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1. Introduction

In a recent paper [5] we investigated the possible growth of the
maximum modulus of a holomorphic function f defined in the unit
disk D if the function tended to zero on certain sequences of Jordan
arcs {y,} in D. These sequences were distinguished by having

i) —1—<r”=min|z|—>1, n—>o00;

(1.0) 2~ ze7, -
ii) 0<lim HD(,)<lim HD(y,) <<oo;

where HD(y,) =supp(a, b), a, bEt., p(a b) denoting the hyperbolic
distance between @ and b. Such a sequence satisfying (1.0) is labeled
a PHD sequence. If

R":maxlz,, ze)'u; n:]-y 2’ B

then the closed circular sector of |z|<<R, of minimum angle a,
containing y, is denoted by E,. So E, is of the form

0<|z|<R,, ,<argz<0,+a,.

For convenience we suppose 0<<aw,<lm, all n. For a PHD sequence
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this is no restriction since necessarily «,—0, #—>oco. For any a,
a,<a<2n, n=1,2, -, put

(1.1 F2:0<|zI<R,, m—(%)gargzéﬂﬂ—(————a;m >,

n=1,2,---.

Now F!* is a circular sector of fixed angle opening « containing E,
in a symmetric fashion. For any SCD and holomorphic f let

M, S) =max(s;1elsp loglf(2)], 1).

For completeness we repeat Theorem 1 of [5] on which the present

paper depends.

Theorem A. Let f be holomorphic in D and satisfy for some
PHD sequence {r.}, some finite value w,, and some sequence {A,},
A, >0,

(1.2) () —w, |gexp(_1:_f|‘1_;l_), z€r,, all n.

If there is a value a, 0<<a<2r, for which

(1.3) tim JHS, B

n->c0 ”n

i

(where F\ is defined as in (1.1) relative to {y.}) then f=uw.

2. Behavior of f away from its zeroes

In this note we exhibit a condition under which we can replace
the PHD sequence of arcs by a sequence of points. If then (1.2)
and (1.3) both hold for this sequence we still are able to conclude
Theorem A. That is, we suppose there is sequence {z,} in D, with
limlz,,lzl, such that for some positive sequence {A4,}, and some
| Wy | <loo,
A
(A—lzD’

It is obvious that such a inequality (2. 0) is ineffective in influencing

(2' 0) |f(zn) _wﬂlgexp 7’l=1, 2, ‘.
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the growth of |f] if either f(z,) =w,, or else z, lies “near” a zero
of f—w,. In such circumstances (2.0) can be satisfied by a non-
constant f for any sequence {A,} by suitably choosing {z.}. So we
must stay away from the zeroes of f—uw, in the following sense.
First set

Z(f)={zeD|f(2)=0};
and for any subset SCD, and any e= D, let
o(a, S)=infp(a, s), sES.
Then we may define for any 0<<§<Tco,
Ki(f)={z€Dlo(z, Z(f))=0}.

To determine the sets over which we calculate the maximum
modulus we proceed as follows. Let {z,=]z./¢} be a sequence
with z,€ K;(f—w,), n=1,2, -, |w,| oo, 0<<d<Too, and lim|z,| =1.
Define a sequence of positive numbers {R,}, 0<<|z,|<<R,<<1, by
o(|z.|,R,) =6, n=1,2, ---. For any 0<<a<2m, set

G :0<|z|<R,, 6,— & Sargzgm-l»fzi, n=1,2 .
Note that the sequence of sets {G'®} depends on the sequence {z.},
and the values 6 and «. We will always view these sets in this
context.

Theorem 1. Let f be holomorphic and non-constant in D.
For some finite value w,, and some 0<<d<Coo, let {z,} be a sequence
with z,€ Ks(f—w,), all n. If

2.1) | f(z,,)—wOlgeXp<?_—TziLr), A0, n=1,2, -,
then for any choice of 0<<a<2n,
2.2) tim M G

Proof: We suppose (2.2) does not hold and so for some sub-
sequence {#,=7}, and some value 0<<a,<<2r, we have
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(2.3) tim G g,

J-»oo j

Now each of the non-Euclidean disks N(z;, &) = {z|p(z;, 2) <} con-
tains no zero of f—w,. As a result there exists a PHD sequence
{r;}, with y;CN(z;,d), all j, and on which

2.4) [ f(2) —w| <2|f(2;) —wo|, 2E€y;, all j--.

The existence of such a sequence can be verified by considering the
image N}X=f(N(z;,8)) on the Riemann surface R of f. Choose
0<<9,<<8/2 such that

| (2) —we| <21 f(2)) —wn|, 2& N (2, 7,).

Then select a zfE= N(z;, y;) for which f/(z})+#0. Let f(z})=t;e",
and define L; to be the line segment w=/{e'®s, 0<<¢t<¢;. If there are
no points we L; for which f(z2) =w, z& N(z;,0), and f'(2) =0, then
consider the maximal segment of L; which can be lifted into N;*
with one endpoint at f(z})& N*. Call this lifted piece L¥. If there
are (a finite number of) points on L; for which f has a zero derivative
at the corresponding ze N(z;,8) we can alter L; slightly to avoid
these points and still maintain that the altered L;C {|w|<t;}.
Consequently the curve y; in N(z;,6) corresponding to L} is always
a simple continuous curve starting at 2z} and extending to the
boundary of N(z;,8) for which (2.4) holds. It must extend to the
boundary otherwise f would have a zero in N(z; ). Consequently
%SHD(TJSZ& and so {y;} is the required PHD sequence.

One of the convenient inequalities in non-Euclidean geometry
(which is known under various guises, see [4, Lemma 1] for a state-
ment) says that for z& N(z;, 4), 0<<d<<1

(2.5) A= |z;Dt<1—|2|1<A— 2,3, 0<ts,<oo, all j---.

By considering (2.1), (2.4) and (2.5) we have, for zey;,

(2.6) | £ (2) —wo| <exp<_2(+5—Alié|—))'
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We will be ready to apply Theorem A as soon as we notice that
for j sufficiently large the set F*/®, defined by (1.1) relative to
our just discovered PHD sequence {r;}, is contained in G{*. Thus
(2.3) implies (1.3) while (1.2) holds because of (2.6). Hence
f=w, contrary to hypothesis and so the theorem is proved.

Remark: If M(f, |z]<<r) satisfies, for 0<<r<Cl1, an inequality
of the form

A
@7 M(S, ]z|<r)£m7, A>0, s=>0,

we can replace HM(f, G) in (2.2) by M(f, H®) where

H® :0<|zI<|zl, 0,— 5 <argz<f,+ 5, n=1,2

Simply observe that (2.5) and the fact that o(|z.|, R,) =48, n=1,2,
.-+, guarantees that the maximum modulus on G\® has essentially
the same order estimate as on H®.

By way of application we have

Corollary 1. If f is a non-constant, novmal, holomorphic
Sfunction in D then for any finite value w,, and any 0<ld<Zoco,

(2.8) (1—121)* log|f(2) —we| =C;>—oo0, zEKs(f—wn);
while if [ is bounded (2.8) can be improved to

(1—1zDloglf(2) —we | =>Cg¢>—o0, 2z K:;(f—w,).
Here Cs and C¢ also depend on f and w,.

Proof: If f is a normal holomorphic function in D, Hayman
showed [2, p.204] that

(2.9 S, lz|<r)_<_%.

For some 0<§<Too, if there was a sequence {z.}, z,€ K;(f—w),
such that
(2.10) (1—=]z.0)*loglf(z,) —wy| =T,>—o0, n—oo,

then
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(2.11) 1f<z,,)—w0|=exp[(_i)( -1, )]

1— |z, /\1—]z.]
— T, % (2.9), (2.10) and (2.11) imply for any

So that, with A,=—-—"—
(1—1z]

choice of 0<<a<2=n

lim

#n-»00

‘—%(f) Hn(a)) — 0
.An ’

which, according to Theorem 1 and the remarks following, is impos-
sible.

The proof in the case f is bounded is equally obvious. _
The result for bounded f is reasonably sharp. Form the product
f of the Blaschke product B(z {a.}), a,=1— 1

=
zi—} . If {x,} is a sequence in K;(f) with 0<lx,<<x,,,<<1,

x,—1, n—oo, we have

, n=1,2,.--, and

h(z) =exp

A—x)loglf(x)|<—1, all n

3. Interpolating sequences

If it happens that the set of zeroes of a Blaschke product
B(z,{a,}) in D form an interpolating sequence then Corollary 1 is
not sharp. Cargo [1, Theorem 3.1] in a limited result, and Hoffman
[3, Lemma 4.2] in more precise form showed that in such circum-
stances

(3.0) |B(z, {a.})|=Cs>0, z€Ks(B).

We recall that {z,} is an interpolating sequence in D if for any
bounded sequence of complex numbers w= {w,}, there exists a bounded
holomorphic function f, in D with f,(z,)=w,, all n. For a most
penetrating analysis of the behavior of a Blaschke product away from
its zeroes again see [3, p.80ff.]. If we take w,#0, w,=0, n=2, 3,

.-+, then an interpolating sequence must satisfy

oo

(3.1) 1(1— | 2,] ) <loo.

n=
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Corollary 1 can be rephrased with an interpolating sequence orienta-
tion to show that (3.1) is still true for a sequence satisfying an

(apparently) weaker interpolation problem.

Corollary 2. Let {z.} be a sequence in D such that for any
sequence of non-zero complex numbers w= {w.}, with w,—0, n—>oo,
there is a bounded holomorphic function f, in D such that

3.2) foz)=w,, n=12 -

If w={w,} is chosen so that

(3.3) }iril(l—lznl)loglwnl=—°°,

then the corresponding f. has a sequence of zeroes {€.} satisfying
(3. 4) lim 0(&., 2,) =0.

Consequently

(3.5) (1= |2, <o,

Proof: According to Corollary 1 if z,€ K5(f,), some §>0, all
7, it cannot happen that both (3.2) and (3.3) hold. Nor, in fact,
can (3.2) and (3.3) hold for any subsequence {z,}, satisfying
2, K;s(f,) so (3.4) is verified. Since ﬁ(l— |&.|)<Coo, a glance at
(2.5) justifies our claim in (3.5). "~
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