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Introduction

The purpose of the  present note is to introduce the theta function on open
Riemann surfaces using some fundamental Abelian differentials with finite norm,
especially reproducing kernels for analytic differentials (cf. Ahlfors-Sario [1]) and
square integrable normal differentials (cf. Kusunoki [4]). In § 1 we shall construct
a factor of automorphy for the Fuchsian group acting on the universal covering
surface of an open Riemann surface W using the  reproducing kernel for 1 0 (W),
the space of all square integrable analytic differentials o n  W . I f  we replace r a (W)
by I' a s e (W), then we have a factor of automorphy associated with I' a s e (W), where
T0 (W) is the subspace of r o (W) consisting of all semi-exact e lem ents. In § 2 we
shall define the theta function induced by a factor of automorphy above and some
associated functions on W which correspond to  the alternating Riemann form and
the Hermitian Riemann form for theta functions of finitely many variables. We
shall show in § 3 that an analogue of the Riemann's theta function can be obtained
from a theta function defined in § 2 by multiplying an exponential of a certain ana-
lytic double integral provided that a surface W  belongs to a  restricted class of
Riemann surfaces. In § 4 we shall give a condition that a theta function on a para-
bolic open Riemann surface of positive finite genus should be continued analytically
to the compact prolongation of the surface. Finally we shall show also that our
theta function defined in § 2 on a plane domain bounded by a finite number of analytic
Jordan curves is obtained from the Riemann's theta series associated with the double
of that domain.

§1 . Factors of automorphy associated with reproducing kernels

Let W be an open Riemann surface, be a local parameter of a given point of W
and z  be a local parameter of a general point of W . The following are known (cf.
[1], V. 18, 19, 20):
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There is a  unique differential ii)0 (z , C)=k 0 (z, C)dz in  r a  (=F a (W )) w ith the
following properties:

(1.1) ko(z, k0(C, z),

(1.2) (a, tfro ) = 2na(C) for e a c h  a(z )=a(z )d z  in r a .

Let C be a finite cycle and write as

tP(C)= k(z, C)dz ko(z, ()dOdz,

then

(1.3) (a, t/i(C))= 27r 1 a..

If we set T(C)= —  1m 0(C), then

(1.4) (T(C,), *T(C2 ))=C 1 x C2

and

(1.5) (co, *T(C))=S c  a) for each co,

where ca is a square integrable harmonic differential on W  k o (z , 0 is said to be the
reproducing kernel for analytic differentials (cf. [1], p. 302).

Next we recall the contents of ([1], V. 21), that is to say, the results just men-
tioned are  slightly modified for r 5 , (=T a „(W )) : There is a  un ique differential

) =k (z , C)dz  in e a s e  with the following properties:

(1.1') k (z , C )=4( ( , z ),

(1.2') (a, 0)=27ra(C) for e a c h  a(z )= a(z )dz  in

Let C be a finite cycle and write as

i//(C)= k '(z , C)dz =(1 k az , C)dOdz ,

then

(1.3') (a, if/(C))=27r 1
c  

a.

If we set T ' =  - -

I  
1m c(c), then7r

(1.4') (Two, *T'(c 2 )) = C1 X C2

and

(1.5') (a), *-r'(C))= c  co for e a c h  co,
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where a) is a square integrable harmonic differential on W such that both a) and *a)
are semi-exact.

From now on we assume tha t the universal covering surface W o f W is con-
formally equivalent to the unit disc D={z Ilzl<1 }. We may identify W with D.
We denote by n: W-04/ the projection and by D(n) the group of covering trans-
form ations. Then D(7r) i s  a  Fuchsian group and DID(n)= W . W e denote by
n,(W, po )  the fundamental group o f W with the base point Po and by H i ( W) the
1-dimensional homology group of W . There is a sequence of homomorphisms

D(n) 7r1(W, pu )-L`--4 H,(W),

where ai is  an isomorphism and a, is an epimorphism. We write as

X = ctz'ai D(n) /1.

From now on we denote by z o r  points and their coordinates) of Wand by p = n(z)
or q=n(C) those of W . We write as

ko (z, Odzc/C=n* x n*(k o (p, q)dpd4)=k o (n(z), n())dir(z)dn(C),

where ko (p, q) is the reproducing kernel for analytic differentials on W. Let zo  be
a fixed point on W such that 7r(z0 ) =p 0 and associate with each Ce D(7r) a path <0>
from zo  to  Czo . Then

(z, 0)dz ko(z, k,,(p, q)dg)dp)
<c> (<C>)

does not depend on the choice of <e>. Tt is clear that

(1.6) k(z, 0 1 0 2 )dz=k(z, C,)dz + k(z, 0 2 )dz.

For each e e D(n) we write as

o- (z, 0)=1z k(ry, 0)dri a n d  a(0 )= 4
1
7,c 1111/ (C)I12 Illt(C)11 2 ,

where C is x(e) and represented by the path n(<C>).1)

Lem m a. There is a function p: D(n)-->{-- 1, 1} such that

P(C1e2)=1)(c1)p( 0 2 )e x P  i (X (e  1 )  X  AC 2 )) ]  •

Proof. 2 ) Let E= {e l , e2 ,...} be a basis of the free Abelian group H i ( W) and
p': E—> {— 1, 1} be any mapping. Then p': H i ( W)—* {— 1, 1} defined as

E  nj e.)= H j)".1f l e x p  [7ri(ei  x ek)]"i n k.1=1j 1 1 5 j < k 5 p

satisfies p' (C +C2)= P'(COP'(C2)exPEni(Ci x C A  for any C1 and C2 in I I l ( W ) .

So

1)x(e') is often abbreviated to C for e'e Mr).
2) The author thanks Mr. Ishitoya who told him the simple proof.
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(1.7)

is a required function.

Theorem 1. If  we set

(1.8)

then satisf ies

Osamu Watanabe

p ( ) = p '(x(e))

z)=p(e)exp (o-(z, -0+ a ( ) ) ,

z )=4, 02zg(02, z )= (0- 2, 0,zg(0,, z).

In  other w ords is an  analytic factor of  autotnorphy f o r the action of  the group
D(it).

Pro o f . We find

o(z, C 1 C2 ) =o-(z, , ) + o -(z , e 2 )= (7(Z, 02 CI)

from (1.6). Now

ezz
0-(z, 0 ,)= k(ri, C i )dn= k(ti,

zo e2z0
= ce21407, c o d l

I  Jzo ± ) zo

== ko(p, Ocitidp+a(ez z , el)
C 2  CI

1 
— — 2i r  (0(C1), 0(C2))+ 0*(e2z, 01)

=a(Oz z , e t)  21
7r Re (0(C1) , IP(C2))+ 7ri(Ci x C2).

Since

or(0  le 2) = a(C a(e 2) + 2
1
7r Re ((C 1), (C2)) ,

we see

(1.9) o-(z , 0 1 e 2 )=o-(6 2 z, c- ,)+a(z, C 2 )+ c(0 1 ) +a(C 2 )— o-(0 1 0 2 ) + 7ri(C x C2 ).

Substituting (1.9) in we have the first equality of (1.8). The second one is ob-
tained similarly, q. e. d.

Remark. W e can show more generally that there is a  function D(70-4C*
= C — {0} such that 2(e)exp (a(z , C)) is  a  fac to r o f automorphy. Indeed since

f ( ,=  e X P  [ ( 0 ( C 1 ) ,  0(C2))/2 7 E] s a t i s f ie s fce 1c2, 1, 2 )--f(e 1, c2 c3 ).
f(e 2 , C3), f  is an element of Z 2(D(7r), C*), the group of 2-cocycles of D(7r) with co-
efficients in  C* o n  which D(7r) acts trivially. S in c e ,  W being an open Riemann
surface, D(7r) is a free group (cf. [1], I. 44A), the second cohomology group H2(D(7r),
C*) vanishes (cf. [6], p. 245, Theorem 15). Hence we have a function A: 1)(n)--C*
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such that /1(010 2) —40 1)A(e2)f (0,, 0 2 ). Then A(e)exp ( a ( z ,  e)) is shown to be a
factor of automorphy for the action of D(n) in the same way as the proof of Theorem
I. T h eo rem  1 asserts that we can take p(C)exp a(C) as

We note that if we use k(p, g)dpdg instead of ko (p, g)dpdcl we have another
factor of automorphy :

Theorem 1'. If we set

z
C)dz=n*(( k(p, g)d4)dp), a'(z, = k'(n, C)dn

ic(<C>) zo

and

cr'(0 )= 74.1t r IW(C)112 ,

t h e n  '(C, z)=p(e)exp (o - ' ( z ,  e)+ o i ( e ) )  is  an  analy tic f actor o f  automorphy f or
the action of the group D(n).

We call 4e, z ) a factor of automorphy associated with Fa a n d  '(e, z) that
associated with r a s e .

§ 2. Theta functions associated with the reproducing kernels

Let W be an open Riemann surface whose universal covering surface W is con-
formally equivalent to the unit disc. W e shall show that a  relatively automorphic
function f o r  o r  is capable of being called a theta function on a Riemann surface.

Definition. A n analytic relatively automorphic function for a factor of auto-
morphy (resp. is called a theta function associated with the reproducing kernel
for F. (resp. Ea s e).

It should be noted that a  theta function defined above depends on the choice
of the function p: D(7r)—  { —  1, 1}.

In the rest of the present section we deal with theta functions for Ta , but the
similar results are also true for those for Fa s e .

At first we note that there exists certainly a theta function which does not vanish
identically. In fact induces an analytic line bundle [ ]  over W (cf. [2], § 3) and it
is trivial since W is an open Riemann surface (cf. [8], § I, Theorem 1). Therefore
[ ]  has a non-trivial analytic cross section which induces a non-trivial analytic
relatively automorphic function for We set

L (z ,  C )= 2
1
7ri a ( z ,  e ) ,  J ( e ) = 2

1
7ri a(C).

Furthermore we set

L (z , w) — 2
1
n i  S z

o chi r o rco01, OdC,
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E(z , w )= L (z , w )- L (w , ,)-  1m O z .  dti z o ko(11, CVO ,

E(z , A )= I mtr chl Az° ko(
,

1, C)dC). 0z o
and

Finally we set

E(A , 13)= -71-r Im ( Y z °  dri ° rco (n, OdC).
zo

H(z, w)= I d ko(n, C)dC =2i L(z, w).
zo zo

Proposition. (i) E(z , w ) is alternating an d  H(z , w ) is  herm itian in  (z,
(ii) E(A , I-3) is an in teger. (iii) For A ED(n) we have

H (Â z , A w )=H (z , w )+ --cr(z , A )+ o -(w , A )+

In particular,

(2.1) H(Â z , A z )= H(z , z )+ --7r
2  Re o- (z , :4) + -2-7r a(A ).

P ro o f .  Since E(;21, 13)=x(A) x z(f3'), it is an integer. Next

H(Az, .= Az 5Aw FAw) CCA  ) d, C C- Zo Z 0
.1,r j f Z (A l .1 W

+ '.."1 kO(n, ) ( 1 d Cli Zo + i Z 1 zo w

= I z  dri 1 w k o( 11, C)dC + .k  w d C  ' l z  r‘007, ()Chl7T zo zo zo z

± j - • z d î ) d C + I d i /  '1' w  k o (n, C)dr,n rr . wzo w

=11(z , w )+ .71.co- (w, A) + - I-- o-(z , A )+ -2-o -(A).
7i 7r

Other assertions are evident. q.e.d.

E(z , w ) (resp. H(z , w )) corresponds to  the alternating Riemann form  (resp.
the Hermitian Riemann form) in the linear theory of theta functions on finite dimen-
sional complex vector spaces (cf. Lang [5]).

Corollary. Fo r a theta function 0(z) associated with the reproducing kernel
f or Ta we set

0(z)= 0(z) exp  - 1
2± H (z , z )].

Then
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(2.2) 4)(iiz)= (b(z)p(A) exp [1 1m a(z, = 49(z)p(Â) exp [n iE(z, Â )].

In  particular, 1(1)(z)1 is  a  single valued continuous function o n  W . I f  14)(z)1 is
bounded, then there is a positive constant M such that

(2.3) IOW '  M exp H(z , z )].2

 

§ 3. R iem ann's theta functions on open Riemann surfaces

Let W be an open Riemann surface of genus g ( 0 < g  co) and E=
be a canonical homology basis (mod. dividing cycles) associated with some canonical
exhaustion o f  W . We denote by 0,3X ,1 the normalized semi-exact canonical
differentials of the first kind, i.e. O A , and (h i  are holomorphic semi-exact canonical
differentials on W such that

Re = —Re = 6; R e .= Re S O B .= 0 .
B i Ai Ai Bi

A s for these differentials, see [3] and [ 4 ] .  T hen  — t4 A J
(resp. —nicko i )  is  the

period reproducing differential for the cycle A (resp. Bi ) for r o s e  (cf. [4]): 3)

(OE, — i0A) = 2 n 1 OE, —  4' B j ) = 2 7rAia ,

for each a E r a s e . Thus by the uniqueness of the period reproducer

(3.1) ii/(A;) = — (LI) = — Tr i0 B ,.

{0,01= 1 are  linearly independent over the complex number field. I f  we denote by
r a s e ( A) the  closed subspace of r o s e  spanned by { 0,05 = 1 , then there exist uniquely
normal differentials {wi }gi  =, in r a s e (A) such that

(3.2)
Ak

•=6 •j k j , k , j=1, g, ( g  co),

(3.3) coi =  Ek=i
j= 1 , g, (g<co)

with pure imaginary numbers ock i .
We write some differentials o n  W and their lifts to  rf by the same letters re-

placing variable p of W by z  of W  For example coi (p) is a  differentials on  W and
a); (z) is its lift to  W  We take a path from po  to  a point of A i  and make A. an ele-
ment of n i (W, p o ). The corresponding element in D(n) is denoted by A i . Similarly
we have fli  in D(n) for Bp

Definition. An analytic factor of autom orphy for the action of D(n) is called
a Riemann's theta factor of automorphy if, for j= 1, 2,...,

3) Since we use the definitions of the intersection number and the inner product of [1], our formulas
are modified ones of those of [4].
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(i) !(Â i , z )=1,

(ii) z)=exp [tt u.) + T 0 1 ,
zo

w here  T  jk  = 0.) »  A n  analytic relatively autom orphic  function 9 ( z )  for a
B k

Riemann's theta factor of automorphy is called a Riemann's theta function.

Since W is an open Riemann surface, a n d  define equivalent line bundles
over W . Hence these are analytically equivalent factors of autom orphy (cf. [2],
§ 3). Thus Riemann's theta functions are derived from theta functions defined in
§ 2. We shall show that, under a suitable condition on W (and E), this is done using
Abelian integral theory on open Riemann surfaces.

We denote by {ai (p)}gi = ,  a complete orthonormal system of F a „(A ) obtained
from {ickA i /2} 9

i = 1  by  the Schmidt's orthogonalization m ethod . a1 (p) can be written
as

c(.; = I, 2,• • •

with pure imaginary numbers si ,  (cf. [4]).

Proposition 3 .1 .  q(p, p ')dpdp' =i E c (p)Œ; (p ')  converges in  th e  norm  in  p'
t=i

(resp. p') for f ixed p' (resp. p), and converges in (p , p ')unif orm ly  on each compact
set in W x W.

P ro o f . We set o (p)dp=cx j (p). Since

1(P, P')0 = 27r 2 ';(13 ')Œi(P)

is the reproducing kernel for 1-
 a„(A ), E la'i (p)1 2 converges t o  t(p', p')/27r which

is continuous in p'. Thus by a theorem of Dini ' i ( p ) 1 2  converges uniformly
on each compact coordinate neighborhood. By the Schwarz's inequality we see
E « .;(p )o (p ')  converges uniformly on each compact set K x K ' c W x  W, where K
t=i
and K ' are compact coordinate neighborhoods o f W . Therefore q(p, p')dpdp'
converges uniformly on each compact set in Wx W . Since for any n and m n)

InI f l

lj(P ' )C4P)11;= laj(P')12.,
n i= n

q(p, p')dpdp' converges in the norm in p for fixed p', where 11 ,  p stands for the norm
of differentials in p. By the symmetry of q(p, p')dpdp' with respect to  p  and p',
it converges in the norm in p ' for fixed p. q. e. d.

We set

‘
D

 A j ( Z )
= z

 0 . 4 j
,  C

k l 3 i ( Z )
=

H i  and  Q • = •j .P 1 ,  2,....
zo zo zo
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Furthermore we set

Q(z, w)=1 :  d riç ' w  q(q , )ck q(ti, Odri.
zo izo zo .0

We denote by T u e  th e  subspace of Fu ,  consisting of all exact elements and b y  PA

the orthogonal complement of Fa u e (A) in Fuse .

Proposition 3.2. We set

(0 = 2i
n i  ( 110'(C)112)= 2iri a'1e)

f o r 0 eD (n ). Then

(3.4) Q(Apz, w )+  ( 4)A (z )+ 4)A„(0) - 2 .P(Ap) ,

p= 1, 2,.... If  T9i =r,,,, then

(3.5) Q(kz, ko= Q(z, w)+ (S2p(z)+ Q p(w))

1
++,—( (z)+ 1)Bp(w))+(tpp - 2T(f3p)), p =1, 2,....

(3.6) Q(ez , ew )=Q(z , w ) for 0 corresponding to a dividing cycle C.

Proof.

Q(Â.p z, A p w)=Q(z, w)

z /1pw w 5;1,z ApZ
dri q(ri, )d(+ dY g(q, dti q(n,

zo w .0 z

Since (ce, 0,,,) is pure imaginary,

g
q(q, )olC)dri=i oci)oci(q)=i E  2  (a »  —rciO A doci (7)

J=1 Ap i = 1

g g= JE 4) A P )(x t E 
1

 (O A , oti )c9(n) =Tr OA,(n).J = 1 i=

Therefore

.)zo
q )Ct7C =1  A p (Z ).

Similarly

w A zp

tiC t q07, C)dn= I
 A

 P

(W)2 Zo z

and

( A z S 'A p w
dti q(q,C)(1C=-5-5 A p (I) A in II 0 ( A ) 2 ) = — (Âp) •
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Therefore we have (3.4).

z apw

Pz
Q (k z , k w )= Q (z , w )+ d q(n, C)cg+ c1C q(ti, C)dn

f izo w zo z
Bpz Dpw

Chl q (ti, 0 4 .

As before

Ot  q ( / 'w "  OBp)cxj0).

We shall show that (2cop + ( h p , czi ) = —(a,, (hp ). To this end we must show

(wp , cti ) =  —Re ((xi , O n p ).

On the one hand

t t
((or  c0 = ((-0p, E sik0A,,)= — E S jk(a) O A k )  =  2 i E S jk(5

k=1 k=1 k=1

On the other hand

1—Re ((x»  0.8„)= — Re( S j 4 B )Rk6 AO = e X,1 -g rj k ,  Bp>

= —Re E 4)Bo)--- — 2i E s i k  Re 1  013,
k=1 A k k=1 Ak

=2i E s jk 5kp
k=1

Since T,?, = F o e  by assumption, ( h p  belongs t o r a s e .
(A) (cf. [4]) and

2cop + O B  =  E (2(0,,+ (h p , ai)(1j.
p = 1

Therefore

dri t 4 P " ' q(n, )(1C=i(2,(2
P  (z)+ OB(z))•

zo w

Similarly

t pz
q(11, Odri= -1 (20 (w)+0 B p (w))Pzo

and

11 P z  dri PW q(n, "C)dC= (2cop+OBp)=-c„„+ (i) Bp
=  t i v  2J'(k).

z z 2  Bp—  Bp

Thus we have obtained (3.5). (3.6) is proved similarly using the fact that all the cx;

are semi-exact. q. e. d.

We shall use the same notations as in  §2 just adding the prime to represent
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corresponding notions for a theta function associated with the  reproducing kernel
for Ta „, for example we write as

f z - 1  1 z  r:
n i z o  d n  z o  k 0 0 1 ,  )d =‘o CIC = ? n i z o  KOkn,

r z o
= 2 

Note that

(3.7) 4,4(z)= —2dL'(z, A.1 ), ch i = —2dL'(z, f3 J ).

Let S '= 3 u  {Ci , j= 1, 2,...} be a basis of H i (W), where all the C . are dividing
cycles. L et p : 1} be a  function such that p (S )= { l} .  Using (1.7) we
obtain a function po : D(n)--*{ —  1, 1} from p'0 (cf. the proof of Lemma in § 1 ) .  Then
there corresponds a factor of au tom orphy  for ra s e :

= P 0(C) exP (a'(z , 0 )+ 0J(0)) •

Theorem 2. L e t  h(z )=ex p[niQ(z , z )] a n d  4 0 , z )='(0 , z )h (0 z )lh (z ) . I f
I l = r a e , then 40', z ) is a Riemann's theta factor of  automorphy for the action of
D(it). If  p'0  is such as p(27)={ 1} , then '40, z )= I f o r 0  corresponding to a divid-
ing cycle C.

Pro o f . The first assertion is a  consequence of Proposition 3.2 and (3.7). For
example

afjp, z) = P 0(f exp [27E i(L'(z, Bi,)+ f(ljp))]

exp En i(20 p (z ) + B (z)+ p))]

=exp Pri(2S2p (z)+T p p )].

For the second assertion, note that for any Â and 13 e D(n)

z )='(1 .115i, z), h(A I3z)=h(13 A z).

The former is proved as Theorem 1 and the latter is verified by direct calculation.
Therefore !(;113, z)= - (B;4", z), from which we see z )=1 for each element X  in
the commutator subgroup [D(n), D(n)] of D (n). Now let 0  be such that x(C)=C
is a dividing cy c le . Then there are X  in [D(n), D(n)] and integers n 1 ,..., ni, such that
C = X071.• • CÇ,P, where Ci  is  an element o f  D(n) with x ( 1)= C .  By construction
p0 (0!).1) =1 and cr'(z, 01.0= 0-(c? )= O. H e n c e

Z(C, z)= 4x, z)

= n ae,u, p q. e. d.

§ 4. Theta functions on open Riemann surfaces of finite genus

Proposition. L et W be an open R iem ann surface of  positive f inite genus g.
Then T a=T a e  holds for W if  and only  if  W belongs to the class OKD.
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P ro o f . Let to be a  real square integrable exact harmonic differential such that
*co is semi-exact. 0 =co+ i*co is in T . . .  If 17, = Tae' then

o =i yi cui +d f ,  y j = *co  a n d  d f e  r a e .
;=1 A,

Therefore

iflk 0=i E
Bk

Y jTjk•
j = 1

Hence (y „..., y g )(1m  i f ) = 0. Since (1m T i i )  is nonsingular, yi  = 0 for all j. There-
fore 0= df  and *co is e x a c t . Hence WE OKD by a theorem of Rodin [7 ] .  Conversely
if WE OKD, then each 0 e T (A) is continued analytically to the compact prolongation W
o f  W . Hence 4'=0, i.e. r a e c F1={ 0} .

Theorem 3 .  L et W  be a  parabolic open R iem ann surface of  positive f inite
genus g . L e t 0 (z )  be a theta function associated w ith the reproducing kernel for
rase ( = Fa) on 1-,V such that 0(0z )=0(z ) for C-  corresponding to a div iding cycle C.
Then 0(z) as a multiplicative function on W  is continued analy tically  to the com-
pact prolongation W  of W  if and only  if 0(z) satisfies (2.3).

P ro o f . Since WE OG, l ' a „=  F a . If 0(z) is continued to W, then 101 in Corollary
in § 2 is continuous o n  W and bounded. Conversely if (2.3) is satisfied, then each
branch of 0(z) on a planar neighborhood of W— Wis a single valued bounded analytic
function. Therefore 0(z) is continued analytically to W.

C orollary. Let W  and 0(z) be those in  Theorem 3. Then a R iem ann's theta
function &(z)=0(z)h(z) is continued analy tically  to W  if  and only  if  5(z) satisf ies
the following inequality

19(0 M exp [ — T r ' k (Ini Qi (z))(Im g2k(z))74 )

f or some positive constant M.

P ro o f . We must show that

(4.1) H(z, z )+ Re (ic iQ( z, z)) = (lm ry' j k (Im 52i (z))(Im g2k (z)).2 j, k=1

Since

ot.,=  E  S jk0A k ,
k=1

g ,

cok= E (cok, c)Œ= 2i E si ka;
J = 1 j = k

and

4) Imr =the imaginary part of the period matrix r =(r i j ).
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q(p, p')dpdp' = i oci (p )ati(p )=i . A(PA,(1))04(P')

_  1  g
— .1,(0 .2 idc=1 " (P)wk(P')

where / i k 4 1 „ , .  Similarly we have
A ,

kap, 10dPd15 ' = E  /f l p i (p)cok(P')
j,k = 1

and hence

H(z , z )= —  i E  i .,,,Q; (z)o k(z) .
j,k = 1

Thus

2  
H(z

'  
z )+ Re (niQ(z, z))=7r (1m li k )(1m Qi (z))(Im  14(z)).

j,k = 1

Since lm /i k = —(Im r) - l i k  by (3.3), we have (4.1). q. e. d.

Finally we remark on theta functions on planar Riemann surfaces. If a surface
is planar, then it is shown in the same way as the proof of Theorem 1 that

(4.2) z) = exp (a(z , 0)+0 -(C))

is a factor of automorphy for Fa  for the action of D(n) since C, x C 2 = 0  for all cycles
C, and C 2 .  This means that we can take p to be such as p(D(n))= {1} for a planar
surface . L et W be a  bounded plane domain whose boundary consists o f a  finite
number of analytic Jordan curves B k , k =0,..., g  1 ) .  Bo i s  the outer boundary
and all the curves are oriented positively with respect to  W . L et Q k  be the harmonic
measure of Bk  a n d  co, be (052klez )dz , k =1,..., g .  If  we denote by F ' the  closed
subspace of Fa ( W) spanned by {

a (W )= F'.

From this we have

kap, q)dpdg =K (p, g)dpd4+K '(p, q)dpd -a,

where k' (resp. k) is the reproducing kernel of F' (resp. Fa e ). If we set

P jk  
=

1 Wk
=

 )  *
C
1
f
2

k
=

 iF
u
jk ,

Di B i

then (P i k ) is symmetric and (P i k ) is positive definite. Explicitly

K'(p, q)dpda =27r Ea i k coi (p)oh(q),

where (cci k ) is the inverse matrix of ( P k ) .  M oreover

c

k o (p, =
c

K'(p, q)di1

0 4}/1=1, then there is an orthogonal decomposition
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for all closed curves C in  W . Therefore a theta function defined as a relatively auto-
morphic function for in  (4 .2 )  satisfies

(4.3) 0(Bkz)= 0(z) exp [TcO : 0 ( - 2 0 4 )+( — Pkk))1.

A multiplicative analytic function satisfying (4.3) is given by

•

0(z )= E  expL— tri( m(— P)nt + 2' m(— a)))1,
meZ 9 z o

where (— P)=(—  P i k )  and — )  T h i s  is  the original
z 0z  0

Riemann 's theta function on the double W o f W.
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