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§1. Introduction and statement of results

Let MSp be the Thom spectrum of symplectic vector bundles and S° be the
sphere spectrum. Consider the cofibering,

S0 —i, MSp -4, MSp/S°,

where i is the inclusion of the bottom sphere and g is the canonical projection.
Associated to it we have an exact sequence of homotopy groups,

- =2, m(S°) = n(MSp) -5 n(MSp/S°) 2 7, (5% — -+

In [7] Ray proved that i (ImJ)=0 for /=2, where J,: 7,(SO)-r,(S° is the
J-homomorphism. Let j, be a generator of ImJ,,_,. Then clearly there exist
elements y, € n,,(MSp/S®) and x, € my, (MSp) such that dy,=j, and g,(x,)=m(2k)y,,
where m(2k) is the order of j,[1] [5].

In this paper we shall study the properties of such elements x, and y,.

Throughout this paper the coefficients of homology and cohomology groups
are always integers, Z.

Let h: n (MSp)—H,(MSp) and h': n,(MSp/S®)— H,(MSp/S°) be the Hurewicz
homomorphisms of MSp and MSp/S°. Let BSp be the classifying space of Sp-
bundles. Recall that

H(MSp)=Z[b,, b,,--],
H*(Bsp) =Z[ﬂ1’ ﬂza"‘] .

For each sequence R=(ry, ry,---) with almost all r;=0, we denote pjf52--- by
BRe H, g (BSp) and its dual by pRe H*Rl (BSp), similarly we use the notations
bRe Hy g  (MSp) and SRe H4Rl (MSp), where |R|=3 ir, On the other hand, as
is well known, H*(BSp) is a polynomial ring of symplectic Pontrjagin classes {p,},
so each pR is uniquely expressed by polynomials of {p,}. Define an integer uR by
the equation,
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pR = uRp, +other terms,

here |R|=k.

We denote the KO-orientation class of MSp by t: MSp— KO, where KO is the
representative spectrum of real K-theory.

Our results are as follows.

Theorem 1. For any y, such that dy,=j,,
i) if k is odd then

h(y)= —(2k—1)!I |Zk uRbR  mod. Im hy,,
R[=
i) if k is even then

4h'(yi)= —(2k—1)!2| > uRbR mod.Im hy,,
RI=k

here we identify H,(MSp) and H,(MSp/S°) for *>0.

Theorem 2. For any y, such that dy,=j,, the order of h'(y,) in H4(MSp)/
Im hy, is m(2k).

Theorem 3. 1,(x,) can not be divided by any proper divisor of m(2k), es-
pecially x,£0 mod. 2n,(MSp).

Corollary 4. Let p;eng;, (S°) be p-series defined in [2], then
i) =axi %0,
where j=0 and o e n,(MSp)=Z[2Z is a unique non zero element.

Combining Theorem 1 and 2, we can determine the Hurewicz image of x, under
some choice of x;, for example,

h(xl) = - 24b1
h(x,)=1440b, — 72b?
h(xs)=—5!7-8-9(3by—3b,b, +b3).

We also find the relations among {x,} under some condition in Theorem 5 of
§ 4, for example, in 7,4, (MSp)/8n,,(MSp)

x2=4x,, X(X,=X3, X X3=4x,, x}=x,.

§2. Proof of Theorem 1

Clearly y, is determined up to Im g,. In order to study h’(y,) it is sufficient to
calculate for a special y,. Let & and & be generators of m,(BSp) and m4,(BSO)
respectively, where BSO is the classifying space of SO-bundles. As is well known,
re(&)=¢ for k=odd and =4¢ for k=even, where r: BSp—»BSO is the reali-
fication map. Recall that the mapping cone of j, =J(’) equals to the Thom complex
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of ¢ as stable complexes. Let T(&) be the Thom map of &.
Suppose k=o0dd, then it is easy to see that there exists an element y,emy,
(MSp/S°) such that the following diagram commutes up to homotopy;

S0 S0\ ek S4k Jk S1

Jx
ke b
SO i, MSp 9, MSp/S° —, S,

here holyzontal lines are cofibrations. Let z, € H,(S° \U e**) be a generator, then

h(y)=T(E)x(z,), where we identify H,(MSp) and H::(MSp/S‘)). Consider the
following commutative diagram;

Hy (SO e) 1@, H, (MSp)

l;k 15

Hy, (8%F) — H,,(BSp),

here vertical arrows indicate the Thom isomorphisms. So for our purpose it is

sufficient to determine £4(g), for a generator g of H,(S*). As is well known,

p{&)=—(Qk—1)!g for i=k and =0 otherwise, where g € H**(S4k) is the dual of g.
Put £,(9)= ug klRﬁR, Using duality of H,(BSp) and H*(BSp) we have

AR={pR(&), g> =<{uRp(&), 9> = —(2k—1)!uR.

Thus we have
h'(y)=—(2k— 1)!| IZk HRbR.
R|=
Therefore for any y, such that dy,=j,

K(y=—Q2k—1)! ¥ pRbR mod.Im hy,.
IRT=k
This completes the proof of i). The proof of ii) is similar, so we omit it.
Remark. For k=even the author does not know how to determine h'(y,).

§3. Interpretations of Adams e-invariant

In this section we shall prove Theorem 2, Theorem 3 and Corollary 4. Our
proof is based on the results of [2].

Proof of Theorem 2

Adams [2] and Mahowald [5] proved that any element of Im J is detected by
eg-invariant. This means that any element of Im J,,_, is detected by the functional
Y2 —1 operation, where y2: KO*( )—KO*( ) [1/2] is the real stable Adams oper-
ation. From Theorem 2.6 in [4] it is easily seen that there is a operation ¢: MSp*( )
—MSp*( ) [1/2] such that t¢=y?1. Therefore any element of ImJ, _, is de-
tected by the functional ¢ — 1 operation, that is, the Toda bracket {¢p—1, i, > F0 in
Ta(MSp) [1/2]/(¢ — )my(MSp) for any yeIm Jy ;.
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Consider the following commutative diagram;

T4 (MSp) [1/2]

Ha (MSp) [1/2] Tax (MSp)—"—> 74, (MSp/S®) —2> 7 44_(S°)

VN /
Hy (MSp)

From the above commutative diagram and definition of Toda bracket we have a
following commutative diagram

Tar (MSp) [1/2] /(¢—1) 4 (MSp)

(Ker i) 7., Hax (MSp) [1/2] /($—1) Im hax

m‘ (¢— 1

Hau (MSp) [Tm hss

where f means a homomorphism induced by f.
Recall that torsion in n,(MSp) is only two-primary, so h[1/2] is monic. There-
fore the composition

h1/2]e<p—1, i, ) lim ju-, is monic.
This completes the proof of Theorem 2.

Remark. The invariant 7’07 !: (ker ig)a- = Hyg(MSp)/Im hy, is closely re-
lated to MSp —e-invariant ey;,:

(ker ix)ax— 1 — Extyish sy (MSpy, MSpy).

That is, there is a commutative diagram;

(ker iy)ap—1 —2525 Extyissasp(MSpy, MSpy)

o

H, (MSp[S°) [Im hyy = Hy (MSp) [Im Ay,

here the homomorphism f is given by the following composition (See 15 in Part IIT

of [31),

EthltigfuMSp(MSP*, MSp,)

inclusion

T4 (MSp A MSp/S©) /Im (74, (MSp) —2+ 14, (MSp/S°) 222 714, (MSp A MSp[S°))
H-orientation of MSp

H,, (MSp/S°)[Im hy, .
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Proof of Theorem 3
By definition of x, and Toda bracket, we easily see that

xy € i, jx, m(2k)) .
Then 7,(x;) € 1o{i, ji, m(2k)) =(zoi, j,, m(2k)). Note that
(W2 = 1) <ol i, m(2k)y =<Y2 =1, toi, jiym(2k)
as cosets in KOy, [1/2]/m(2k) (Y2 —1)KOy,. If for some proper divisor d of m(2k),
x,=dx’' in 1, (MSp), then
A2 = 1)a(x) € (Y21, o, jdm(2K).

So we have that

W2 = Dru(x") e Y2 = 1, 7ei, iym(2k)/d .

But this contradicts with a fact that the order of ex(ji)={¥?—1, 10i,j,)> in
KO4[1/2]/(¥* = 1)KOy is m(2k).
This completes the proof.

Proof of Corollary 4
Our proof is based on the following facts;
i) m(4)=24.3.5. i) x,€ei, j,, m(4)) =i, 8a, 2), where 6=3-5.j,. iii) Inde-
terminacy of (i, 8a, 2) =2ng(MSp), because ng(MSp) is torsion free (See, for ex-
ample, [8]). iv) u;,,€<80, 2, u;> (See [2]). V) uo=n and iyn=o, where n is a
unique non zero element of x,(S°).
Using the above facts and by induction,
ixlj+1€iC80, 2, u;j> =i, 8a, 2p;
=i, 80, 2> - iy =x, - axj=oxj*1.
So we have that i,u;=axj for j=0.
On the other hand
Ta(0x§) = (740) - (14x§)
=e-y/ (By Theorem 3)
*Os

where e € m,(KO) and y € ng(KO) are generators. This completes the proof of Corol-
lary 4.

§4. Relations in {x,}

In this section we shall prove the following;

Theorem 5. If ixmy(S°) =0, ix74,(S°) =0 and iymy4.11(S°)=0 and if for any
Y €M+ 1y 1(SO) such that i,y=0, 8y=0 and ex(y)=0, <i, y, 8> 20, then
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XX, — Ay X4 =0  mod. 871 (MSp),
where a, ;=4 for k=1=1 mod. 2, and =1 otherwise.

Proof. Take o6,elmJ,,_; so that ex(c,)=(-1)"1/8. Then ic,=80,=0.
It is clear from [7] and [9] that

Oeioy, 8,0 and 0e{ay, 8, o,)8.

From Proposition 1.5 of [9], there exist elements Ae<i, oy, 8), pe {0y, 8, 6> and
ve{8, o, 8 such that Ao;,=ip=8u=0,v=0 and

<la ap, 8>+<l- u, 8>_<l’ Oy, V> 50.

We can take x, as 4 and v=_86 for some d € 74,(S°). From Theorem 11.1 of [2] we
can take —ay044;+y as p where y€mypyy-1(S° such that 8y=0, iy=0 and
ex(y)=0. It is easy that {(x;, 0;, 8) 3 x;,x;. From the second assumption

(i, — @y 0x41+7, 8> =i, 410441, 8 3 —ay 1 X4y
From the first assumption
(i, oy, 86) > (i, gy, 8)iy6=0.

Therefore the set x,x;— ay %, +;+(Indeterminacy of brackets) contains zero. So
from the first assumption we have

xkx,— ak,,xk.,.,E() mod. 87154(k+,)(MSp) .
This completes the proof.

Remark. The first assumption is correct for amall k and [/, because 7,,(MSp)
is torsion free for small n (See, for example, [8]). Using the detail study of the
spectral sequence such that E2=H,(MSp)®n,(S®)=n,(MSp), we can check the
second assumption for small k and [, especially for k+ /<5 this holds [6].
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