On some elements in $M S p_{4 *}$ which are related to the image of \boldsymbol{J}-homomorphism

By

Kaoru Morisugi

(Communicated by Prof. H. Toda, Oct. 12, 1979)

§ 1. Introduction and statement of results

Let $M S p$ be the Thom spectrum of symplectic vector bundles and S^{0} be the sphere spectrum. Consider the cofibering,

$$
S^{0} \xrightarrow{i} M S p \xrightarrow{q} M S p / S^{0},
$$

where i is the inclusion of the bottom sphere and q is the canonical projection. Associated to it we have an exact sequence of homotopy groups,

$$
\cdots \xrightarrow{\partial} \pi_{l}\left(S^{0}\right) \xrightarrow{i *} \pi_{l}(M S p) \xrightarrow{q_{*}} \pi_{l}\left(M S p / S^{0}\right) \xrightarrow{\partial} \pi_{l-1}\left(S^{0}\right) \longrightarrow \longrightarrow
$$

In [7] Ray proved that $i_{*}\left(\operatorname{Im} J_{l}\right)=0$ for $l \geqq 2$, where $J_{l}: \pi_{l}(S O) \rightarrow \pi_{l}\left(S^{0}\right)$ is the J-homomorphism. Let j_{k} be a generator of $\operatorname{Im} J_{4 k-1}$. Then clearly there exist elements $y_{k} \in \pi_{4 k}\left(M S p / S^{0}\right)$ and $x_{k} \in \pi_{4 k}(M S p)$ such that $\partial y_{k}=j_{k}$ and $q_{*}\left(x_{k}\right)=m(2 k) y_{k}$, where $m(2 k)$ is the order of $j_{k}[1]$ [5].

In this paper we shall study the properties of such elements x_{k} and y_{k}.
Throughout this paper the coefficients of homology and cohomology groups are always integers, Z.

Let $h: \pi_{*}(M S p) \rightarrow H_{*}(M S p)$ and $h^{\prime}: \pi_{*}\left(M S p / S^{0}\right) \rightarrow H_{*}\left(M S p / S^{0}\right)$ be the Hurewicz homomorphisms of $M S p$ and $M S p / S^{0}$. Let $B S p$ be the classifying space of $S p$ bundles. Recall that

$$
\begin{aligned}
& H_{*}(M S p)=Z\left[b_{1}, b_{2}, \cdots\right], \\
& H_{*}(B S p)=Z\left[\beta_{1}, \beta_{2}, \cdots\right] .
\end{aligned}
$$

For each sequence $R=\left(r_{1}, r_{2}, \cdots\right)$ with almost all $r_{i}=0$, we denote $\beta_{1}^{r_{1}} \beta_{2}^{r} \cdots$ by $\beta^{R} \in H_{4|R|}(B S p)$ and its dual by $p^{R} \in H^{4|R|}(B S p)$, similarly we use the notations $b^{R} \in H_{4|R|}(M S p)$ and $S^{R} \in H^{4|R|}(M S p)$, where $|R|=\sum i r_{i}$. On the other hand, as is well known, $H^{*}(B S p)$ is a polynomial ring of symplectic Pontrjagin classes $\left\{p_{k}\right\}$, so each p^{R} is uniquely expressed by polynomials of $\left\{p_{k}\right\}$. Define an integer μ^{R} by the equation,

$$
p^{R}=\mu^{R} p_{k}+\text { other terms },
$$

here $|R|=k$.
We denote the $K O$-orientation class of $M S p$ by $\tau: M S p \rightarrow K O$, where $K O$ is the representative spectrum of real K-theory.

Our results are as follows.
Theorem 1. For any y_{k} such that $\partial y_{k}=j_{k}$,
i) if k is odd then

$$
h^{\prime}\left(y_{k}\right) \equiv-(2 k-1)!\sum_{|R|=k} \mu^{R} b^{R} \quad \bmod . \operatorname{Im} h_{4 k},
$$

ii) if k is even then

$$
4 h^{\prime}\left(y_{k}\right) \equiv-(2 k-1)!2 \sum_{|R|=k} \mu^{R} b^{R} \quad \bmod . \operatorname{lm} h_{4 k},
$$

here we identify $H_{*}(M S p)$ and $H_{*}\left(M S p / S^{0}\right)$ for $*>0$.
Theorem 2. For any y_{k} such that $\partial y_{k}=j_{k}$, the order of $h^{\prime}\left(y_{k}\right)$ in $H_{4 k}(M S p) /$ $\operatorname{Im} h_{4 k}$ is $m(2 k)$.

Theorem 3. $\tau_{*}\left(x_{k}\right)$ can not be divided by any proper divisor of $m(2 k)$, especially $x_{k} \neq 0 \bmod .2 \pi_{4 k}(M S p)$.

Corollary 4. Let $\mu_{j} \in \pi_{8 j+1}\left(S^{0}\right)$ be μ-series defined in [2], then

$$
i_{*}\left(\mu_{j}\right)=\alpha x_{2}^{j} \neq 0
$$

where $j \geqq 0$ and $\alpha \in \pi_{1}(M S p)=Z / 2 Z$ is a unique non zero element.
Combining Theorem 1 and 2 , we can determine the Hurewicz image of x_{k} under some choice of x_{k}, for example,

$$
\begin{aligned}
& h\left(x_{1}\right)=-24 b_{1} \\
& h\left(x_{2}\right)=1440 b_{2}-72 b_{1}^{2} \\
& h\left(x_{3}\right)=-5!7 \cdot 8 \cdot 9\left(3 b_{3}-3 b_{2} b_{1}+b_{1}^{3}\right) .
\end{aligned}
$$

We also find the relations among $\left\{x_{k}\right\}$ under some condition in Theorem 5 of $\S 4$, for example, in $\pi_{4 *}(M S p) / 8 \pi_{4 *}(M S p)$

$$
x_{1}^{2} \equiv 4 x_{2}, \quad x_{1} x_{2} \equiv x_{3}, \quad x_{1} x_{3} \equiv 4 x_{4}, \quad x_{2}^{2} \equiv x_{4} .
$$

§ 2. Proof of Theorem 1

Clearly y_{k} is determined up to $\operatorname{Im} q_{*}$. In order to study $h^{\prime}\left(y_{k}\right)$ it is sufficient to calculate for a special y_{k}. Let ξ and ξ^{\prime} be generators of $\pi_{4 k}(B S p)$ and $\pi_{4 k}(B S O)$ respectively, where $B S O$ is the classifying space of $S O$-bundles. As is well known, $r_{*}(\xi)=\xi^{\prime}$ for $k=$ odd and $=4 \xi^{\prime}$ for $k=$ even, where $r: B S p \rightarrow B S O$ is the realification map. Recall that the mapping cone of $j_{k}=J\left(\xi^{\prime}\right)$ equals to the Thom complex
of ξ^{\prime} as stable complexes. Let $T(\xi)$ be the Thom map of ξ.
Suppose $k=$ odd, then it is easy to see that there exists an element $y_{k} \in \pi_{4 k}$ ($M S p / S^{0}$) such that the following diagram commutes up to homotopy;

here holyzontal lines are cofibrations. Let $z_{k} \in H_{4 k}\left(S^{0} \cup e^{4 k}\right)$ be a generator, then $h^{\prime}\left(y_{k}\right)=T(\xi)_{*}\left(z_{k}\right)$, where we identify $H_{4 k}(M S p)$ and $H_{4 k}^{j_{k}}\left(M S p / S^{0}\right)$. Consider the following commutative diagram;

here vertical arrows indicate the Thom isomorphisms. So for our purpose it is sufficient to determine $\xi_{*}(g)$, for a generator g of $H_{4 k}\left(S^{4 k}\right)$. As is well known, $p_{i}(\xi)=-(2 k-1)!\bar{g}$ for $i=k$ and $=0$ otherwise, where $\bar{g} \in H^{4 k}\left(S^{4 k}\right)$ is the dual of g.

Put $\xi_{*}(g)=\sum_{|R|=k} \lambda^{R} \beta^{R}$. Using duality of $H_{*}(B S p)$ and $H^{*}(B S p)$ we have

$$
\lambda^{R}=\left\langle p^{R}(\xi), g\right\rangle=\left\langle\mu^{R} p_{k}(\xi), g\right\rangle=-(2 k-1)!\mu^{R}
$$

Thus we have

$$
h^{\prime}\left(y_{k}\right)=-(2 k-1)!\sum_{|R|=k} \mu^{R} b^{R} .
$$

Therefore for any y_{k} such that $\partial y_{k}=j_{k}$,

$$
h^{\prime}\left(y_{k}\right) \equiv-(2 k-1)!\sum_{|R|=k} \mu^{R} b^{R} \quad \bmod \operatorname{Im} h_{4 k}
$$

This completes the proof of i). The proof of ii) is similar, so we omit it.
Remark. For $k=$ even the author does not know how to determine $h^{\prime}\left(y_{k}\right)$.

§3. Interpretations of Adams \boldsymbol{e}-invariant

In this section we shall prove Theorem 2, Theorem 3 and Corollary 4. Our proof is based on the results of [2].

Proof of Theorem 2
Adams [2] and Mahowald [5] proved that any element of $\operatorname{Im} J$ is detected by e_{R}^{\prime}-invariant. This means that any element of $\operatorname{Im} J_{4 k-1}$ is detected by the functional $\psi^{2}-1$ operation, where $\psi^{2}: K O^{*}() \rightarrow K O^{*}()[1 / 2]$ is the real stable Adams operation. From Theorem 2.6 in [4] it is easily seen that there is a operation $\phi: M S p^{*}()$ $\rightarrow M S p^{*}()[1 / 2]$ such that $\tau \phi=\psi^{2} \tau$. Therefore any element of $\operatorname{Im} J_{4 k-1}$ is detected by the functional $\phi-1$ operation, that is, the Toda bracket $\langle\phi-1, i, \gamma\rangle \neq 0$ in $\pi_{4 k}(M S p)[1 / 2] /(\phi-1) \pi_{4 k}(M S p)$ for any $\gamma \in \operatorname{Im} J_{4 k-1}$.

Consider the following commutative diagram;

From the above commutative diagram and definition of Toda bracket we have a following commutative diagram;

where \bar{f} means a homomorphism induced by f.
Recall that torsion in $\pi_{*}(M S p)$ is only two-primary, so $h[1 / 2]$ is monic. Therefore the composition

$$
\overline{h[1 / 2]} \circ\left\langle\phi-1, i,>\left.\right|_{\operatorname{Im} J_{A k-1}}\right. \text { is monic. }
$$

This completes the proof of Theorem 2.
Remark. The invariant $h^{\prime} \partial^{-1}:\left(\operatorname{ker} i_{*}\right)_{4 k-1} \rightarrow H_{4 k}(M S p) / \operatorname{lm} h_{4 k}$ is closely related to $M S p-e$-invariant $e_{M S p}$:

$$
\left(\operatorname{ker} i_{*}\right)_{4 k-1} \longrightarrow \operatorname{Ext}_{M S_{p *}}^{1,4 k} S_{p}\left(M S p_{*}, M S p_{*}\right)
$$

That is, there is a commutative diagram;

here the homomorphism f is given by the following composition (See 15 in Part III of [3]),

```
\(\operatorname{Ext}_{M S_{p * M}}^{1,4 k}\left(M S p_{*}, M S p_{*}\right)\)
    \(\bigwedge_{\text {inclusion }}\)
\(\pi_{4 k}\left(M S p \wedge M S p / S^{0}\right) / \operatorname{Im}\left(\pi_{4 k}(M S p) \xrightarrow{q_{*}} \pi_{4 k}\left(M S p / S^{0}\right) \xrightarrow{h^{M S_{p}}} \pi_{4 k}\left(M S p \wedge M S p / S^{0}\right)\right)\)
        \(\downarrow\) H-orientation of \(M S p\)
\(H_{4 k}\left(M S p / S^{0}\right) / \operatorname{Im} h_{4 k}\).
```


Proof of Theorem 3

By definition of x_{k} and Toda bracket, we easily see that

$$
x_{k} \in\left\langle i, j_{k}, m(2 k)\right\rangle
$$

Then $\tau_{*}\left(x_{k}\right) \in \tau \circ\left\langle i, j_{k}, m(2 k)\right\rangle \subset\left\langle\tau \circ i, j_{k}, m(2 k)\right\rangle$. Note that

$$
\left(\psi^{2}-1\right)\left\langle\tau \circ i, j_{k}, m(2 k)\right\rangle=\left\langle\psi^{2}-1, \tau \circ i, j_{k}\right\rangle m(2 k)
$$

as cosets in $\mathrm{KO}_{4 k}[1 / 2] / m(2 k)\left(\psi^{2}-1\right) \mathrm{KO}_{4 k}$. If for some proper divisor d of $m(2 k)$, $x_{k}=d x^{\prime}$ in $\pi_{4 k}(M S p)$, then

$$
d\left(\psi^{2}-1\right) \tau_{*}\left(x^{\prime}\right) \in\left\langle\psi^{2}-1, \tau \circ i, j_{k}\right\rangle m(2 k) .
$$

So we have that

$$
\left(\psi^{2}-1\right) \tau_{*}\left(x^{\prime}\right) \in\left\langle\psi^{2}-1, \tau \circ i, j_{k}\right\rangle m(2 k) / d
$$

But this contradicts with a fact that the order of $e_{R}^{\prime}\left(j_{k}\right)=\left\langle\psi^{2}-1, \tau \circ i, j_{k}\right\rangle$ in $\mathrm{KO}_{4 k}[1 / 2] /\left(\psi^{2}-1\right) K O_{4 k}$ is $m(2 k)$.
This completes the proof.

Proof of Corollary 4

Our proof is based on the following facts;
i) $m(4)=2^{4} \cdot 3 \cdot 5$. ii) $x_{2} \in\left\langle i, j_{2}, m(4)\right\rangle \subset\langle i, 8 \sigma, 2\rangle$, where $\sigma=3 \cdot 5 \cdot j_{2}$. iii) Indeterminacy of $\langle i, 8 \sigma, 2\rangle=2 \pi_{8}(M S p)$, because $\pi_{8}(M S p)$ is torsion free (See, for example, [8]). iv) $\mu_{j+1} \in\left\langle 8 \sigma, 2, \mu_{j}\right\rangle$ (See [2]). v) $\mu_{0}=\eta$ and $i_{*} \eta=\alpha$, where η is a unique non zero element of $\pi_{1}\left(S^{0}\right)$.

Using the above facts and by induction,

$$
\begin{aligned}
i_{*} \mu_{j+1} \in i\left\langle 8 \sigma, 2, \mu_{j}\right\rangle & =\langle i, 8 \sigma, 2\rangle \mu_{j} \\
& =\langle i, 8 \sigma, 2\rangle \cdot i_{*} \mu_{j}=x_{2} \cdot \alpha x_{2}^{j}=\alpha x_{2}^{j+1}
\end{aligned}
$$

So we have that $i_{*} \mu_{j}=\alpha x_{2}^{j}$ for $j \geqq 0$.
On the other hand

$$
\begin{aligned}
\tau_{*}\left(\alpha x_{2}^{j}\right) & =\left(\tau_{*} \alpha\right) \cdot\left(\tau_{*} x_{2}^{j}\right) \\
& =e \cdot y^{j} \quad(\text { By Theorem 3) } \\
& \neq 0,
\end{aligned}
$$

where $e \in \pi_{1}(K O)$ and $y \in \pi_{8}(K O)$ are generators. This completes the proof of Corollary 4.

§4. Relations in $\left\{x_{k}\right\}$

In this section we shall prove the following;
Theorem 5. If $i_{*} \pi_{4 l}\left(S^{0}\right)=0, i_{*} \pi_{4 k}\left(S^{0}\right)=0$ and $i_{*} \pi_{4(k+l)}\left(S^{0}\right)=0$ and if for any $\gamma \in \pi_{4(k+l)-1}\left(S^{0}\right)$ such that $i_{*} \gamma=0,8 \gamma=0$ and $e_{R}^{\prime}(\gamma)=0,\langle i, \gamma, 8\rangle \ni 0$, then

$$
x_{k} x_{l}-a_{k, l} x_{k+l} \equiv 0 \quad \bmod .8 \pi_{4(k+l)}(M S p),
$$

where $a_{k, l}=4$ for $k \equiv l \equiv 1 \bmod .2$, and $=1$ otherwise.
Proof. Take $\sigma_{n} \in \operatorname{Im} J_{4 n-1}$ so that $e_{R}^{\prime}\left(\sigma_{n}\right)=(-1)^{n} 1 / 8$. Then $i \sigma_{n}=8 \sigma_{n}=0$. It is clear from [7] and [9] that

$$
0 \in i\left\langle\sigma_{k}, 8, \sigma_{l}\right\rangle \quad \text { and } \quad 0 \in\left\langle\sigma_{k}, 8, \sigma_{l}\right\rangle 8
$$

From Proposition 1.5 of [9], there exist elements $\lambda \in\left\langle i, \sigma_{k}, 8\right\rangle, \mu \in\left\langle\sigma_{k}, 8, \sigma_{l}\right\rangle$ and $v \in\left\langle 8, \sigma_{l}, 8\right\rangle$ such that $\lambda \sigma_{l}=i \mu=8 \mu=\sigma_{k} \nu=0$ and

$$
\left\langle\lambda, \sigma_{l}, 8\right\rangle+\langle i, \mu, 8\rangle-\left\langle i, \sigma_{k}, v\right\rangle \ni 0 .
$$

We can take x_{k} as λ and $v=8 \delta$ for some $\delta \in \pi_{4 l}\left(S^{0}\right)$. From Theorem 11.1 of [2] we can take $-a_{k, l} \sigma_{k+l}+\gamma$ as μ where $\gamma \in \pi_{4(k+l)-1}\left(S^{0}\right)$ such that $8 \gamma=0$, $i \gamma=0$ and $e_{R}^{\prime}(\gamma)=0$. It is easy that $\left\langle x_{k}, \sigma_{l}, 8\right\rangle \ni x_{k} x_{l}$. From the second assumption

$$
\left\langle i,-a_{k, l} \sigma_{k+l}+\gamma, 8\right\rangle \supset-\left\langle i, a_{k, l} \sigma_{k+l}, 8\right\rangle \ni-a_{k, l} x_{k+l} .
$$

From the first assumption

$$
\left\langle i, \sigma_{k}, 8 \delta\right\rangle \supset\left\langle i, \sigma_{k}, 8\right\rangle i_{*} \delta=0 .
$$

Therefore the set $x_{k} x_{l}-a_{k, l} x_{k+l}+$ (Indeterminacy of brackets) contains zero. So from the first assumption we have

$$
x_{k} x_{l}-a_{k, l} x_{k+l} \equiv 0 \quad \bmod .8 \pi_{4(k+l)}(M S p) .
$$

This completes the proof.
Remark. The first assumption is correct for amall k and l, because $\pi_{4 n}(M S p)$ is torsion free for small n (See, for example, [8]). Using the detail study of the spectral sequence such that $E^{2}=H_{*}(M S p) \otimes \pi_{*}\left(S^{0}\right) \Rightarrow \pi_{*}(M S p)$, we can check the second assumption for small k and l, especially for $k+l \leqq 5$ this holds [6].

Wakayama University

References

[1] J. F. Adams, On the group $J(X)$ II, Topology 3 (1965).
[2] \quad, On the group $\mathrm{J}(\mathrm{X})$ IIII, Topology 5 (1966).
[3] -, Stable homotopy and generalized homology, The university of Chicago Press, 1974.
[4] M. Imaoka and K. Morisugi, A note on characteristic numbers of $M S p_{*}$, J. Math. Kyoto Uni. 19-1 (1979).
[5] M. E. Mahowald, The order of the image of the J-homomorphism, Bull. Amer. Math. Soc. 76 (1970).
[6] K. Morisugi, The relations between $\pi_{*}\left(S^{0}\right)$ and $\pi_{*}(M S p)$, in preparation.
[7] N. Ray, The symplectic J-homomorphism, Invent. Math. 12 (1971).
[8] D. M. Segal, On the symplectic cobordism ring, Comm. Math. Helv, 45 (1970).
[9] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, No. 49 Princeton.

