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1. Introduction

Let X „ teR +, be a  stochastic process (which we shall call a  reward process)
defined on a probability space (52, .F, P) and {F e}  be an increasing family of sub-
a-fields of F .  The set of all finite F e-stopping times T for which at least one of
'Cy+ and X ; is integrable will be denoted by  A s s u m i n g  t h a t  X, is adapted, i.e.,
X, is  F e-measurable for each t, and is measurable, an optimal stopping problem is
to find a stopping time T* e such that

sup EX ,=EX ,..
re..1

The purpose of this paper is to study the above optimal stopping problem when
the reward process has a special structure. Suppose that the reward process X , has
the following properties:
(Al) There exists an F e-adapted measurable process f (w) such that, for any Te

rT
EXT=EX0±E

o
f sds

and EXo < oo.
(A 2 ) There exists a stopping time 2* such that 0 for t ..r* and f e < 0 for t >T* .

Then the optimal stopping problem reduces to the problem of finding a stopping
time in to attain the value

SUPEI f a d s ,
sea' 0

and T*  defined in (A2) is an optimal stopping time if T* is finite.
For a jump process X, with a local description {n(A, t, co), A (0) in the sense

defined in Section 2 such that A(t) is absolutely continuous, that is,

A(t)-= ‘: A(s, co)ds ,

it is known that
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EX T= EX 0 + E
crc

 (x— Xs _)n(dx, s, co)4s, co)ds
o  R

for any stopping time Te.,K under appropriate assumptions. This implies that a
jump process X, can be expressed in the form as in (Al) using its local description
and hence (Al) is usually satisfied. Our main concern in this paper is, therefore, to
discuss some sufficient conditions for (A2) in terms of characteristics of X .

The situation considered here is a continuous-time version of Chow and Robbins
[2 ] where discrete-time parameter reward processes were studied. In  contrast to
the discrete-time parameter case, the process f, in (Al) is not directly obtained for
general continuous-time parameter processes. For jump processes, once w e are
given their local description which is the usual situation in applications f is directly
obtained as above and this is the reason why we treat jump type reward processes.
The case of continuous-time parameter Markov processes was discussed in Ross [3].

In Section 2 a summary of results on the "local description" of jump processes
in connection with the condition (Al) will be presented. This section is based on
some recent results in martingale approach to jump processes.

In applications, "local characteristics" are usually given as data to describe the
evolution of jump processes. Then our concern is to obtain local descriptions for
jump processes from such data  since we m ust know local descriptions of jump
processes to get the process f, in (A l). This problem is discussed in Section 3.

In Section 4 we shall discuss some conditions under which the reward process of
jump type satisfies (A 2 ). Several examples will be given in Section 5.

2 .  Preliminary facts

In this section we shall present a summary of results required in the sequel.
Let (0, F ,  P ) be  a  complete probability space with a n  increasing family of

sub-a-fields {F t , t e [0, co]} of F  which satisfies the usual condition, i.e., { F t } is
right continuous and F ,  contains all the negligible sets of F .

An F e-adapted stochastic process X, defined on (0, F ,  P) and taking values in
R is called a jump process if, for each w e Q, the sample path t—>X,((o) is piecewise
constant, right continuous and has only a  finite number of jumps in  every finite
interval.

Let ,u(o), dt, dx) be a random measure on [0, co) x R defined by

p ( w ;  (0 ,  t ] ,  B ) =  E  I 
{x_

. X . , } 1 [ X , e B ) ,
 B  e  .g(R). (1 )sst

Let .9 be the a-field of predictable sets of 52 x [0, cc) generated by the applications
(co, t)---* Y,(w) which are F t -measurable in w and left-continuous in t. A  real-valued
process X , is predictable if the application (co, t) —+X(w) is .9 -m easurable . A
random measure v(co; d i, dx) on [0, cc) x R is called a (dual) p r ed ic ta b le  projection
of the random measure i t  if , fo r  any nonnegative .9 x R(R)-measurable function
X(w, t, x), the process defined by
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(vX ),(w )=51X (co, s, x )v(co; ds, dx)

is predictable and

X(co, s, x),u(co; ds, dx)=E X(co, s, x)v(co; ds, dx). (2)
o  R 0  R

According to Theorem 2.1 in  Jacod [4], there exists one and only one (up to .9-
equivalence) such predictable projection v of the random measure it defined by (1).
For any A E  .1(R), the measure v(co; dt, A) is absolutely continuous with respect to
v(co; dt, R)=. A(o), dl) and  hence there exists a  measurable function n(A , t, co) such
that

v(co; [0, t], A )= 0 n(A, s, co)A(o.), dt).

Then by the usual discussion we can choose n(A , t, co) in such a  way that (i) for
each A e.R(R), n(A , • , •) is measurable, and (ii) for each co e 52, n(., t, co) is a prob-
ability measure on (R , a(R)) for all t except a set of dA-measure O. The pair of
stochastic measures (n(dx, t, co), A(co, dt)} is called a  local description of jump
process X , or a Lévy system.

Now using these notions we have the following proposition which is more or
less a known result (see Yor [6], for example).

Proposition 1. Let f ( . , • , •): Q x [0, co) x 1:2- 4 ?  b e  a x .4(R)-measurable
function. T hen under the condition that either

E E (f(co, s, X s )— f(o), s, X s _))+ <co
s<oo

Or

E E (f(co, s, X 0 — f (0), s, X s -)) -  < oo , (3)
s<

w here a± denote the positiv e and negative p arts  o f  a respectively, f o r any
stopping time T we have

E  E cf(o), s, X 5)—f(co, s, X 5 4 )
sS T

=E \

•

 (f (co, s, x )— f(co, s, X s _))v(co; ds, dx)
o R

= •  ( f  (co, s, x)— f (co, s, X s _))n(dx, s, co)A(co, ds).
o R

For the proof of this proposition it is enough to note the following facts: First
for any stopping time T  and for any non-negative x R(R)-measurable function
Y(co, t, x), P(co, t, x)=Y (co, t, x)I m i l (co, t) is also .9 x a (R)-measurable an d  hence
from (2)

Y (co, s, x)v(co; ds, dx)=E Y(a), s, x),u(co; ds, dx).
o R JO .) R



108 Keigo Y amada

We also note that

E (AG), s, X,)-f(o.), s , X ,_))
sst

(f(co, s, x)-f(co, s, X))1z(co; ds, dx)
o R

and that condition (3) implies either

(f(co, s, x)-f(co, s, X,_))+p(o); ds, dx) < co
o R

or

(f(co, s, x)-f(co, s, X,_)) - p(co; ds, dx)< co.
o R

As a direct consequence of the above proposition, if f ( . , • , •) is differentiable
with respect to the second argument, then under the same condition (3) in Proposi-

T
tion 1 and the condition E I f (co, 0, X0 )1 + E f '(co, s, X ,_)dsl < co we have the

Jo
following result: for any stopping time T

Ef(0), T, XT) = Ef(a), 0, X 0 ) + E  f '(co, s, K s _)dsJo

+E (f (co, s, x)-f(co, s, X,_))n(dx, s, co)A(ds) (4)
Jo J R

w h e r e  f'(co, s, x)=-T -s, f(s, co, x).

Let Yt be another .F -adapted jump process with the local description {n'(dx, t,
co), A jd t ) } .  Then we have the following proposition.

Proposition 2. S uppose th at X , an d  Y , are  both increasing and hav e no
com m on discontinuities. A lso suppose that a  m easurable function f(• , • ): R  x R
-+R satisfies the condition that f ( . ,  y ) is increasing f o r each y  and f (x , • ) is de-
creasing f or each x. Then under the condition that either

E E  (f(xs, Ys)— f(Xs— , Ys))< oo
s <oo

or

E E (f (X s ,  l's) — f()G  Ys-» > - 0 0 ,
s<  c0

we have, for any  F,-stopping tim e T,

Ef(XT, YT)=Ef(Xo, Yo)+E1:1 R (f (x , K4)n(dx, s, (0)A(ds)

+ E (f(X s_, y )- f (X ,_, Y s _))n'(dy, s, co)A'(ds)
O JR

where we assume Ef(X 0 , Yo)<oo.
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Proof. The proof is direct if we note that

f (x t, K O +  , ( . f ( X  17s, 8 ) — f (X s-, Ys)) + (f (Xs, Ys) —f (xs, Y s_))

since X, and Y, have no common discontinuities. Then we have, for any stopping
time T,

E E (f (X  Y )—  f (X Y ))= ES (f (x , Y s ) — f (X s _ , YO)n(dx, s, co)A(ds)
JO JR

and

E E (f (X s , Ys ) — f (X s , Y_)) =E ( f  ( X  s , y)— f (X „ Ys _))n'(dy, s, co)A'(ds)
sS T J O J R

since

E (f(Xs, Ys) —f (X s - ,  Ys)) a n d  E (f(Xs, Y ) —f(Xs, Ys-))sst sst

a re  increasing a n d  decreasing processes respectively. Either o n e  o f  th e  above
expectations is finite and the conclusion follows. Q. E. D.

3. Local characterization of jump processes and local description

Given a jump process X , there exists a local description {n(dx, t, w), A(co, dt)}.
In applications, however, a local characterization of jump processes in the form of
(CI) and (C2) below is usually given a priori as data to describe the  evolution of
jump processes. Our concern then is to obtain local descriptions of jump processes
from such data of local characterization.

Here we shall assume

(CO) t= cr(X „ s:<t), (7-field generated by X s ,

For a given jump process X „ let N t =u(co; [0, t], R ), i.e., N, is the number of
jumps up to time t. We shall suppose that X, has the following two properties:

(Cl)P O  I t +  h —  !Nit =  I  t) = 4t, co)h + o(h)

P(Nt+h — A I t= 0  I sr,)=1 — 2 (1, w)h+o(h)

where ,l(t, co) is a positive . -adapted predictable process and we assume that there
exists a constant K  such that

—1 R N  — N i l < F t )_ Kh t+ h r

(C2) lim  p e A  N"  +h —
N i =  1

 t )  I f  (A, t, w),A e a ( R )oc
`+ " 

h 1 0 P ( N t + h —  N i= 1 1.

(Cl)".

where n'(A, t, co) is a predictable process for each A E a(R ).

Remark. The condition (Cl)* is technical and  is needed only to apply the
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dominated convergence theorem in the proof of Lemmas 1 and 2. Hence it could
be replaced by a more general but more complicated one.

From a probabilistic interpretation of local description we expect that {n'(dx, t,
co), A(o), dt)}, where

A(o), [0, t])= Ço 2(s, w)ds ,

should be a local description of X „ and indeed this is true as is shown in Theorem L
Several lemmas will be required for this.

Let us define )1,(s, co) by

A,(s, co ) =U m ' (1 P(N,-= t )  
h P(N, = N s ig .  r)

s ,

when P ( N , N  .F t)(co)4 0. At(s, w) may be defined arbitrarily if P(N t = N s ' ,) ( co)
= 0 .  Due to assumption (Cl) we have

EVIN }(6°)A(S I t)Ar (s, w)—  t-E(I t i,,,,p4 ) (co)1.F,)

where /,(co) is an indicator function of set A .  For s <t  we shall define 2,(s, co) by
At (s, co)=2(s, w).

Then we have

Lemma 1 .  For any . -stopping time T

T+ h
P (N T -F h = N T I..°-1 )—  exp {— AT(s, co)ds} , h>0

JT

P ro o f . The proof can be done in the same way as in the proof of the same
fact for Poisson processes. See Rubin [9] where the similar result is given without
proof.
(i) First we shall suppose that T is a constant time, i.e., T = t .  Put, for s>t,

f (s, w )= rt =  s i g )  .

Then, if f(s, to) 0, we have

( s+h , co) —  f (s, co))= — 1(1—  N k 111:?)f (5 , w ),

and, by letting h tend to zero, we get

f '(s, w )= — )(s, co)f(s, co) a.s. (5)

If f (s, w )= 0, then clearly we have f (s+h , w )= 0 for / i> 0 ,  a n d  hence the  right
derivative of f (- , co) at s is 0. Also if f (s, w )= 0 and h <0, then

1 f , 1  , "
h  I t

J n , f (s, 0.))1 = - A- L { . [Nt=N+1,}E{
1

1N s +h= N s IC I s-Fhl I • t }

KE{I {N ,  1.4+ , 4  g - t.} KE{-1 = N._ ) I F j  =0
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since P{N s = +  1 1 , t } =0 and P(N t = )= O. T here fo re  the left derivative
of f ( . ,  co) a t s is also O . Thus if f(s, w )=0, then f '(s , co) =0 and (5) holds a.s..
In any way from the above discussion we have the conclusion that for almost all to
(5) holds for each s. Noting that f(s, w )> 0 for s sufficiently near to t  because of
(Cl), we obtain

f ( s ,  co) = exp  —  2(u, co)dul , s t

as a unique solution of (5) i.e.,

t+h
P(Nr+h=Nti g",)=exp {—S t .14u, coldul , h 0 .

(ii) Next we supose tha t T  is countably-valued, i.e., T  takes its value in {t„ t 2 ,...}.
In this case it is sufficient to show that

T+h

A
-1{1‘11,=NT"}CIP ="-S 

A

exp {— ).T(s, co)ds}dP

for any A e F T , i.e.,

co
t,=Ntk + h } d P  E exp ylek(s, to)ds}dP

I l Ln{T=tk} k=1 {T=1.1c}t J t k

But, since A n { T =  e  F ek , from the result of (i)

(6)

i(N,,=Nt,,+,,}dP =— A n{r=tk}

ycvh
exp {— ;Lek(s, co)ds}dP.

th

Hence (6) holds.
(iii) Finally let T be an arbitrary F e-stopping tim e .  Then there exists a  sequence
of countably-valued stopping times Ti, (n=1, 2,...) such that Tee l. T. To see that
(6) holds note that A e F T .  (since Tn > T), and hence by the result of (ii)

L A I
T n = N T  h }

d P =

A  

e x p  { T„+hS'
A

—

T n

( s ,  c o ld s }d P

Then since N t is right-continuous and piecewise-constant

A
 ofT„=NT„i-hid P SA I{NT=NT+h)dP (n--* co).

On the other hand, since 2,(s, to) is right-continuous in  t as we see in  the next step
(iv) and since .1,„(s, ( 0 ) 5 K  (see condition (C1)*) we have

T„+h t. T + 1 1
1A  exp — T„(s  co)dsldP exp {— AT(s, co)ds}cIPA T

and hence (6) follows.
(iv) Let us show  that we can choose a right-continuous version of Ae ( s , co) as a func-
tion o f t  fo r an  arbitrarily fixed s. We note tha t Z(t) -- E[/ { N e = N s } (co)2 (s, co)! F e]
and 2 (t)...E [/

( ,,, ,,,,, ) (co )! F t ]  a re  both submartingales o n  th e  interval [0, s] and
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admit right-continuous modification. Indeed, for u < t <s,

E[Z(t) I 9
. ]= " I t =  N s } (co).1(s, (01.. F „]

E[1s y ( w ) A ( s , 5

=Z (u).

Furthermore the function 1--*EZ(t)is right-continuous. Thus Z(t) is a submartingale
and adm its a  right-continuous modification on [0, s]. Similarly the same fact
holds for 2(t). On the other hand, on [s, cc) Z ( t)=/ { N , = N } (o.))4s, co) and 2(t)
=/ i N ,,."(co) and they are certainly right-continuous on (s, o)). From these since
A t(s, 0))=Z(0/2(t) the desired result follows. Q .  E .  D .

Let Ti;, be the n-th jump time of X , and put S = T , — T _ 1. T h e n  as a corollary
of the above lemma we have

Corollary. The conditional distribution of  S , ,  g iv en  FL  is

T„+y
P{S„, — exp — S T n d S

I.
( O }

and its conditional density  f (x) given FT  is

T „+ x
f n(x ).--.1.r .(T „+x , co) exp — co)ds} .

Lemma 2 .  For an arbitrary  stopping tim e T

A —  
E[I,N T .NA M A(s, (0 )1 ,F r iT (s, co)

P ro o f . As in Lemma 1, first we consider the case where T  is a constant time,
then the case where T is countably-valued, and finally the general case. The formal
procedure is very much like that of Lemma 1 and hence we shall omit the proof.

Lemma 3. Given an  .9-
1-predictable process Y ,(co), there exists, f o r each n , a

process Y I,J(co) which is .' r ,-m easurable for each t and

Y ,(co)= r(co) on { T „ t  <T „, .

P ro o f . See Yacod [4, Lemma 3.3].

Corollary. 4.”(s, co)= 2(s, co) o n  {T;, s <T„, i l .

P ro o f . From Lemma 2

E[/{N,--NA (a)) I FT]

E[I{N2„---us)( 0 ) ) 2 (s , ( 1))1. - T„] 
E [I ( N T n =N s ) (a)) I ,F T n ]

But since 2(s, co) is F T n -measurable on {T„._,s<T„.,_,} by Lemma 3, we have

w)= co) o n  {T„ s<T „, Q. E. D.

4 „(s , (0 ) —
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In the same manner, let us define

s, co) = lim  P(N t = N s + h -  N s =1, Xs+h G BI . ) n,(B, 
P (N t=  N s , N s +h -  Ns= 1 1.F () •

Then we have

( 0 ) ' n'(B, s, co).1.(s, ,}
n,(B, s, co) - E{4No(co)11(s, co)1.F,}

Using this relation we can establish the following Lemma 4 which corresponds to
Corollary of Lemma 3 and whose proof is similar to the above.

Lemma 4. n  L (B, s, co)= n'(B, s, a)) o n  { 7 ',s < 7 -„4. 1}

Now we have

Theorem 1. Under conditions (C0-2) a lo c al d e sc rip tio n  o f  {n(dx, t, co),
A(co, dt)} of X, is given by

n(dx, t, co)=n'(dx, t, ca)

A(co, dt)= co)dt.

P roo f. Let Gn(co, dt, dx) be a  regular version of the conditional law of ( S n ± 1,

XT n + i )  given F T .  L e t  H„(co; dt)=G„(co; dt, R). Then by Jacod [4] predictable
projection of tt is given by

n - 1  • S p l -  Gp(ds, B )  + (t - T"  G n (ds, 
(

v ((0 , t]x  B )=  E i f T „ < t S T „  )
n o p=0 H ( [ s ,  co )) Jo H ( [ s ,  co))) '

On the other hand since

G([0, s], R)= H p ([0 , s ])=  1 - ex p  - co)du}

by Corollary of Lemma 1, we have

( 5 P+1  Gp (ds, R ) _
P + 1 (T  +s  c o )d s = s + 1

0
P .1.(7 + s, co)ds

io H pas, 0 0
) )  .ÇO

s

T P  P

by Corollary of Lemma 3. Thus

A(0), [0, t])=v([0,

sp+,= E I {T„<tST,,+ 1 } (
/1.(Tp+s, co)ds+ A(T--„ s ,  co)ds)

n>0 p = 0  0 0

;.(s, co)ds

Next we show that n'(B, t, co) is a version of local description n(B, t, co). To
see this we note that the measure Gp (., B ) is absolutely continuous with respect to
G (.,  R) i.e., there exists a measurable function fip (B, s, co) such that
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G((0, B)= s, co)Gp (ds, R).

Then by defining Fi(B, s, co)=ii(B, T;„ co) on T ,,_ s<T ,, + 1 , w e  c a n  sa y  th a t
13(B, t, co) is a version of local description n(B, t, co). Indeed,

pn-i s +r rip (B, s, co) —

(ds, R)v((0, x  B ) =  E „  typ
n>0 A{T,,<t5T n + i ) ( p = 0 0 H ( [s ,  co)) -

+ç-T .   (B ,  s, G  (ds , R ))
Jo co))

ri(B, s, co)2(s, co)ds

s, co)A (ds) .

Now we show that ii(B, t, co) is a version of n'(B , t, co), and from this we reach the
conclusion that n'(B , t, co) is a local description corresponding to n(B, t, co). Since

Tp+s
G((0, t], B )=1 0  p (13, s, co) exp {— p (U , (0 )d li}  AT r ( T ,  s, co)ds ,

for almost all t we have

1-Gp ((0, t], B)=f i p (B , t, co) exp 1— 1 - P + t Ar p (u, co)du}.1. 7.p (Tp +t, co).

The lefthand side of the above equation is calculated as

d  G
P

 ((0 "  B ) h P 
(0 , t + B) — G((0, B))dt h . 0  

n

P { t < S p + i t + h ,  XTp + i e 13 1.9 -
7- , }

=hm— P{ t<S p + i t d  h l• F T p l
1 , P{t<S p + i <t+h, X Tp .„G B I.FT „} ,
" P { i< S p + 1 < t+ h 1 " .T p }

1 Tp+s

P
(Tp+ s, co) exp (U , (0)dli}CIS • nTp T,, +t , co)

t T„ P

Tp +t
= A T p (T p + t, 0 ))  exp {— T p (14 d U I  nT ,(B , T,,+ t, co)

for almost all t, and hence

fip (B, t, co)=n T p (B , T + t, co) for a lm ost a ll t.

Now on {Tp S s< Tp + i }

fi(B, s, co)= fip (B, s— T„, co)= n T p (B, s, co)=n'(B, s, co), (Lemma 4),

i.e., il(B, s, co)= fr(B, s, oi) for almost all s and this implies the conclusion. Q. E. D.
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4. Sufficient conditions for monotonicity

Let X , be a jump process as was defined in Section 2. Suppose that in the local
description {n(A, t, co), AI of X , A(co, [0, t]) is absolutely continuous, i.e.,

A(o), [0, t ])= Ço  2(s, co)ds

for an F t -adapted measurable process A(t, co). Then from Section 2 we know that
under some integrability conditions for the process f(t, X ,) we have, for any stopping
time T,

Ef(T, X T )=Ef(0, X 0 ) + E Y 'r(s , X s)ds+E (f(s, x)—f(s, X,_))
o  R

• n(dx, s, o.))).(s, co)ds,

and condition (Al) in Section 1 is satisfied. H e n c e  in this section we shall investigate
sufficient conditions for (A2) in terms of the local description.

Following the discrete-time parameter case in Chow and Robbins [2 ], a  real
valued .9' 1-adapted stochastic process X , is said to be monotone if it satisfies con-
ditions (Al) and if either X , o r  — X , satisfies the condition (A2).

Note that X, is monotone if, in particular, when X , satisfies (Al) and f, appearing
in (Al) is increasing or decreasing. In the former case X , will be called convex and
the latter case concave.

Given a jump process X , with the local description {n(A, t, co), A) where

A(co; [0, t ])= 0'  A(s, co)ds ,

let us define a stochastic measure q(., t, ai) by

q(A, t, co)— A(t, co)n(X,_ +A , t, co), A  e a(R) (7)
where

X + A = {X + a , (1 E 2 4 ).

The measure q(., t, co) is said to  be monotone decreasing (increasing) if  fo r any
y > 0  g( [ y , cc), t, ai) is decreasing (increasing) a.s. and  q((— co, 

— y ] ,  t, ai) is in-
creasing (decreasing) a.s. with respect to t. Then we have

Theorem 2. Suppose that

e i th e r E E (X s — X s _)+ < c c  O T  E E (X s — X s _) -  <cos<co

and that EX 0 < o o .  If  the m easure q(., t, co) defined by (7) is monotone decreasing
(increasing), then X , is concave (convex).

P ro o f . We shall give the proof only for the concave case. By Proposition 1
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we have for any stopping time T

E X 1=E X 0+ E Xs_)n(dx, s, co).1(s, co)ds
o R

Then

f s =S (x— X s _)2(s, co)n(dx, s, co)

yq(dy, s, co)

= r c i , œ ) yq(dy, s, co)+1 yq(dy, s, co).
(-00,o)

By the integration by parts, we have

E i p , . ) yq(dy, s, co)= q([y, cc), s, co)dymoo)

and

yq(dy, s, co)= (— q((— oo, — y], s, co))dy .(-œ,Ø)

By assumption q([y, co), s, co) a n d  — q((— oo, — y], s, co) are both decreasing and
hence f, is decreasing i.e., X , is concave. Q. E. D.

Before proceeding to the next theorem, we need a le m m a . As was remarked in
the previous section, n(A, t, co) has the interpretation that n(A, t, co) is the chance
that X, e A  given and given that a jump occurs at t. Thus if X , is increasing,
then n(A, t, co) must be zero when A c [X ,_ , o o )c . The following lemma assures
this.

Lemma 2. L et X , be increasing w ith the local description {n(A, t, co), A}.
Then, for any  B orel set A  such that A c  Go)", we have that w ith probability
one

n(A, t, w)=0 a.s. A (d t )

P ro o f . Let A  be a Borel set such that Ac [X ,_, cc)". T h e n  s in c e  X , is in-
creasing,

W O, t + h], A)— W O, t], A)= 0

for any h> O. H e n c e

E(v((0, t + h], A)— v((0, t], A))

= E(p((0, t + h], A)— p((0, t], A))

=0
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and since v((0, t], A ) is increasing, with probability one

v((0, t + h], A ) — v((0, t], A) = O,

that is, for any h> 0

n(A, s, co)A(ds)=0

with probability o n e .  From this we can easily show that with probability one

n(A, s, co)A(ds)= 0

for all h> O. Hence with probability one

n(A, t, w)= O, a.s. A(dt) . Q. E. D.

Let f  be a  measurable function from [0, oo) x It-±1? and be differentiable with
respect to the first argum ent. In  the next theorem conditions will be given under
which the process f ( t ,  X ) is concave.

Theorem 3. Let X , be increasing w ith monotone decreasing stochastic meas-
ure g ( . ,  t ,  co) and let f(•  , • )  satisfy  the following conditions:
(i) f ( . ,  x )  is strictly  decreasing and concav e f or an arbitrarily  f ix ed x , and
f ' ( t ,  X ) is decreasing w ith respect to t.
(ii) f ( t ,  - )  is increasing and concave for any fixed t.
(iii) Ef(0, X 0 )< co and, for any  stopping tim e T, ES

o

f ( s ,  X s)d s  exists and either

E f ' ( s ,  X s)d s or (f(s, x )— f(s, X s _pn(dx, s, co),10, co)ds is finite.J o  JO  )R
Then f ( t ,  X )  is concave.

P ro o f . From (4), for any stopping time T,

Ef(T, X T )=E f(0, X 0 )+E o
T  [ f'(s , X )

(f(s, x)— f(s, X s _))n(dx, s, ct.))).(s, co)]ds.

By assumption f ' ( s ,  X s ) is decreasing, and hence we shall show that

g s = (f(s, x)— f(s, X s _)))1.(s, co)n(dx, s, co)

is decreasing. Let us define stochastic measures by

ti(A , s, co)= n(frl(A ), s, co)2(s, co)

4(A, s, co)=A(f(s, X 5 _)+ A, s, co)

where f  ; 1 (A) = {x, f(s, x)e A}. Then
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gs=
(f(s, x)—f(s, X s 4).1.(s, co)n(dx, s, co)

(y—f(s, X s _))ii(dy, s, co)
E . f ( s .X s - ) ,  ( s .  x ) )

s, co)
[0 , f ( s , 0 0 ) —  (s ,X ,— ))

where f(s, oo)= lim f(s, x) and the first equality is due to Lemma 2. Then noting
that

4 ([ f( s ,  co)—f(s, X 5 4 , cc), s, a))

=2(s, co)n(f;l[f(s, co), co), s, co)

=0,

we have

gs = z-4(dz, s, co)= 4([z, co), s, co)dz
[0,00) [o,œ)

Now

g- ([z , co), s, co)= tiaf(s, X 5 4 + z , co), s, a))

=2(s, co)n(f; 1 [f(s, X s 4 + z , co), s, co)

=)(s, co)n([X s _+x(s), co), s, a))

=g([x(s), op), s, a))

where x(s) is the minimal point such that

f(s, X s _ )+ z= f(s , Xs _ +x(s))

and x(s)= co if no such point exists.
Then we can show that x(s)<x(t) (s< t).
As a matter of fact, if we let x' be the minimal point such that

f(t, X 5 4+ z =f(t, X s _ + x'),

then

f (t , Xs _ +x')— f(t, X 5 4=f(t, X ,_+x (0 )— f(t,

and since f(t, • ) is increasing and concave we see that x' < x(t). We can also show
that x(s)_<_.x'. Indeed suppose the contrary: x (s )> x '.  Then

f(s , X ,_  +x (s ))> f(t, X ,_+x (s )) f(t, X s _ +x').

On the other hand

f(s, Xs _ + x(s))— f(t, X,_+x')=f(s,  X _) —f(t, X5_)<0
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and this is contradiction. Thus we have shown that x(s)5x(t) (s<t).
Now

q([x(s), co), s, co)

q([x(s), oo), t, co)( q ( . ,  t, co) is monotone decreasing).

q([x(t), oo), t, w ).

Hence 4([z, oo), s, co) is decreasing with respect to s and so is g,. Q. E. D.

In the following propositions examples are given where reward processes are
monotone but not concave.

Proposition 3 .  L e t X , be  increasing  w ith  m onotone decreasing stochastic
measure q(A, t, co) and f: R—+R be an increasing concave function such that

Ef(X 0 ) < c o  and
o  

If(X s)le— asds<oo

Then the process Z , = e - " r f ( X , )  (ot>0) is monotone.

P ro o f . From (4), for any stopping time T we have

EZ T =EZ 0 +E5 o
T  e- " O R (f (X) — f (X s _))n(dx, s, co),1(s, co)— af (X) —Œf(X5)

with

f, = e- 2 5 0 R ( f (x)—f (X ,_))n(dx, s, co)2(s, co) — otf (X ,)) .

By our assumption the term in parentheses is decreasing with respect to s and hence
condition (A2) is satisfied. Q. E. D.

Proposition 4 .  L et X , and Y , be increasing jum p processes w ith no common
discontinuities. Suppose that X , has the monotone decreasing stochastic measure
qx (• , t, co) and Y , monotone increasing qx (-, t, co) (so X , is concave and Y , is con-
v e x ) . L et f : be  bounded , positiv e, increasing an d  c o n c av e . T hen the
reward process tf(X ,) (Œ>O) is monotone.

P ro o f . By Proposition 2, for any stopping time T  we have

Ee- OEY f (X r )

=Ef(X , ) )+ E (e Y -) -1 )f(X ,4 ,1 y(s, co)ny (dy, s, co)
oJ R

(x)— f(X 5_))4(s, co)n x (dx, s, co)lds

where frix (dx, s, co), Ax (s, co)} and {n y (dy, s, to), Ay (s, co)} are local descriptions of
X , and Y, respectively. By Theorem 3
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( f (x ) — f(Xs-Wx(s, (0)nx(dx, s, co)

is decreasing under our assumption. Hence to see that Z, is monotone it is sufficient
to show that

113 =  f  (1— e- 1 ( Y- Y , - )) 4(s, co)n y (dy, s, o))

(1 — ca o - Y.-))4(s, w)n y (dy, s, to)
[Ys-,m)

is increasing since it is non-negative and f (X ,_ ) is positive and increasing. Now we
have

=1

hs=1
(1— e- Œz)qy (dz, s, co)

[0,œ)

ugy (du, s, co)
[0,1)

where 4(A, s, co)=q y (h - 1 (1 — A), s, co), h(x)= e- I X  and 1 — A = {1—a, a e Then
we have

u4y(du, s, 4yŒu, 1), s, co)du
(0,1)

=5 qy (h - '(1—[u, 1)), s, co)du
[0,1)

qy ([u*(u), cc), s, co)du, (e- 2 "* ( 4 ) =1— u)
( 0,1)

[0.1) q
y Œu*(u), co), t, co)du (q y ( • , t, co): monotone-increasing)

=h,.

Thus h, is increasing. Q. E. D.

5 .  Example

1. Let N, be an ,F -adapted jump process with positive jump size 1, that is, N, is
a  counting process. W e shall assume tha t N , is characterized by its conditional
jump rate 2(t, o)) in the following way:

(DI) P(N,, h -  N ,=1 I Sr,)=.1(t, co)h + o(h)

P(N t+h —  Nt = 0  1..5r,) = 1 — Oh+ o(h)

where A(t, a)) is  an Sr ,-adapted measurable process. Also we assume that there
exists a constant K such that



1
— F(X4-) .ç (A-X t-)n (X t--,)

and these are a local description of X, = max ( Y0 ,..., Y,,, t ). We have

(.• m P  X t + h E A , N 4 1 ,— 11, t ) n' (A , t, co) =  i
h40P ( A r 4 h —  Ar; =11Y' t )

= lim P ( 1 7N c i-i > Y Nt+1 E A —  X t - I F  t )
h 1— F (X -)

d F (y )  ,
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T P (N t + 1, —Nt _ 11.9" ; ) < KK .

Here we also assume that = g , where is the u-field generated by all the
processes which define costs we are going to consider.

Let { Ç , n= 1, 2,...} b e  a  sequence of positive, independent a n d  identically
distributed integrable random variables with a common distribution function F which
are also independent of the process N1 . L e t

X t =  Y0 + • • YNt

Then putting N ;=  '5" /Ex#x we have
sst

with Y 0  =O.O.

lim - P (N + h — N = 1 1 t5 r t)
h 10 n t

1= l im  P ( N
t
 h  — N = 11 ) = ).(t, co)

h 1 0  n 

and

n '( A ,  t ,  ( 0 ) = 1 i m
P(X,±1, E A , N 4 h —  N ;  = 1 1 .  t ) 

h i° P(N;i-h— N ;= 1 19 . t)

d F (x ) ,  where A — X e_ = {a— X 1_, a e A} .

Therefore thesethese are a local description of X , by Theorem I.
Let now

X, = max (Yo, Y1,• • •, YN) •

Then we have

1
h M = 1

h 40 n

t v= E r n p i

kAN + I - -  ."
y

1 - 9  •  t+h — N t = 1 1.9 - t)
h40 n t

= ( 1 — F(X,_))/1(t, co)

and
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q([y, co), t, co)= A(t , co)(1—F(X,_+ y))

and hence if .1.(t, co) is decreasing in t then q([y, co), t, co) is decreasing in t.

2. Using the above results, let us find an optimal stopping rule for a reward process
R,:

R,=e-Ytf(X,)

where

w o  +  •  •  •  +  wm,
X i = max (Z0 ,..., ZN ,).

Here M , and  N , are  counting processes with n o  common discontinuities which
satisfy the condition (D1) with jump rates 4,(t, w) and .1.N (t, w) respectively. {W}
and {Z„} are sequences of positive, independent, and  identically distributed in-
tegrable random variables which are also independent of M, and N , .  For simplicity,
let f ( . )  be bounded and F(dx) be the common distribution for {4}.

Then from Proposition 2 and the results in 1 of this section we have, for any
stopping time T,

ERT = Ef (Z 0 ) + E e -  [  f (X s _)/1,(s, w)(Ee - w 0 — 1)
o

+ f (x ) f  (X  ))4 (s , w)dF(x)]cls

Also, under assumptions that ( i )  f  is  positive and increasing and (ii) 4,(s, co) is
increasing and  4(s, w ) is decreasing, we see directly by the  representation o f R,
that R, is monotone and a stopping time T* defined by

T* =in f f(X,_)A m (s, co)(Ee - wo —1)

+ (f(x )— f(X ))d F (x );,(s ,  w ) o }

is optimal as long as T*
 G  00 a.s..

Conditions that f( • ) is continuous and N,--+ oo a.s. (t o o )  are  sufficient for T*

to be finite a.s.. This is a consequence of the following fact

x  s _ (f (x)— f (X ,_)dF(x) 0  a . s .  (s--* co)

which we shall now show.
Indeed, if we put

= sup {y, P(W0 y)<1} ,

X, increases a.s. to c as co since X a.s. if y > a  and P(X s < y)—>0 as co if
y <ci.
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The latter comes from the fact that

P(X s < y )=  P (W o < y)" Is = n) P(Wo<y)"< oo
n = 0 n = 0

(since P(W0 <y)<1) and that P(INIs =n)—)0 as s oo).
On the other hand

(f (x)— f (X s _ ) )d F (x )=  co ( f (x)— f (X s _))+dF(x)= g(f (X s _))

(a+ =a if a> 0 and a+ =0 if a <0)

where

g (a )=  œ (f(x)— a)dF(x)= E (f (W0 ) — a)+.

When a—tf(o- ), then g(a )-4 ) since (f(W 0 ) —  0+-4). Thus since f (X ,_ )-4 (a ) a.s.,
g(f(X,_))—>0 a.s. (See Neveu [1] for a discrete version of this problem).
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