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Introduction

The purpose of the present note is to introduce the theta function on open
Riemann surfaces using some fundamental Abelian differentials with finite norm,
especially reproducing kernels for analytic differentials (cf. Ahlfors-Sario [1]) and
square integrable normal differentials (cf. Kusunoki [4]). In §1 we shall construct
a factor of automorphy for the Fuchsian group acting on the universal covering
surface of an open Riemann surface W using the reproducing kernel for I' (W),
the space of all square integrable analytic differentials on W. If we replace I' (W)
by I', (W), then we have a factor of automorphy associated with I' (W), where
I,.(W) is the subspace of I' (W) consisting of all semi-exact elements. In §2 we
shall define the theta function induced by a factor of automorphy above and some
associated functions on W which correspond to the alternating Riemann form and
the Hermitian Riemann form for theta functions of finitely many variables. We
shall show in § 3 that an analogue of the Riemann’s theta function can be obtained
from a theta function defined in § 2 by multiplying an exponential of a certain ana-
lytic double integral provided that a surface W belongs to a restricted class of
Riemann surfaces. In §4 we shall give a condition that a theta function on a para-
bolic open Riemann surface of positive finite genus should be continued analytically
to the compact prolongation of the surface. Finally we shall show also that our
theta function defined in § 2 on a plane domain bounded by a finite number of analytic
Jordan curves is obtained from the Riemann’s theta series associated with the double
of that domain.

§1. Factors of automorphy associated with reproducing kernels

Let Wbe an open Riemann surface, { be a local parameter of a given point of W
and z be a local parameter of a general point of W. The following are known (cf.
[1], V. 18, 19, 20):
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There is a unique differential Y(z, {)=ko(z, )dz in I', (=T, (W)) with the
following properties:

(1.1) ko(z, O)=ko(L, 2),
(1.2) (a, Yo)=2ma({) foreach oa(z)=a(z)dz in T

a*

Let C be a finite cycle and write as

W(C)=k(z, C)dz =(SC ko2, g)d:)dz,
then

(1.3) (@, Y(C)) =27 SC 0.

If we set ©(C)= — % Im y(C), then

(1.4) (1(Cy), *1(C)=C, xC,

and

(1.5) (o, *r(C))=S o foreach w,
C

where w is a square integrable harmonic differential on W. ky(z, {) is said to be the
reproducing kernel for analytic differentials (cf. [1], p. 302).

Next we recall the contents of ([1], V. 21), that is to say, the results just men-
tioned are slightly modified for I, (=T,(W)): There is a unique differential
Yoz, O)=ki(z, {)dz in T, with the following properties:

(1.1) ko(z, O =ko(C, 2),
(1.2") (o, Yo)=2ma({) foreach oz)=a(z)dz in I,,.
Let C be a finite cycle and write as
V(O =K1z, Odz=({_kitz, DAL )dz.
then

(1.3) (o V() =2 Sca.

If we set 1= — Tlc Im y'(C), then
(1.4") (T'(C)), *T'(C))=C, xC,
and

(1.5') (w, *r’(C))=SCw for each w,
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where o is a square integrable harmonic differential on W such that both w and *w
are semi-exact.

From now on we assume that the universal covering surface W of W is con-
formally equivalent to the unit disc D={z||z|<!}. We may identify W with D.
We denote by n: W— W the projection and by D(m) the group of covering trans-
formations. Then D(m) is a Fuchsian group and D/D(n)=W. We denote by
7.(W, po) the fundamental group of W with the base point p, and by H,(W) the
1-dimensional homology group of W. There is a sequence of homomorphisms

D(m) =5 my(W, po) =2 H (W),
where a, is an isomorphism and o, is an epimorphism. We write as
x =000 D(m) — H,(W).

From now on we denote by z or { points (and their coordinates) of Wand by p=rn(z)
or g=mn({) those of W. We write as

ko(z, {)dzdl =n* x w*(ko(p, 9)dpdq) = ko(n(2), n({))dn(z)dn((),

a fixed point on W such that n(z,)= p, and associate with each C e D(r) a path (C)
from z, to Cz,. Then

(]t (], b )
(2, O)dz=( |  ko(z, Odl Jdz=m ) o(p, 9)dq )dp
does not depend on the choice of (C). Tt is clear that

(1.6) k(z, €,C)dz=k(z, C))dz+k(z, C,)dz.

For each C e D(r) we write as
oz, O)={" ki Cydn and o) =4 W(C)IP= 2 I=(O)12

where C is x(C) and represented by the path n({C)).»
Lemma. There is a function p: D(m)—{—1, 1} such that
p(C1C)=p(C)p(Cy) exp [mi(x(C1) x 1(C)].
Proof?) Let E={e,, e,,...} be a basis of the free Abelian group H,(W) and
p': E-»{~—1, 1} be any mapping. Then p': H,(W)—-{—1, 1} defined as
d p
p'(X ne)=11p'(ep TI expl[mi(e;xe)]™m=
j=1 j=1 15j<ksp

satisfies p'(C, +C,)=p'(C,)p'(C,)exp [ni(C, x C,)] for any C; and C, in H(W).
So

1) x(C) is often abbreviated to C for Ce D(x).
2) The author thanks Mr. Ishitoya who told him the simple proof.
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(1.7) p(C)=p'(1(O))
is a required function.
Theorem 1. If we set
(1.8) ¢(C, 2)=p(C)exp (a(z, C)+0(C)),
then & satisfies
&C1Cy, 2)=&(Cy, C12)4(Ch, D)=K(C;, C,2)4C,, 2).

In other words & is an analytic factor of automorphy for the action of the group
D(m).

Proof. We find
o(z, C,Cy)=a(z, C))+a(z, C))=0(z, C,C))
from (1.6). Now

z o Caz A
otz €)= k. Coan={""" ke, Cyan
Cizo Caz) o A~
={= 7+ (ke ¢oan
zo zo

—SCZSC ko(p, q)dGdp+a(Cyz, C,)

Il

— 5= (W(C), W) +0(Cz, C))

=0(Cyz, C})— 5 Re (Y(C,), Y(C,)) +i(C, x C;).
Since
o(C,C2)=0(C1)+0(Cy)+ 5 Re (W(Cy). Y(Cy)).
we see
(1.9)  o(z, C,C))=0(C,z, C))+0(z, Cp)+a(C,)+a(C,)—o(C,Cy) +mi(Cy x Cy).

Substituting (1.9) in &, we have the first equality of (1.8). The second one is ob-
tained similarly. g.e.d.

Remark. We can show more generally that there is a function A: D(n)—C*
=C—{0} such that A(C)exp(o(z, C)) is a factor of automorphy. Indeed since
f(Cy, Cp)=exp [(Y(Cy), Y(Cy))[2n] satisfies f(C,Ca. C3)f(Cy, C)=F(C,, C;C5)-
f(C,, Cy), fis an element of Z2(D(n), C*), the group of 2-cocycles of D(w) with co-
efficients in C* on which D(w) acts trivially. Since, W being an open Riemann
surface, D(n) is a free group (cf. [1], I. 44A), the second cohomology group H2(D(rn),
C*) vanishes (cf. [6], p. 245, Theorem 15). Hence we have a function A: D(n)— C*
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such that A(C,C,)=ACHMC,)f(C,, C,). Then A(C)exp (a(z, C)) is shown to be a
factor of automorphy for the action of D(r) in the same way as the proof of Theorem
I. Theorem 1 asserts that we can take p(C) exp o(C) as A(C).

We note that if we use ko(p, q)dpdq instead of kq(p, q)dpdq we have another
factor of automorphy:

Theorem 1'. If we set
R, C)dz=n*<($n(<c>) Ko(p, 9)dg )dp). o'(z, C):S:O R'(n, C)dn
and
o'(€)= 5= WO,

then &(C, z2)=p(C)exp (¢'(z, C)+0'(C)) is an analytic factor of automorphy for
the action of the group D(m).

We call ¢(C, z) a factor of automorphy associated with I', and &'(C, z) that
associated with I',,.

§2. Theta functions associated with the reproducing kernels

Let W be an open Riemann surface whose universal covering surface W is con-
formally equivalent to the unit disc. We shall show that a relatively automorphic
function for & or £’ is capable of being called a theta function on a Riemann surface.

Definition. An analytic relatively automorphic function for a factor of auto-
morphy & (resp. ') is called a theta function associated with the reproducing kernel
for I, (resp. I',,)-

It should be noted that a theta function defined above depends on the choice
of the function p: D(n)—>{—1, 1}.

In the rest of the present section we deal with theta functions for I',, but the
similar results are also true for those for I'y,.

At first we note that there exists certainly a theta function which does not vanish
identically. In fact & induces an analytic line bundle [£] over W (cf. [2], §3) and it
is trivial since W is an open Riemann surface (cf. [8], § I, Theorem 1). Therefore
[£] has a non-trivial analytic cross section which induces a non-trivial analytic

relatively automorphic function for £. We set
L(z, ©)=5m70(z, 0), J(C)=—=0(0).
Furthermore we set

Lz, W=7 | an {7 kotn, DL,
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Bz w)=Liz, w=Low, D=t (7 an " ko, 0a),

b = L1n([, ] )
and
EA B= Lt ([ an ™" &on, 017).
Finally we set

H(z, w)= 1 g dn S” Ro(n, OdE=2iL(z. w).

Z0

Proposition. (i) E(z, w) is alternating and H(z, w) is hermitian in (z, w).
(i) E(A, B) is an integer. (iii) For A e D(n) we have

H(Az, Aw)=H(z, w)+ %o(z, A)+ %d(w, A)+ %6(2).
In particular,
Q2.1) H(Az, Az)=H(z, 2) + ZRe o (z, )+ 2 a(A).

Proof. Since E(A, B)=y(A) x y(B), it is an integer. Next

S
Sf +SA:} {S” +S‘;W}IEO('1« {)dnd?
:o dn S:o ko(n, Odl+ _1_1t_ S“‘o at S:z

ko(n, $)dn

1 (¢ Aw o | (4= Aw L s
+?Sz a’ngw ko(n, C)df+7g_ dngw ko(n, D)dl

- i e N B N 2 (4
=H(z, w)+ p a(w, A)+ p o(z, A)+ - a(A).

Other assertions are evident. g.e.d.

E(z, w) (resp. H(z, w)) corresponds to the alternating Riemann form (resp.
the Hermitian Riemann form) in the linear theory of theta functions on finite dimen-
sional complex vector spaces (cf. Lang [5]).

Corollary. For a theta function 6(z) associated with the reproducing kernel
for I', we set

$(2)=0(z) exp [ -2 H, z)] .

Then
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(2.2) $(Az)=d(z)p(A) exp [i Im o(z, A)]=p(z)p(A) exp [miE(z, 4)].

In particular, |¢(z)| is a single valued continuous function on W. If |p(2)] is
bounded, then there is a positive constant M such that

(2.3) |6(z)| =M exp [%H(z, z)} .

§3. Riemann’s theta functions on open Riemann surfaces

Let W be an open Riemann surface of genus g (0<g=<o0) and E={4;, B;}%-,
be a canonical homology basis (mod. dividing cycles) associated with some canonical
exhaustion of W.  We denote by {¢,,, ¢5,}%- the normalized semi-exact canonical
differentials of the first kind, i.e. ¢, and ¢p, are holomorphic semi-exact canonical
differentials on W such that

ReS ¢A,=—Reg b5, =01 Reg Ai=ReS $5,=0.
B Ai A; B;

As for these differentials, see [3] and [4]. Then —mi¢,, (resp. —migp,) is the
period reproducing differential for the cycle A; (resp. B;) for I',,, (cf. [4]):¥

(a, —mip,,)=2m SA a, (o, —midg)=2m SB o

J

for each aerl’ Thus by the uniqueness of the period reproducer

(3.1) Y(A)=—midy, Y'(By)= —nid’s,-

{¢4,}9=1 are linearly independent over the complex number field. If we denote by
I',s(A) the closed subspace of I',,, spanned by {¢,,}%-,, then there exist uniquely
normal differentials {w;}§-, in I',,(A4) such that

(3.2) SA w;=0,, kj=1,2., 9, (g<00),

g
(3.3) ) wj:kgl akj(bAk’ j=l’ 2,..., g, (g<w)

with pure imaginary numbers &y ;.

We write some differentials on W and their lifts to W by the same letters re-
placing variable p of W by z of W. For example o i(p) is a differentials on W and
w;(z) is its lift to W. We take a path from p, to a point of A ; and make A4; an ele-
ment of 7,(W, py). The corresponding element in D(n) is denoted by A j- Similarly
we have B; in D(n) for B;.

Definition. An analytic factor of automorphy & for the action of D(r) is called
a Riemann’s theta factor of automorphy if, for j=1, 2,...,

3) Since we use the definitions of the intersection number and the inner product of [1], our formulas
are modified ones of those of [4].
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(i) &4, 2)=1,
(i) &8, z)=exp’:ni<2g;wj+rjj>:|,

where Tjk=g ;. An analytic relatively automorphic function 3(z) for a
B

Riemann’s theta factor of automorphy is called a Riemann’s theta function.

Since W is an open Riemann surface, ¢’ and & define equivalent line bundles
over W. Hence these are analytically equivalent factors of automorphy (cf. [2],
§3). Thus Riemann’s theta functions are derived from theta functions defined in
§2. We shall show that, under a suitable condition on W (and ), this is done using
Abelian integral theory on open Riemann surfaces.

We denote by {a;(p)}9-, a complete orthonormal system of I',,(4) obtained
from {i$, /2}9-, by the Schmidt’s orthogonalization method. a(p) can be written
as

j
::z sjk¢Ak’ j=l,2,...
k=1
with pure imaginary numbers s, (cf. [4]).

g9
Proposition 3.1. g(p, p')dpdp’ =i Y afp)ap’) converges in the norm in p
Jj=1
(resp. p’) for fixed p' (resp. p), and converges in (p, p') uniformly on each compact
set in Wx W.

Proof. We set aj(p)dp=a,(p). Since
g ___
p, p'Ydp=2n ng «j(p")a;(p)

is the reproducing kernel for I',.(4), E la;(p")I? converges to (p’, p")/2n which
is continuous in p’. Thus by a theorem of Dini Z la;(p")|* converges uniformly
on each compact coordinate neighborhood. By tlhe Schwarz’s inequality we see
,z: a(p)a;(p’) converges uniformly on each compact set K x K'c Wx W, where K

and K' are compact coordinate neighborhoods of W. Therefore g(p, p’)dpdp’
converges uniformly on each compact set in Wx W. Since for any n and m (=n)

15 @@= X e

4(p, p')dpdp’ converges in the norm in p for fixed p’, where || , |, stands for the norm

of differentials in p. By the symmetry of g(p, p')dpdp’ with respect to p and p’,

it converges in the norm in p’ for fixed p. q.e.d.
We set

z z z
quj(z):S bap Oa (=" by, and o= o, j=t2..
Z0 Z0

Zo0
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Furthermore we set

0z w={" an{" qun. e [ acl” qon, an

We denote by I',, the subspace of I',,, consisting of all exact elements and by I

the orthogonal complement of I',,(A4) in Iy,
Proposition 3.2. We set

(€)= (G5 1 (©1?) =570 (C)

for CeD(n). Then
(3.4) Q4,2 Aw)=0(z, W) +4-(,,(2)+ B, (W)~ 20(4)),
p=1,2.... IfI9=T,, then
(3.5)  Q(B,z, B,w)=0(z, w)+(2,(2) + 2,())
+ o (@, (2)+ Pp, (W) + (1, =20 (By). =1, 2.,

(3.6) Q(Cz, Cw)=Q(z, w) for C corresponding to a dividing cycle C.
Proof.
Q(4,z, A,w)=0(z, w)
z Apw w Apz Apz Apw
+S dng q(n, C)dC+S dCS q(n, C)dn+g dng g(n, Hdl.
zo w Zo z z w

Since (a;, ¢,,) is pure imaginary,

(177 e 0ac)an=i £ (§, o Juon=1 £, 5 @5, =nityas0n

= =3 E, @ ba)as0 =5 3 By 22,0 =5 b0, 0).
Therefore
z Apw 1
[ an{"" g0 Dar=F0.,0.
Similarly
w Apz 1
[ ac (™ qtn Dan=5 0.,
and

[ an (™" gon ar=3( | 64,2~ (G 0 (4)12) =~ 27 (4)).
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Therefore we have (3.4).

~ (= Bpw w Bpz
0(B,z, Byy=0(z. w)+ (" an (™" gn, g+ (" at (™ gn, e
Bz Bpw
+an (" g0 pat.
As before
B,w 1 &
(07 atn, 0at)in=1 5~ (. bt
w Jj=1
We shall show that (2w,+ ¢p,, 2;)= —(a;, ¢#5,). To this end we must show
(wp, ;)= —Re(a;, ¢pp,).

On the one hand
j j J
(wp) aj)=(wps ‘;1 sjk¢Ak)= - kz=:1 sjk(wp‘ ¢Ak)=2l kgl Sjkakp‘
On the other hand

—Re (2, 4’5,) = —Re(kél sjk¢Aks ¢B,,) = —Re ki=l sjk(;ﬁ*ﬂ:: D4

i . .
=—Rez S1k<-2ig ¢Bp>=_2ii SijCS ¢Bp
k=1 Ak k=1 Ak
L d
=2i kg] Sjkékp'
Since I'y =T, by assumption, ¢, belongs to I',,(A) (cf. [4]) and

g
2wp+¢8p = jgl (2(0p+¢3p, Otj)al.

Therefore
z Bpw 1
S, dn SW q(n, Hdl=5-(22,(z) + Pp,(2)) .
Similarly
w Bp:z 1
[ ar (™ qn. Dan=5 22,00+ @5,0)
and

Bp:z Bpw 1D
[ an (™" qtn var=1( o+ s =tpt 5 $5,=1,-27(8,).

Thus we have obtained (3.5). (3.6) is proved similarly using the fact that all the «;
are semi-exact. q.e.d.

We shall use the same notations as in §2 just adding the prime to represent



Reproducing differentials 199

corresponding notions for a theta function associated with the reproducing kernel
for I',,,, for example we write as

~ z Axzo = Z =, -
L'z A= S dngzo ko(n, c)d(:ﬁguko(n, Aydn.

Note that
3.7 bafz)=—2dL(z, ), ¢5=—2dL(z, B)).

Let =20 {C;, j=1, 2,...} be a basis of H,(W), where all the C; are dividing
cycles. Let pg: Z'—{—1, 1} be a function such that py(Z)={1}. Using (1.7) we
obtain a function py: D(n)—{—1, 1} from pg (cf. the proof of Lemma in § 1). Then
there corresponds a factor of automorphy &' for I',,:

&(C, 2)=po(C)exp (a'(z, C)+0'(C)).

Theorem 2. Let h(z)=exp [niQ(z, z)] and &, 2)=¢'(C, 2)h(C2)[h(z). If
IY=r,,, then &, z) is a Riemann’s theta factor of automorphy for the action of
D(r). If py is such as ppy(E")={1}, then &C, z)=1 for C corresponding to a divid-
ing cycle C.

Proof. The first assertion is a consequence of Proposition 3.2 and (3.7). For
example

&(B,, 2)=po(B,) exp [2mi(L'(z, B,)+J'(B,))]
exp [1i2Q,(2) + @3, (2) +1,,— 2J'(B,))]
=exp [1i(2Q,(2)+7,,)].
For the second assertion, note that for any 4 and B e D(n)
E(AB, z)=¢(BA, z), h(ABz)=h(BAz).

The former is proved as Theorem 1 and the latter is verified by direct calculation.
Therefore E(AB, z)=E&(BA, z), from which we see &(X, z)=1 for each element X in
the commutator subgroup [D(n), D(n)] of D(r). Now let C be such that y(C)=C
is a dividing cycle. Then there are X in [D(n), D(n)] and integers n,..., n, such that
C=XCy--Cir, where C; is an element of D(r) with x(C;)=C;. By construction
po(C)=1 and o’(z, C¥)=0'(C?5)=0. Hence

f((f, Z)=E(X, C'{l..-égpz)&’(crlu...c;p’ 2)

) A -
= JI;I1 E(Cr, Crayr---Crez)=1. g.e.d.

§4. Theta functions on open Riemann surfaces of finite genus

Proposition. Let W be an open Riemann surface of positive finite genus g.
Then I'S=T,, holds for W if and only if W belongs to the class Ogp.
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Proof. Let w be a real square integrable exact harmonic differential such that
*w is semi-exact. ¢=w+i*wisin Iy, 1fIr'Y=r,, then

¢=iiijj+df, yj=S *w and dfel,,.
Jj=1 Aj

Therefore
. . g
‘BR=S $=i Z ViTike
By Jj=1

Hence (yy,..., y,)(Im 7;;)=0. Since (Im 7;;) is nonsingular, y;=0 for all j. There-
fore ¢ =df and *wis exact. Hence We Oy, by a theorem of Rodin [7]. Conversely
if We Okp, then each ¢ € I'§ is continued analytically to the compact prolongation W
of W. Hence ¢=0, i.e. I,,cI'9y={0}.

Theorem 3. Let W be a parabolic open Riemann surface of positive finite
genus g. Let 0(z) be a theta function associated with the reproducing kernel for
[ (=T,) on W such that 0(Cz)=0(z) for C corresponding to a dividing cycle C.
Then 0(z) as a multiplicative function on W is continued analytically to the com-
pact prolongation W of W if and only if 0(2) satisfies (2.3).

Proof. Since We Og, I'ye=1,. If 6(z) is continued to W, then |¢| in Corollary
in §2 is continuous on W and bounded. Conversely if (2.3) is satisfied, then each
branch of 6(z) on a planar neighborhood of W~ Wis a single valued bounded analytic
function. Therefore 6(z) is continued analytically to W.

Corollary. Let W and 6(z) be those in Theorem 3. Then a Riemann’s theta
Sunction 3(z)=0(z)h(z) is continued analytically to W if and only if 3(z) satisfies
the following inequality

g
19(z)|[sMexp[—n kZ= (Im )71 j,(Im Qy(z)) (Im Q(2))]¥

J 1

for some positive constant M.

Proof. We must show that

]
1) FHG 2+Re(@iQz 2)=—n 3 (Im7)"j(Im 242) (Im Q(2).
=
Since
j .
“j=k§l Sik® a0 ji=1..49,
, L,
W= Z (o, oj)a;=2i Z Sk
Jj=1 i=k
and

4) Imz=the imaginary part of the period matrix = =(z,).
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g g
alp. p)dpdp =i 3 oafplop) =5 3 da(Don(p)

|~

J 1

g
E / jkwj(P)wk(P')s
where Ijk=SA ¢4,. Similarly we have
1

g -
ko(p, p)dpdp'=—ni 3, Iyopap’)

J 1
and hence

H(z, z)=—i ¥

g
Ji k=1

13 R2(2)2(2) .
Thus

%H(z, z)+ Re (niQ(z, z))=n

J

Since Im /;,= —(Im )71, by (3.3), we have (4.1). g.e.d.

1

>::= (Im £,)) (Im Q,(2)) (Im Q(2)).

Finally we remark on theta functions on planar Riemann surfaces. If a surface
is planar, then it is shown in the same way as the proof of Theorem 1 that

(4.2) &C, z)=exp (a(z, C)+0a(C))

is a factor of automorphy for I', for the action of D(rn) since C, x C, =0 for all cycles
C, and C,. This means that we can take p to be such as p(D(n))={1} for a planar
surface. Let W be a bounded plane domain whose boundary consists of a finite
number of analytic Jordan curves B, k=0,..., g (=1). B, is the outer boundary
and all the curves are oriented positively with respect to W. Let Q, be the harmonic
measure of B, and w, be (0Q,/0z)dz, k=1,...,g. If we denote by I'" the closed
subspace of I',(W) spanned by {w,}{-,, then there is an orthogonal decomposition

[(W)=T(W)+T".
From this we have
ko(p, 9)dpdq =x(p, q)dpdq +x'(p, q)dpdq,
where k' (resp. K) is the reproducing kernel of I’ (resp. I,,). If we set
ij=SBJ w,;%&m *d0,=iP),,
then (Pj,) is symmetric and (P},) is positive definite. Explicitly
k'(p, @)dpdq =2”2°‘jkwj(P)wk(‘I),

where (aj;) is the inverse matrix of (P};). Moreover

[ kotp. g ={_xv. q)dg
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for all closed curves C in W. Therefore a theta function defined as a relatively auto-
morphic function for £ in (4.2) satisfies

(4.3) 0(B,z)=0(z) exp [;::(S (= 2w)+(— P@)] .

A multiplicative analytic function satisfying (4.3) is given by

0(z)= > exp |: - ni('m(— Pym +2'm(— S:o w>>:| ,

meZé¥

where (- P)=(-Pj) and -S: w='<—gz Wyseeny —S: wg>. This is the original

Riemann’s theta function on the double W of W.

Acknowledgment. The author would like to thank Prof. Y. Kusunoki for
advice and encouragement.

AICHI UNIVERSITY OF EDUCATION

References

[1] L. Ahifors and L. Sario, Riemann surfaces, Princeton Univ. Press, (1960), 382 pp.

[2] R.C. Gunning, Riemann surfaces and generalized theta functions, Springer-Verlag, Berlin
Heidelberg New York, (1976), 165 pp.

[3] Y. Kusunoki, Theory of Abelian integrals and its application to conformal mapping, Mem.
Coll. Sci. Univ. Koyto. Ser. A Math. 33 (1959) 235-258.

[4] Y. Kusunoki, Square integrable normal differentials on Riemann surfaces, J. Math. Kyoto
Univ. 3 (1963), 59-69.

[5]1 S.Lang, Introdcution to algebraic and Abelian functions, Addison-Wesley (1972), 112 pp.

[6] D.G. Northcott, An introduction to homological algebra, Cambridge (1960), 282 pp.

[7] B.Rodin, On a paper of M. Watanabe, J. Math. Kyoto Univ. 6 (1967), 393-395.

[8] H. R8hrl, Holomorphic fiber bundles over Riemann surfaces, Bulletin Amer. Math. Soc.
68 (1962), 125-160.



