.

(6) X:&Q,,, and X, —1€P,,, so X} (X, —1)€Q,,.

(7) If O<<a<<b<l, X:€Q, so X3(X,—1)=Q. Moreover X:=Q,
if a<r, and X,—1€Q, if r<<b. It follows that X:(X,—1)=@Q, for
all 7, so X¥(X,—1)eA.

We now show that the hypotheses of 4.19 are satisfied with
Q«,=Q, P.,=P, and that all P, are MPD’s of A.

Irredundancy. The primes P, P, are distinct. By (2), (3),
Q@DPNEK,, so @ is irredundant. By (4), (5), (6), we have
Q,,DPQN(NAK,), so each Q,, is irredundant. :

Pis Z;l MPD of 4. Suppose P'C P is a prime divisor of A.
Given a=(0,1) there is a »=(0,1) such that <. By (7),
XY X,—1)eAcCP. But X,—1€¢P’/, so X,eP’. Therefore
P=({X}m.) CP'CP, and P'=P. Therefore P is an MPD of A.

Condition (a). Proved in [2; p. 196].

Condition (b). By (1), X,,€Q\(U®,), so Q& (UK,).

To see that each P, is an MPD of A, suppose P,C P, is a prime
divisor of A. For any a<<r, X¥(X,—1)€AcCP,, but X,—1& P/,
so X,eP,. Similarly for b>r, X:(X,—1)eP,, but X:&P,, so
X,—1€P]. Then P,=({X.}.c,, {X,—1},,)CTP,CP,, so P/=P, and
P, is an MPD of A.

This completes example 4. 20.
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Just as we found a counterexample to 4.1 (b) in case the primes
corresponding to an irredundant primary representation of A are
uniquely determined by A, we may find counterexamples to 4.1 (c,

e, f) in a similar situation.

(4.21) Example. Another counterexample to 4.1 (c, e, ). Let
R=K|[x:, %2, x5, ---], and Q.= (xi, X3, x4, ==*), Qs= (&1, %2, X4, =),
v, Qo= (%, %, ***, Xs1, Xsy1, *++), -+ For each k>2, @, is primary
for Po= (%1, %o, =, Xrc1, Xaga, **)e

Let A=5Q,-. Since x,,E(Qin)\Q,, for each 2>2, and the P,
are distinct, \;72 have an irredurlldant primary répresentation of A.

Examination of the @, shows us that xix,€A for each £k>2,
and x,x,€A for 2<j<<k. Then it is easy to see that each P, is
an MPD of A, so by 4.7 {P.,}ir. is the set of primes corresponding
to any irredundant primary representation of A.

Since no power of x; belongs to all @,, x,€ VA. But xn,eP,
for all £>2, so there must be an MPD P of A such that x,&P.
Thus PDA, but P contains no P,, so 4.1 (e) fails, and in this
example P cannot correspond to any irredundant primary represen-
tation of A. Also x,€( szP”)\ VA, so VA+# k(iP;,, giving a counter-
example to 4.1 (f).

Finally we see that A(P) is primary, but cannot bz an inter-
section of any set of the @, by 4.10, so 4.1 (c¢) fails.

(4.22) Example. We give an example of an integral domain
in which every ideal has an irredundant primary representation, but
which does not have the @-condition, thus showing that the answer
t0 4.1 (d) is yes. Mott [7] has given such an example in a ring
with zero-divisors.

We obtain our domain from a lattice-ordered group by applying
Jaffard’s theorem. Let G be the additive group of real-valued left-
continuous step functions defined on (0,1] with jumps at the points
a=1—1/k k=2,3,4, ---. Our discussion of 2.6 carries over, with
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the modifications necessary because of the restricted domain of the
functions, to show that Pu={feG*|f(a)>0} and P,={feG*|f(1)
>0} are the only proper prime segments of G. Moreover P; is
redundant and the P« are irredundant in the intersection Py (M Pa).

Let D be the domain corresponding to G. The non-zero prime
ideals of D are P, and the P., which correspond to the prime seg-
ments P, and P« of G. Each P, is irredundant in any intersection
of primes in which it occurs.

Let A be any non-zero ideal of D, A#D. Any prime P of D
which contains A is both an MPD and an MAPD of A. Let {Ps)
be the set of prime divisors of A, where each 8 is either 1 or an a.
By 3.1(d), A=NA(P,), and each A(P;) is primary. For g#1,
A(P,) is irredundant in this representation by 3.2. If P, is one of
the Ps;, A(P,) may be redundant, in which case we omit it, or irre-
dundant, in which case we retain it. In either case, 4 has an irre-
dundant primary representation.

Now we wish to see that D does not have the @-condition. Let
B=P,N(NP.). B+#(0), because the corresponding intersection of
prime segments of G is non-void. We also see that B=v'B, and
P, is an MPD of B. Let S=D—P,. Then B(S)=B(P,), and also
B(P,) is P,-primary. Since B=V'B, 3.3 implies that B(P,)=P,.
If x€B, B:x=D+#B(P,). If x&B=vB, the equality B:x=P,
would imply that P, is an irredundant MPD of B by 2.1, which is
not the case. Therefore B:x#B(P,) for any x, so D does not have
@)-condition, and we have our example.

We conclude this paper by raising some questions.

(4. 23) Questions. Suppose that the ideal A has an irredundant
primary representation A= MQ..

(a) What characterizes those prime ideals P with the property
that there is an irredundant primary representation A= Qs with
P=P; for some §°?
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(b) What characterizes those primary ideals @ with the property
that there is an irredundant primary representation A= M@z with
Q=0Q; for some B ?

We know that if A= \Qs, for each § there is an element x& 4
and a primary ideal @(=@;) such that A:x=@Q:x is Psprimary.
This leads to the conjecture: If A=Q. and if P is a prime such
that A:x=@Q:x is P-primary for some x& A and some P-primary ideal
@, then there is an irredundant primary representation A= @; with
P=P; for some 3.

Looking at 4.23 (b) we might even conjecture that if A:x=Q:x
is primary, then A has representation A= Qs with @ =3 for some
5. This is false, even in a noetherian ring. To see this, suppose
we have prime ideals P;, P, in a noetherian ring, with P,<<P,.
Suppose further that B=Q;(Q: is an irredundant primary represen-
tation, with @; primary for P;. By [11; p.231] there is a P,
primary ideal @;<<Q. such that B=Q,NQ;. Let x=@Q,\Q.. Then
xQ;, and B:x=(@Q:NQ:):x=(Q::2)N(Q::x)=Q.:x. But also
B:x=(@:NQ):x=@Q::x. Now let A=Q.. Then there is an element
x& A and a primary ideal @: such that A:x=@Q;:x, but @; appears
in no irredundant primary representation of A because A has the
unique representation A=Q,.

Let us consider examples 4.18, 20, 21 to test our conjecture
concerning the characterization of corresponding primes. In 4.20 and
4.21 the corresponding primes are all MPD’s of the ideal in question,
so by 4.7 every irredundant primary representation must have the
same set of corresponding primes. In 4.18 we can see that the only
primes of the form v/ A:z with A:z primary are just Py, Py, P,, .
If P=v'A:z and z&P,, then yP implies y*z€ A for some -.
But then y*2€P,, so yP,. Hence PCP,, so P=P, since P, is
an MPD of A.

If P=v'A:z with zeP,, we can write zZ=#,Xs+ - +7,%,,
7, R. But then z€Q, for £>n, and Q,: z=R for k>>n. Therefore
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A:z=(Q:2)N(Q::2)N--M(Q.:2). This finite intersection of primary
ideals can be reduced to an irredundant intersection by omitting any
redundant ideals. Then we see by 4.10 that A:z is not primary

unless VA:7 =P, for some =0, 1, -, n. Thus our conjecture is
not contradicted.

Ore question in [6] remains unsettled. Is there a simple criterion
(C) such that a ring R, in which every ideal has an irredundant
primary representation, satisfies the @-condition iff (C) is satisfied ?
Our discussion of 4.22 shows that if R has an ideal with a redundant
MPD, then R does not satisfy the @-condition. Hence a necessary
condition for the @-condition is that every MPD of each ideal of R
be irredundant. Moreover, if this is the case, every semi-prime ideal
of R has an irredundant primary representation.
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