On the group of self-homotopy equivalences of H-spaces of rank 2

By
Mamoru Mimura and Norichika Sawashita
(Received January 19, 1980)
Dedicated to Professor T. Kudo on his 60-th birthday

§ 1. Introduction.

The set $\mathcal{E}(X)$ of homotopy classes of homotopy equivalences of a based space X to itself forms a group under composition of maps. This group is called the group of self-homotopy equivalences of X. The group $\mathcal{E}(X)$ has been studied by several authors (e.g. [2], [5], [10], [12], [14]).

In the present paper, we study the group $\mathcal{E}(X)$ for a simply connected, finite H-complex X of rank 2. The classification of simply connected, finite H complexes of rank 2 has been given in [8] as follows: X is homotopy equivalent to one of $S^{3} \times S^{3}, S U(3), E_{k}(k=0,1,3,4,5), \quad S^{7} \times S^{7}$ and $G_{2, b}(-2 \leqq b \leqq 5)$. Here E_{k} is the principal S^{3}-bundle over S^{7} with the characteristic class $k \omega \in \pi_{7}\left(B S^{3}\right) \cong \boldsymbol{Z}_{12}, \omega$ a generator. For example $E_{0}=S^{3} \times S^{7}, E_{1}=S p(2)$ and $G_{2, b}$ is the principal S^{3}-bundle over the Stiefel manifold $V_{7,2}=S O(7) / S O(5)$ induced by a suitable map $f_{b}: V_{7,2} \rightarrow B S^{3}$ (see $\S 3$ for details) such that $G_{2,0}=G_{2}$ is the compact, exceptional Lie group G_{2} of rank 2.

For torsion free, finite H-complexes X of rank 2 which have been classified in [4], [17], the group $\mathcal{E}(X)$ is already known, that is, for $S^{i} \times S^{j}(i, j=1,3,7)$ in [13], [14], for $S U(3)$ and $S p(2)$ in [10], and for $E_{k}(k \neq 0,1)$ in [12]. So we will determine $\mathcal{E}\left(G_{2, b}\right)$ for $-2 \leqq b \leqq 5$.

In a short exact sequence : $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$, we write the group composition in A as addition, and it in B and C as multiplication.

Then the following is our main result obtained in $\S 4$.

Main Theorem. We have the following exact sequences:
(i) $0 \longrightarrow D\left(\boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{2}\right) \longrightarrow \mathcal{E}\left(G_{2, b}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1 \quad(b=-1,0,2,3,5)$,
(ii) $0 \longrightarrow D\left(\boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{6}\right) \longrightarrow \mathcal{E}\left(G_{2, b}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1 \quad(b=1,4)$,
(iii) $0 \longrightarrow \boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{6} \longrightarrow \mathcal{E}\left(G_{2,-2}\right) \longrightarrow G \longrightarrow 1$,

$$
0 \longrightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \longrightarrow G \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1,
$$

where, for an abelian group $H, D(H)$ is a group given by the split exact se-
quence: $0 \rightarrow H \rightarrow D(H) \rightarrow \boldsymbol{Z}_{2} \rightarrow 1$, with the splitting action \boldsymbol{Z}_{2} on H given by $(-1) \cdot h$ $=-h$ for $-1 \in Z_{2}$ and $h \in H$.

The paper is organized as follows. The Barcus-Barratt theorem is introduced in $\S 2$. In $\S 3$ some results on homotopy of $G_{2, b}$, which will be needed in $\S 4$, are prepared. In $\S 4$ we study the group $\mathcal{E}\left(G_{2,0}\right)$ by making use of the results of the previous sections and we obtain the main theorem. In the last section, $\S 5$, we give a proof of the lemma used in $\S 4$.

Throughout the paper, all spaces have homotopy types of $C W$-complexes with base points and all (continuous) maps and homotopies preserve the base points. For given spaces X and Y, we denote by $[X, Y]$ the set of (based) homotopy classes of maps from X to Y, and by the same letter f a map f : $X \rightarrow Y$ and its homotopy class $f \in[X, Y]$. The integral coefficient of the homology is omitted: $H_{i}(X)=H_{i}(X ; \boldsymbol{Z}) . \quad X^{(n)}$ stands for the n-skeleton of X and $\pi_{i}(X: p)$ the p-component of $\pi_{i}(X)$ and \boldsymbol{Q}_{p} the ring of those fractions, whose denominators, in the lowest form, are prime to p.

§ 2. The theorem of Barcus-Barratt.

Let K be a simply connected $C W$-complex of finite dimension. Let

$$
S^{q} \xrightarrow{\alpha} K \xrightarrow{i} K \bigcup_{\alpha} \mathrm{e}^{q+1} \xrightarrow{p} S^{q+1}, \quad q>\operatorname{dim} K,
$$

be the sequence of induced cofiberings. The coaction

$$
l: K \cup e^{q+1} \longrightarrow\left(K \cup e^{q+1}\right) \vee S^{q+1}
$$

is defined by shrinking the equator $S^{q} \times\{1 / 2\}$ of e^{q+1}. We define a map

$$
\begin{equation*}
A: \pi_{q+1}\left(K \cup e^{q+1}\right) \longrightarrow\left[K \cup e^{q+1}, K \cup e^{q+1}\right] \tag{2.1}
\end{equation*}
$$

by $\Lambda(\xi)=\nabla \circ(1 \vee \xi) \circ l$, where ∇ is the folding map and 1 is the class of identity map of $K \cup e^{q+1}$. Furthermore, since $q>\operatorname{dim} K$, by the restriction Λ on $i_{*} \pi_{q+1}(K)$ we can define a homomorphism (cf. Lemmas 1.4 and 1.8 of [10])

$$
\lambda: i_{*} \pi_{q+1}(K) \longrightarrow \mathcal{E}\left(K \cup e^{q+1}\right) .
$$

Since $q>\operatorname{dim} K$, the induced maps

$$
\begin{align*}
& i_{*}:[K, K] \longrightarrow\left[K, K \cup e^{q+1}\right] \text { and } \tag{2.2}\\
& p^{*}:\left[S^{q+1}, S^{q+1}\right] \longrightarrow\left[K \cup e^{q+1}, S^{q+1}\right] \text { are both bijective. }
\end{align*}
$$

So the maps $\Phi:\left[K \cup e^{q+1}, K \cup e^{q+1}\right] \rightarrow[K, K]$ and $\Psi:\left[K \cup e^{q+1}, K \cup e^{q+1}\right] \rightarrow\left[S^{q+1}\right.$, $\left.S^{q+1}\right]$ can be defined by the following homotopy commutative diagram:

Since these two maps preserve composition of maps, a homomorphism

$$
\phi \times \psi: \mathcal{E}\left(K \cup e^{q+1}\right) \longrightarrow \mathcal{E}(K) \times \mathcal{E}\left(S^{q+1}\right)
$$

can be defined by the restriction of $\Phi \times \Psi$. Let $g:\left(S^{q}, s_{o}\right) \rightarrow\left(K, k_{0}\right)$ be a map representing $\alpha \in \pi_{q}(K)$. Let X^{Y} be the function space of maps: $\left(Y, y_{o}\right) \rightarrow\left(X, x_{0}\right)$. Then Barcus-Barratt defined in [2] a homomorphism

$$
\alpha_{i}: \pi_{1}\left(X^{K}, i\right) \xrightarrow{g^{*}} \pi_{1}\left(X^{s q}, i \circ g\right) \xrightarrow{(i \circ g)_{1}} \pi_{q+1}(X) .
$$

Here $X=K \cup e^{q+1}, \quad g^{*}(F)=F \circ\left(g \times 1_{I}\right), 1_{I}$ is the identity of $I=[0,1],(i \circ g)_{4}(F)=$ $d\left(F,(i \circ g)^{b}\right)$ where ($\left.i \circ g\right)^{b}: S^{q} \times I \rightarrow K \cup e^{q+1}$ is the map defined by $(i \circ g)^{b}(s, t)=i \circ g(s)$, and $d\left(F,(i \circ g)^{b}\right)$ is the separation element of F and $(i \circ g)^{b}$ (see [2] for the definition). Then we have the following theorem due to Barcus-Barratt.

Theorem 2.1. (Theorem 6.1 of [2]) The following sequence is exact:

$$
0 \longrightarrow \Delta \longrightarrow i_{*} \pi_{q+1}(K) \xrightarrow{\lambda} \mathcal{E}\left(K \bigcup_{\alpha} e^{q+1}\right) \xrightarrow{\phi \times \psi} G \longrightarrow 1
$$

Here $\Delta=i_{*} \pi_{q+1}(K) \cap \alpha_{i} \pi_{1}\left(\left(K \cup e^{q+1}\right)^{K}\right.$, $\left.i\right)$, the subgroup G of $\mathcal{E}(K) \times \mathcal{E}\left(S^{q+1}\right)$ is isomorphic to
$G_{1}=\left\{h \in \mathcal{E}(K) \mid h_{*} \alpha=\varepsilon \alpha, \varepsilon= \pm 1\right.$, in $\left.\pi_{q}(K)\right\}$, if $2 \alpha \neq 0$,
and G is isomorphic to $G_{1} \times \boldsymbol{Z}_{2}$, if $2 \alpha=0$.
The next corollary will be used in the later section.
Corollary 2.2. (cf. Remark in p. 304 of [12]) If $K \cup e^{q+1}$ has a multiplication, the homomorphism λ and the group Δ are given as follows:

$$
\begin{aligned}
& \lambda(\xi)=1+\xi \circ p, \quad \xi \in i_{*} \pi_{q+1}(K), \\
& \Delta=(S \alpha) *\left[S K, K \cup e^{q+1}\right] .
\end{aligned}
$$

Therefore we have the exact sequence:

$$
\begin{equation*}
0 \longrightarrow H \longrightarrow \mathcal{E}\left(K \cup e^{q+1}\right) \longrightarrow G \longrightarrow 1, \tag{2.3}
\end{equation*}
$$

where G is given in the above theorem, and H is given as follows:

$$
\begin{equation*}
H=i_{*} \pi_{q+1}(K) /(S \alpha) *\left[S K, K \cup e^{q+1}\right] \tag{2.4}
\end{equation*}
$$

Proof. By the definition of λ, we have a homotopy commutative diagram:

where m is a multiplication on $K \cup e^{q+1}, j$ is the inclusion and d is the diagonal map. Hence we have $\lambda(\xi)=1+\xi \circ p$ and so we have

$$
\lambda^{-1}(1)=p^{*-1}(0) \cap i_{*} \pi_{q+1}(K) .
$$

Consider the following commutative diagram consisting of the Puppe exact sequence:

where the lower p^{*} is bijective by (2.2). We have

$$
(S \alpha)^{*}\left[S K, K \cup e^{q+1}\right] \subset \operatorname{Ker}\left\{p_{*}: \pi_{q+1}\left(K \cup e^{q+1}\right) \longrightarrow \pi_{q+1}\left(S^{q+1}\right)\right\}=i_{*} \pi_{q+1}(K)
$$

since $\pi_{q+1}(K) \xrightarrow{i_{*}} \pi_{q+1}\left(K \cup e^{q+1}\right) \xrightarrow{p_{*}} \pi_{q+1}\left(S^{q+1}\right) \longrightarrow \cdots$ is exact. Therefore we have

$$
p^{*-1}(0)=(S \alpha)^{*}\left[S K, K \cup e^{q+1}\right] \subset i_{*} \pi_{q+1}(K) .
$$

So, we have $\Delta=\lambda^{-1}(1)=(S \alpha)^{*}\left[S K, K \cup e^{q+1}\right]$.
q.e.d.

§ 3. Some homotopy of $G_{2, b}$.

Let G_{2} be the compact, exceptional Lie group of rank 2. Let $f: V_{7,2} \rightarrow B S^{3}$ be the classifying map of G_{2}. Let $\phi: V_{7,2} \rightarrow V_{7,2} \vee S^{11}$ be the map shrinking the equator $S^{10} \times\{1 / 2\}$ in $V_{7,2}=M^{6} \cup C S^{10}$. Let α be a generator of $\pi_{11}\left(B S^{3}\right) \cong \pi_{10}\left(S^{3}\right)$ $\cong \boldsymbol{Z}_{15}$ which corresponds to 8ω under the monomorphism: $\pi_{10}\left(\mathrm{~S}^{3}\right) \rightarrow \pi_{10}\left(G_{2}^{(9)}\right)$ (see Lemma 3.9). For each integer b, let $g_{b}: S^{11} \rightarrow B S^{3}$ represent $b \alpha$ and let $G_{2, b}$ be the principal S^{3}-bundle over $V_{7,2}$ induced by the composition

$$
f_{b}=\nabla \circ\left(f \vee g_{b}\right) \circ \phi: V_{7,2} \longrightarrow V_{7,2} \vee S^{11} \longrightarrow B S^{3} \vee B S^{3} \longrightarrow B S^{3} .
$$

For example, $G_{2}=G_{2,0}$.
Recall the following
Theorem 3.1. (Theorem 5.1 of [8]) Let X be a 1-connected, finite H-complex of rank 2 such that $H_{*}(X ; \boldsymbol{Z})$ has 2-torsion. Then X is homotopy equivalent to $G_{2, b}$ for some b. There are just 8 homotopy types of such H-complexes: $G_{2, b}$ for $-2 \leqq b \leqq 5$.

By making use of the exact sequence associated with the fibering $S U(3) \stackrel{i}{\rightarrow}$ $\stackrel{p}{G_{2}} \xrightarrow{6}$, one can compute $\pi_{i}\left(G_{2}: 2\right)$ (the odd primary components of $\pi_{i}\left(G_{2}\right)$ are computed by the killing-homotopy method).

Lemma 3.2. ([6]) $\pi_{i}\left(G_{2}\right)$ for $i \leqq 14$ are as follows:

i	1	2	3	4	5	6	7	8	9	10
$\pi_{i}\left(G_{2}\right)$	0	0	\boldsymbol{Z}	0	0	\boldsymbol{Z}_{3}	0	\boldsymbol{Z}_{2}	\boldsymbol{Z}_{6}	0
gen. of 2-comp.							$i_{* \iota_{3}}$			
$\left\langle\eta_{6}^{2}\right\rangle$	$\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}$									

11	12	13	14
$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$	0	0	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{21}$
$\left\langle 2 \Lambda_{\left.\iota_{13}\right\rangle, i_{*}\left[\nu_{5}^{2}\right]}\right.$		$\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle, i_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}$	

where the notation $[\alpha]$ means such an element of $\pi_{i}(S U(3): 2)$ that $q_{*}[\alpha]=$ $\alpha \in \pi_{i}\left(S^{5}: 2\right)$ for the projection $q: S U(3) \rightarrow S^{5}=S U(3) / S U(2)$, and the notation $\langle\beta\rangle$ means such an element of $\pi_{i}\left(G_{2}: 2\right)$ that $p_{*}\langle\beta\rangle=\beta \in \pi_{i}\left(S^{6}: 2\right)$ for the projection p : $G_{2} \rightarrow S^{6}$.

By [8, §6] we have

$$
\begin{aligned}
& G_{2, b} \simeq G_{2} \text { for } p \neq 3,5, \\
& G_{2, b \frac{}{p}} \simeq \begin{cases}G_{2} & (b=-1,0,2,3,5) \\
S^{3} \times S^{11} & (b=-2,1,4),\end{cases} \\
& G_{2, b} \simeq \begin{cases}G_{2} & (b=-1,0,1,2,4,5) \\
S^{3} \times S^{11} & (b=-2,3) .\end{cases}
\end{aligned}
$$

By Lemma 3.2 and by the results in Toda's book [15] these p-equivalences give
Lemma 3.3. (i) $\pi_{10}\left(G_{2,-2}\right) \cong \boldsymbol{Z}_{15}, \pi_{10}\left(G_{2,6}\right) \cong \boldsymbol{Z}_{3}(b=1,4), \pi_{10}\left(G_{2,3}\right) \cong \boldsymbol{Z}_{5}$.
(ii) $\pi_{13}\left(G_{2, b}\right) \cong Z_{3}(b=-2,1,4)$.
(iii) $\quad \pi_{14}\left(G_{2, b}\right) \cong \boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{6}(b=-2,1,4)$.
(iv) The other homotopy groups $\pi_{i}\left(G_{2, b}\right)$ for $0 \leqq i \leqq 14(-2 \leqq b \leqq 5)$ are isomorphic to $\pi_{i}\left(G_{2}\right)$ given in Lemma 3.2.

By Theorem 2.2 of [8] we have
Theorem 3.4. (i) $H^{*}\left(G_{2, v} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \Lambda\left(S q^{2} x_{3}\right)$.
(ii) $H^{*}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right) \cong \Lambda\left(x_{3}, x_{11}\right)$ for each prime $p \geqq 3$, where $\operatorname{deg} x_{i}=i$.

Therefore $G_{2, b}$ has a cell structure:

$$
G_{2,0} \simeq S^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14} .
$$

Let $M^{n}=S^{n-1} \bigcup_{2} e^{n}$ be the mapping cone of a map: $S^{n-1} \rightarrow S^{n-1}$ of degree 2. Then we have two cofiberings:

$$
\begin{equation*}
S^{3} \longrightarrow G_{2, b}^{(6)} \longrightarrow M^{6}, \quad G_{2, b}^{(6)} \longrightarrow G_{2, b}^{(9)} \longrightarrow M^{9}, \tag{3.1}
\end{equation*}
$$

which are equivalent to induced cofiberings by some maps $f_{1}: M^{5} \rightarrow S^{3}$ and f_{2} : $M^{8} \rightarrow G_{2, b}^{(6)}$ respectively by [3].

Lemma 3.5. (i) $\left[M^{5}, G_{2, b}^{(6)}\right]=\left[M^{6}, G_{2, b}^{(6)}\right]=\left[M^{7}, G_{2, b}^{(9)}\right]=0$.
(ii) $\left[M^{9}, G_{2, b}^{(9)}\right] \cong\left[M^{9}, G_{2, b}\right] \cong \boldsymbol{Z}_{4}$ generated by an extension of a non-trivial element of $\pi_{8}\left(G_{2, b}\right) \cong \boldsymbol{Z}_{2}$.
(iii) $\left[M^{10}, G_{2, b}\right] \cong \boldsymbol{Z}_{2}$ generated by an extension of a non-trivial element of $\pi_{9}\left(G_{2, b}: 2\right) \cong \boldsymbol{Z}_{2}$.

Proof. (i) Consider the Puppe exact sequence

$$
\begin{align*}
\cdots & \longrightarrow\left[S^{n}, G_{2, b}\right] \longrightarrow\left[S^{n}, G_{2, b}\right] \xrightarrow{p^{*}}\left[M^{n}, G_{2, b}\right] \tag{3.2}\\
& \xrightarrow{i^{*}}\left[S^{n-1}, G_{2, b}\right] \longrightarrow\left[S^{n-1}, G_{2, b}\right] \longrightarrow \cdots
\end{align*}
$$

We have $\pi_{4}\left(G_{2, b}\right)=\pi_{5}\left(G_{2, b}\right)=\pi_{7}\left(G_{2, b}\right)=0$ and $\pi_{6}\left(G_{2, b}\right) \cong Z_{3}$ by Lemmas 3.2 and 3.3. Therefore we have that $\left[M^{5}, G_{2, b}\right]=\left[M^{6}, G_{2, b}\right]=\left[M^{7}, G_{2, b}\right]=0$, since $\left[M^{n}, X\right]$ is a \boldsymbol{Z}_{4}-group by [1].

For dimensional reasons, we have $\left[M^{5}, G_{2, b}^{(6)}\right]=\left[M^{6}, G_{2, b}^{(6)}\right]=\left[M^{7}, G_{2, b}^{(9)}\right]=0$.
(ii) Since $\pi_{8}\left(G_{2, b}\right) \cong \boldsymbol{Z}_{2}$ and $\pi_{9}\left(G_{2, b}: 2\right) \cong \boldsymbol{Z}_{2}$, by the above exact sequence for $n=9$, we have an exact sequence:

$$
0 \longrightarrow \boldsymbol{Z}_{2} \xrightarrow{p^{*}}\left[M^{9}, G_{2, b}\right] \xrightarrow{i^{*}} \boldsymbol{Z}_{2} \longrightarrow 0 .
$$

Since $G_{2, b}$ is 2 -equivalent to G_{2}, we may verify it in the case $b=0$. Let Ext $\left\langle\eta_{6}^{2}\right\rangle$ be an extension of $\left\langle\eta_{6}^{2}\right\rangle \in \pi_{8}\left(G_{2}\right)$. Since $21_{M^{9}}=i \circ \eta_{8}{ }^{\circ} p$ by [16], we have 2 Ext $\left\langle\eta_{6}^{2}\right\rangle$ $=\operatorname{Ext}\left\langle\eta_{6}^{2}\right\rangle \circ i \circ \eta_{8} \circ p=\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}{ }^{\circ} p$ and so $2 \operatorname{Ext}\left\langle\eta_{6}^{2}\right\rangle \neq 0$ in $\left[M^{9}, G_{2}\right]$ by Lemma 3.2 (Recall that $\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8} \neq 0$ and that p^{*} is monic). Therefore we have $\left[M^{9}, G_{2, b}\right] \cong \boldsymbol{Z}_{4}$ generated by an extension of a non-trivial element of $\pi_{8}\left(G_{2, b}\right) \cong \boldsymbol{Z}_{2}$.
(iii) By Lemmas 3.2 and 3.3 we have $\pi_{9}\left(G_{2, b}: 2\right) \cong \boldsymbol{Z}_{2}$ and $\pi_{10}\left(G_{2, b}: 2\right)=0$. Therefore we have immediately $\left[M^{10}, G_{2, b}\right] \cong \pi_{9}\left(G_{2, b}: 2\right) \cong \boldsymbol{Z}_{2}$ by (3.2). q.e.d.

Lemma 3.6. (i) $i_{*}:\left[S^{3}, S^{3}\right] \longrightarrow\left[S^{3}, G_{2, b}^{(6)}\right]$ and

$$
i^{*}:\left[G_{2, b}^{(6)}, G_{2, b}^{(6)}\right] \longrightarrow\left[S^{3}, G_{2, b}^{(6)}\right] \text { are both bijective. }
$$

(ii) $\left[S G_{2, b}^{(6)}, G_{2, b}^{(9)}\right]=\left[S G_{2, b}^{(6)}, G_{2, b}\right]=0$.

Proof. (i) For dimensional reasons we see easily that $i_{*}:\left[S^{3}, S^{3}\right] \rightarrow\left[S^{3}, G_{2, b}^{(6)}\right]$ is bijective. Consider the Puppe exact sequence associated with (3.1):

$$
\longrightarrow\left[M^{6}, G_{2, b}^{(6)}\right] \longrightarrow\left[G_{2, b}^{(6)}, G_{2, b}^{(6)}\right] \xrightarrow{i^{*}}\left[S^{3}, G_{2, b}^{(6)}\right] \xrightarrow{f_{1}^{*}}\left[M^{5}, G_{2, b}^{(6)}\right] \longrightarrow
$$

By (i) of Lemma $3.5\left[M^{n}, G_{2, b}^{(6)}\right]=0$ for $n=5,6$. Therefore i^{*} is bijective.
(ii) Consider the Puppe exact sequence associated with (3.1):

$$
\cdots \longrightarrow\left[M^{7}, G_{2, b}^{(9)}\right] \longrightarrow\left[S G_{2, b}^{(6)}, G_{2, b}^{(9)}\right] \longrightarrow\left[S^{4}, G_{2, b}^{(9)}\right] \longrightarrow \cdots
$$

Since $\left[M^{7}, G_{2, b}^{(9)}\right]=\left[S^{4}, G_{2, b}^{(9)}\right]=0$ by (i) of Lemma 3.5 and Lemmas 3.2 and 3.3 for dimensional reasons, we have

$$
\left[S G_{2, b}^{(6)}, G_{2, b}\right]=\left[S G_{2, b}^{(b)}, G_{2, b}^{(9)}\right]=0 .
$$

Lemma 3.7. (i) $\pi_{7}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{2}$.
(ii) $\pi_{8}\left(G_{2, b}^{(6)}\right)=\boldsymbol{Z}_{4}$.

Proof. Let F be the 3-connective fibre space over $G_{2, b}^{(6)}$. Then we have a fibering :

$$
F \xrightarrow{i} G_{2, b}^{(6)} \xrightarrow{\pi} K(\boldsymbol{Z}, 3) .
$$

Since $H^{*}\left(G_{2, t}^{(6)} ; \boldsymbol{Z}_{2}\right)=\left\{1, x_{3}, x_{5}=S q^{2} x_{3}, x_{3}^{2}\right\}$, we see that $\pi^{*}: H^{*}\left(\boldsymbol{Z}, 3 ; \boldsymbol{Z}_{2}\right) \rightarrow$ $H^{*}\left(G_{2, b}^{(6)} ; \boldsymbol{Z}_{2}\right)$ is an epimorphism with $\operatorname{Ker} \pi^{*}=\sum_{i \geq 8} H^{i}\left(\boldsymbol{Z}, 3 ; \boldsymbol{Z}_{2}\right)$. Therefore, there exists a transgressive element $y_{7} \in H^{\eta}\left(F ; \boldsymbol{Z}_{2}\right)$ whose transgression image is $\tau\left(y_{7}\right)=u S q^{2} u$ where $u \in H^{3}\left(\boldsymbol{Z}, 3 ; \boldsymbol{Z}_{2}\right)$ is the fundamental class. Then $\tau\left(S q^{1} y_{7}\right)=$ $S q^{1} \tau\left(y_{7}\right)=S q^{1}\left(u S q^{2} u\right)=u^{3}$. So there exists a transgressive element $y_{8} \in H^{8}\left(F ; \boldsymbol{Z}_{2}\right)$ such that $\tau\left(y_{8}\right)=S q^{4} S q^{2} u$. Then $\tau\left(S q^{1} y_{8}\right)=S q^{1} \tau\left(y_{8}\right)=S q^{1} S q^{4} S q^{2} u=S q^{5} S q^{2} u=\left(S q^{2} u\right)^{2}$ and $\tau\left(S q^{2} y_{7}\right)=S q^{2} \tau\left(y_{7}\right)=S q^{2}\left(u S q^{2} u\right)=\left(S q^{2} u\right)^{2}$, whence $S q^{1} y_{8}=S q^{2} y_{7}$. Thus we have

$$
H^{*}\left(F ; \boldsymbol{Z}_{2}\right)=\left\{1, y_{7}, S q^{1} y_{7}, y_{8}, S q^{1} y_{8}, S q^{2} S q^{1} y_{8}, \cdots\right\}
$$

Take a $C W$-complex L with minimum cells 2-equivalent to F, and so we may take $L=\left(\left(S^{7} \cup e^{8}\right) \vee S^{8}\right) \cup e^{9} \cup e^{11} \cup \cdots$. The attaching class of the 9-cell in L is $i_{\circ} \eta_{7} \vee 2 \iota_{8}$: $S^{8} \rightarrow\left(S^{7} \cup e^{8}\right) \vee S^{8}$ where $i: S^{7} \rightarrow S^{7} \cup e^{8}$ is the inclusion. Consider the exact sequence of the pair ($L, S^{7} \cup e^{8} \vee S^{8}$):

$$
\pi_{9}\left(L, S^{7} \cup e^{8} \vee S^{8}\right) \stackrel{\partial}{\rightarrow} \pi_{8}\left(S^{7} \cup e^{8} \vee S^{8}\right) \rightarrow \pi_{8}(L) \rightarrow \pi_{8}\left(L, S^{7} \cup e^{8} \vee S^{8}\right) \rightarrow,
$$

where $\pi_{9}\left(L, S^{7} \cup e^{8} \vee S^{8}\right) \cong \pi_{9}\left(S^{9}\right) \cong \boldsymbol{Z}$ generated by $\iota_{9}, \pi_{8}\left(L, S^{7} \cup e^{8} \vee S^{8}\right)=0, \pi_{8}\left(S^{7} \cup e^{8}\right.$ $\left.\vee S^{8}\right) \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}$ generated by $i_{\circ} \eta_{7}$ and ι_{8}, and $\partial\left(\iota_{9}\right)=i \circ \eta_{7}+2 \iota_{8}$. Therefore $\pi_{8}(L) \cong \boldsymbol{Z}_{4}$. Also, we have immediately $\pi_{7}(L) \cong \boldsymbol{Z}_{2}$. Since $\pi_{i}(L: 2)$ for $i=7,8$ is isomorphic to $\pi_{i}\left(G_{2, b}^{(6)}: 2\right), \pi_{7}\left(G_{2, b}^{(6)}: 2\right)$ and $\pi_{8}\left(G_{2, b}^{(6)}: 2\right)$ are isomorphic to Z_{2} and Z_{4} respectively. Since $i^{*}: H^{*}\left(G_{2, b}^{(6)} ; \boldsymbol{Z}_{p}\right) \rightarrow H^{*}\left(S^{3} ; \boldsymbol{Z}_{p}\right)$ is isomorphic for any odd prime p, the inclusion $i: S^{3} \rightarrow G_{2, b}^{(6)}$ is a p-equivalence. So $\pi_{7}\left(G_{2, b}^{(6)}: p\right)=\pi_{8}\left(G_{2, b}^{(6)}: p\right)=0$ for any odd prime p, since $\pi_{7}\left(S^{3}\right) \cong \boldsymbol{Z}_{2}$ and $\pi_{8}\left(S^{3}\right) \cong \boldsymbol{Z}_{2}$ by [15]. Therefore, we have $\pi_{7}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{2}$ and $\pi_{8}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{4}$. q.e.d.

Lemma 3.8. Let β be a generator of $\left[M^{9}, G_{2, b}^{(9)}\right] \cong \boldsymbol{Z}_{4}$ and let $\pi: G_{2, b}^{(9)} \rightarrow M^{9}=$ $G_{2, b}^{(9)} / G_{2, b}^{(6)}$ be the projection. Then we have $\pi_{*} \beta=21_{M^{9}} \in\left[M^{9}, M^{9}\right] \cong \boldsymbol{Z}_{4}$.

Proof. Consider the following commutative diagram of the exact sequence:

where $j: S^{n} \rightarrow M^{n+1}$ and $i: G_{2, b}^{(6)} \rightarrow G_{2, b}^{(9)}$ are the natural inclusions. Recall that $\pi_{8}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{4}$ and $\pi_{7}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{2}$ by Lemma 3.7, $\pi_{8}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{2}$ and $\pi_{7}\left(G_{2, b}^{(9)}\right)=0$ by Lemmas 3.2 and 3.3 and $\pi_{8}\left(M^{9}\right) \cong \boldsymbol{Z}_{2}$ generated by j, by [9].

Clearly the upper π_{*} is trivial and so $j^{*} \pi_{*} \beta=\pi_{*} j^{*} \beta=0$. Therefore $\pi_{*} \beta$ is not a generator of $\left[M^{9}, M^{9}\right] \cong \boldsymbol{Z}_{4}$, since $\left[M^{9}, M^{9}\right] \cong \boldsymbol{Z}_{4}$ generated by $1_{M^{9}}$, by [9]. We have $\operatorname{Im}\left\{j^{*}:\left[M^{9}, G_{2, b}^{(6)}\right] \rightarrow\left[S^{8}, G_{2, b}^{(6)}\right]\right\}=\operatorname{Tor}\left(\pi_{8}\left(G_{2, b}^{(6)}\right), \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ by (ii) of Lemma 3.7. It follows from this fact that $j^{*} i_{*}=i_{*} j^{*}=0$ in the left diagram and that a generator $\beta \in\left[M^{9}, G_{2, b}^{(9)}\right]$ is not contained in $\operatorname{Im}\left\{i_{*}:\left[M^{9}, G_{2, b}^{(6)}\right] \rightarrow\left[M^{9}, G_{2, b}^{(9)}\right]\right\}$, since $j^{*} \beta$ is non-trivial by (ii) of Lemma 3.5. Therefore $\pi_{*} \beta$ is non-trivial and is not a generator of $\left[M^{9}, M^{9}\right]$. Thus $\pi_{*} \beta=21_{M^{9}}$. q.e.d.

The following lemma is a summary of Lemmas 4.3, 5.2 and 5.3 in [8].
Lemma 3.9. (i) $G_{2, b}^{(9)} \simeq G_{2}^{(9)}$ and $\pi_{10}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{120}$.
(ii) The attaching class of the 11-cell in $G_{2, b}^{(11)}=G_{2, b}^{(9)} \cup e^{11}$ is $(1+8 b) \omega$ with ω a generator of $\pi_{10}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{120}$.
(iii) Let $\pi: G_{2}^{(9)} \rightarrow M^{9}=G_{2}^{(9)} / G_{2}^{(6)}$ be the projection. Then $\pi_{*}(\omega)=\gamma$ is a generator of $\pi_{10}\left(M^{9}\right) \cong \boldsymbol{Z}_{4}$.

Let $i: G_{2,6}^{(9)} \rightarrow G_{2,6}^{(11)}$ be the inclusion.
Lemma 3.10. $i_{*} \pi_{11}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{2}$.
Proof. Consider the exact sequence of the pair $\left(G_{2, b}^{(1)}, G_{2, b}^{(9)}\right)$:

$$
\cdots \longrightarrow \pi_{11}\left(G_{2, b}^{(9)}\right) \xrightarrow{i_{*}} \pi_{11}\left(G_{2, b}^{(1,1)}\right) \longrightarrow \pi_{11}\left(G_{2, b}^{(11)}, G_{2, b}^{(9)}\right) \xrightarrow{\partial} \pi_{10}\left(G_{2, b}^{(9)}\right) \longrightarrow \cdots,
$$

where $\pi_{11}\left(G_{2, b}^{(11)}\right) \cong \pi_{11}\left(G_{2, b}\right)=\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$ by Lemmas 3.2 and $3.3, \pi_{11}\left(G_{2, b}^{(11)}, G_{2, b}^{(9)}\right) \cong \pi_{11}\left(S^{11}\right) \cong$ \boldsymbol{Z} by the Blakers-Massey theorem, and $\pi_{10}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{120}$ by (i) of Lemma 3.9. Then we have immediately

$$
i_{*} \pi_{11}\left(G_{2, b}^{(9)}\right) \cong Z_{2} . \quad \text { q.e.d. }
$$

Lemma 3.11. For ω a generator of $\pi_{10}\left(G_{2, b}^{(9)}\right)$, the homomorphism

$$
(S \omega)^{*}:\left[S G_{2, b}^{(9)}, G_{2, b}\right] \longrightarrow\left[S^{11}, G_{2, b}\right]
$$

is trivial for $-2 \leqq b \leqq 5$.
Proof. Since the suspension homomorphism: $\pi_{10}\left(M^{9}\right) \rightarrow \pi_{11}\left(M^{10}\right)$ is clearly isomorphic, we have $\pi \circ S \omega=\gamma$ by (iii) of Lemma 3.9, where $\pi: S G_{2, b}^{(9)} \rightarrow M^{10}$ is the projection and γ is a generator of $\pi_{11}\left(M^{10}\right)$. We have the following commutative diagram:

where the horizontal sequence is the Puppe exact sequence associated with the cofibering (3.1).

Since $\left[S G_{2, b}^{(6)}, G_{2, b}\right]=0$ by (ii) of Lemma 3.6, we see that

$$
\begin{equation*}
\pi^{*}:\left[M^{10}, G_{2, b}\right] \longrightarrow\left[S G_{2, b}^{(9)}, G_{2, b}\right] \text { is epimorphic. } \tag{3.4}
\end{equation*}
$$

Next we will show that

$$
\begin{equation*}
\gamma^{*}=0:\left[M^{10}, G_{2, b}\right] \longrightarrow\left[S^{11}, G_{2, b}\right] . \tag{3.5}
\end{equation*}
$$

As $\left[M^{n}, X\right]$ is a \boldsymbol{Z}_{4}-group and $G_{2, b}$ is 2-equivalent to G_{2}, it is sufficient to show it for the case $b=0$. By Lemma 3.2 and (iii) of Lemma 3.5 we have [M^{10}, G_{2}] $\cong \boldsymbol{Z}_{2}$ generated by an extension $\operatorname{Ext}\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}\right\}$ of $\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8} \in \pi_{9}\left(G_{2}\right)$. Since γ is a coextension of $\eta_{10} \in \pi_{11}\left(S^{10}\right)$, we have

$$
\operatorname{Ext}\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}\right\} \circ \gamma \in\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}, 2 \iota_{9}, \eta_{9}\right\} .
$$

By (5.4) and (5.5) of [15] and Lemma 3.2 we have

$$
\left.\begin{array}{rl}
\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}, 2 \iota_{9}, \eta_{9}\right\} & \supset\left\langle\eta_{6}^{2}\right\rangle \circ\left\{\eta_{8}, 2 \iota_{9}, \eta_{9}\right\} \\
& =\left\langle\eta_{6}^{2}\right\rangle \circ\left\{S^{5} \nu^{\prime},-S^{5} \nu^{\prime}\right\} \\
& =\left\langle\eta_{6}^{2}\right\rangle \circ\left\{2 \nu_{8},-2 \nu_{8}\right\}=0
\end{array}\right\} \begin{aligned}
\text { modulo }\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8} \circ \pi_{11}\left(S^{9}\right)+\pi_{10}\left(G_{2}\right) \circ \eta_{10}=\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}^{3}\right\}=\left\{\left\langle\gamma_{6}^{2}\right\rangle \circ 4 \nu_{8}\right\}=0 .
\end{aligned}
$$

Therefore we have $\operatorname{Ext}\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}\right\} \circ \gamma=0$, and so (3.5) was proved. By (3.4) and (3.5) and by the commutativity of (3.3) we have

$$
\operatorname{Im}(S \omega)^{*}=\operatorname{Im}(S \omega)^{*} \circ \pi^{*}=\operatorname{Im} \gamma^{*}=0
$$

Lemma 3.12. (i) For $b=-1,0,2,3,5, \pi_{13}\left(G_{2, b}^{(1,1)}\right) \cong \boldsymbol{Z}$ generated by the attaching class of the 14 -cell in $G_{2, b}=G_{2, b}^{(1)} \cup e^{14}$.
(ii) For $b=-2,1,4$, the short exact sequence

$$
0 \longrightarrow \pi_{14}\left(G_{2, b}, G_{2, b}^{(1, b)}\right) \xrightarrow{\partial} \pi_{13}\left(G_{2, b}^{(1,1)}\right) \longrightarrow \pi_{13}\left(G_{2, b}\right) \longrightarrow 0
$$

has a splitting homomorphism $\rho: \pi_{13}\left(G_{2, b}\right) \rightarrow \pi_{13}\left(G_{2, b}^{(1,1)}\right)$, where $\pi_{14}\left(G_{2, b}, G_{2, b}^{(1,1)}\right) \cong \boldsymbol{Z}$ and $\pi_{13}\left(G_{2, b}\right) \cong Z_{3}$, and so we have

$$
\pi_{13}\left(G_{2, b}^{(1,1)}\right) \cong \rho \pi_{13}\left(G_{2, b}\right) \oplus \partial \pi_{14}\left(G_{2, b}, G_{2, b}^{(1,1)}\right)=Z_{3} \oplus Z .
$$

Here the free part of $\pi_{13}\left(G_{2, b}^{(11)}\right)$ is generated by the attaching class of the 14 -cell in $G_{2, b}=G_{2, b}^{(11)} \cup e^{14}$.
(iii) Let $i: G_{2, b}^{(11)} \rightarrow G_{2, b}$ be the inclusion. Then the homomorphism $i_{*}: \pi_{14}\left(G_{2, b}^{(11)}\right)$ $\rightarrow \pi_{14}\left(G_{2, b}\right)$ is epimorphic for $-2 \leqq b \leqq 5$.

Proof. Consider the exact sequence of the pair $\left(G_{2, b}, G_{2, b}^{(11)}\right)$:

$$
\begin{gather*}
\cdots \xrightarrow{\longrightarrow} \pi_{14}\left(G_{2, b}^{(1,1)}\right) \xrightarrow{i_{*}} \pi_{14}\left(G_{2, b}\right) \xrightarrow{j_{*}} \pi_{14}\left(G_{2, b}, G_{2, b}^{(1,1)}\right) \tag{3.6}\\
\xrightarrow{\longrightarrow} \pi_{13}\left(G_{2, b}^{(1,1)}\right) \longrightarrow \pi_{13}\left(G_{2, b}\right) \longrightarrow \cdots,
\end{gather*}
$$

where $\pi_{14}\left(G_{2, b}, G_{2, b}^{(11)}\right) \cong \pi_{14}\left(S^{14}\right) \cong \boldsymbol{Z}$ by the Blakers-Massey theorem. Recall from Lemmas 3.2 and 3.3 we have $\pi_{14}\left(G_{2, b}\right) \cong \boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{2}$ and $\pi_{13}\left(G_{2, b}\right)=0$ for $b=-1,0,2$, 3,5 . Therefore we see that $\pi_{13}\left(G_{2, b}^{(1,)}\right) \cong \boldsymbol{Z}$ generated by the attaching class of the 14 -cell in $G_{2, b}=G_{2, b}^{(11)} \cup e^{14}$. For $b=-2,1,4$, we have $\pi_{13}\left(G_{2, b}\right) \cong Z_{3}$ by (ii) of Lemma 3.3 and $G_{2, b}^{(11)}$ is 3 -equivalent to $S^{3} \vee S^{11}$ by [8, §6], where $\pi_{13}\left(S^{3} \vee S^{11}\right) \cong \pi_{13}\left(S^{3}\right)$ $\oplus \pi_{18}\left(S^{11}\right) \oplus \pi_{14}\left(S^{3} \times S^{11}, S^{3} \vee S^{11}\right)=\boldsymbol{Z}_{12} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}$ by [15]. Therefore we see that $\pi_{13}\left(G_{2, b}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}$, and so by (3.6) we have the split exact sequence in the lemma and the desired results.

It follows from the above argument that the homomorphism $j_{*}: \pi_{14}\left(G_{2, b}\right)$ $\rightarrow \pi_{14}\left(G_{2, b}, G_{2, b}^{(11)}\right)$ is trivial, and so by (3.6) we have (iii).
q.e.d.

Lemma 3.13. Let f be the attaching class of the 14 -cell in $G_{2, b}=G_{2, b}^{(11)} \cup e^{14}$. Then the homomorphism

$$
(S f)^{*}:\left[S G_{2, b}^{(1)}, G_{2, b}\right] \longrightarrow\left[S^{14}, G_{2, b}\right]
$$

is trivial for $-2 \leqq b \leqq 5$.
Proof. Let $\pi: S G_{2, b}^{(9)} \rightarrow S G_{2, b}^{(9)} / S G_{2, b}^{(6)}=M^{10}$ be the projection. Let γ be a generator of $\pi_{11}\left(M^{10}\right)$. Then by (iii) of Lemma 3.9 we have a commutative diagram

where the horizontal sequence is exact. Since we can see that $\pi_{*}(S \omega)_{*} \eta_{11}^{2}$ $=\gamma * \eta_{11}^{2}$ is a generator of $\pi_{13}\left(M^{10}\right) \cong Z_{2}$ by [9], the homomorphism $\partial: \pi_{14}\left(S G_{2, b}^{(11)}\right.$, $\left.S G_{2, b}^{(9)}\right) \rightarrow \pi_{13}\left(S G_{2, b}^{(9)}\right)$ is monomorphic, and so $i_{*}: \pi_{14}\left(S G_{2, b}^{(9)}\right) \rightarrow \pi_{14}\left(S G_{2, b}^{(11)}\right)$ is epimorphic. Therefore for $S f \in \pi_{14}\left(S G_{2, b}^{(1,1)}\right)$ there exists an element $\bar{f} \in \pi_{14}\left(S G_{2, b}^{(9)}\right)$ such that $S f=i_{*} \bar{f}$.

Consider the Puppe exact sequence associated with cofibering (3.1):

$$
\cdots \longrightarrow\left[M^{10}, G_{2, b}\right] \xrightarrow{\pi^{*}}\left[S G_{2, b}^{(9)}, G_{2, b}\right] \longrightarrow\left[S G_{2, b}^{(6)}, G_{2, b}\right] \longrightarrow \cdots .
$$

Since $\left[S G_{2, b}^{(6)}, G_{2, b}\right]=0$ by (ii) of Lemma 3.6, $\pi^{*}:\left[M^{10}, G_{2, b}\right] \rightarrow\left[S G_{2, b}^{(9)}, G_{2, b}\right]$ is epimorphic. Also we have $\pi \circ \bar{f} \in \pi_{14}\left(M^{10}\right)=0$ by [9]. Therefore we have

$$
\operatorname{Im}(S f)^{*}=\operatorname{Im}(i \circ \bar{f})^{*} \subset \operatorname{Im} \bar{f}^{*}=\operatorname{Im} \bar{f}^{*} \circ \pi^{*}=0
$$

§4. Self-homotopy equivalences of $G_{2, b}^{(k)}$.

In this section, we study the group $\mathcal{E}\left(G_{2, b}^{(k)}\right)$ for the k-skeleton $G_{2, b}^{(k)}$ of $G_{2, b}$ for $-2 \leqq b \leqq 5$ by making use of the results of the previous section, and obtain
our main result of this paper.
Lemma 4.1. (i) $\mathcal{E}\left(G_{2, b}^{(k)}\right) \cong \boldsymbol{Z}_{2}$ for $k=3,6$.
(ii) $\mathcal{E}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$.

Proof. (i) Clearly, $\mathcal{E}\left(G_{2, b}^{(3)}\right)=\mathcal{E}\left(S^{3}\right) \cong \boldsymbol{Z}_{2}$. Let $i: S^{3} \rightarrow G_{2, b}^{(6)}$ be the inclusion. Then, by (i) of Lemma 3.6 the composition : $\left[S^{3}, S^{3}\right] \xrightarrow{i_{*}}\left[S^{3}, G_{2, b}^{(6)}\right] \xrightarrow{i^{*-1}}\left[G_{2, b}^{(6)}, G_{2, b}^{(6)}\right]$ is a bijection which preserves the composition. Hence we have $\mathcal{E}\left(G_{2, b}^{(6)}\right) \cong \mathcal{E}\left(S^{3}\right)$ $\cong \boldsymbol{Z}_{2}$.
(ii) Let p be an odd prime and let \boldsymbol{P} be the set of all primes. Let $\sigma_{1}=-\iota_{3}$ $\times-\iota_{11}: S^{3} \times S^{11} \rightarrow S^{3} \times S^{11}$ and let σ_{2} be the inversion of G_{2}, then the localizations $\left(\sigma_{1}\right)_{(p)}$ and $\left(\sigma_{2}\right)_{p-\{p \mid}$ are two side inversions of H-complexes $\left(S^{3} \times S^{11}\right)_{(p)}$ and $\left(G_{2}\right)_{P-\{p)}$ such that $\left(\sigma_{1}\right)_{(p)}{ }^{\circ}\left(\sigma_{1}\right)_{(p)}=1$ and $\left(\sigma_{2}\right)_{P-(p)^{\circ}}\left(\sigma_{2}\right)_{P-\{p \mid}=1$, respectively. Furthermore the localization $\left(\sigma_{1}\right)_{Q}$ is homotopic to $\left(\sigma_{2}\right)_{Q}$.

Therefore $G_{2, b}$ has the two side inversion σ as a pull-back of $\left(\sigma_{1}\right)_{(p)}$ and $\left(\sigma_{2}\right)_{P-(p)}$ such that $\sigma \circ \sigma=1$ by [5].

Let $\sigma^{(k)}: G_{2, b}^{(k)} \rightarrow G_{2, b}^{(k)}$ be the restriction of σ for $k=3,6,9,11$. Then we define two maps

$$
\lambda \text { and } \bar{\lambda}:\left[M^{9}, G_{2, b}^{(9)}\right] \longrightarrow\left[G_{2, b}^{(9)}, G_{2, b}^{(9)}\right]
$$

by $\lambda(\xi)=\nabla \circ(1 \vee \xi) \circ l$ and $\bar{\lambda}(\xi)=\nabla \circ\left(\sigma^{(9)} \vee \xi\right) \circ l$ respectively, where $l: G_{2, b}^{(9)} \rightarrow G_{2, b}^{(9)} \vee M^{9}$ is the map shrinking $M^{8} \times\{1 / 2\}$ in $G_{2, b}^{(9)}=G_{2, b}^{(6)} \cup C M^{8}$. Since $i_{*}:\left[G_{2, b}^{(6)}, G_{2, b}^{(6)}\right] \rightarrow$ [$\left.G_{2, b}^{(6)}, G_{2, b}^{(9)}\right]$ is bijective for dimensional reasons, we can define a homomorphism

$$
\psi: \mathcal{E}\left(G_{2, b}^{(9)}\right) \longrightarrow \mathcal{E}\left(G_{2, b}^{(6)}\right)
$$

by the restriction of the composition $\left[G_{2, b}^{(9)}, G_{2, b}^{(9)}\right] \xrightarrow{i^{*}}\left[G_{2, b}^{(6)}, G_{2, b}^{(9)}\right] \xrightarrow{i_{*}^{-1}}\left[G_{2, b}^{(6)}, G_{2, b}^{(6)}\right] . \quad$ By (i) we have $\mathcal{E}\left(G_{2, b}^{(6)}\right) \cong \boldsymbol{Z}_{2}$ generated by $\sigma^{(6)}$. If $h \in\left[G_{2, b}^{(9)}, G_{2, b}^{(9)}\right]$ satisfies $i_{*}^{-1} i^{*}(h)$
 $=h$ or $\bar{\lambda}(\xi)=h$ by p. 326 of [11]. Therefore we have

$$
\begin{equation*}
\left\{\lambda(\xi), \bar{\lambda}(\xi), \xi \in\left[M^{9}, G_{2, b}^{(9)}\right]\right\} \supset \mathcal{E}\left(G_{2, b}^{(9)}\right), \tag{4.1}
\end{equation*}
$$

since $i_{*}^{-1} i^{*}(\gamma)=1$ or $\sigma^{(6)}$ for any $\gamma \in \mathcal{E}\left(G_{2, b}^{(9)}\right)$.
We have the following homotopy commutative diagram for any $\xi \in\left[M^{9}, G_{2, b}^{(9)}\right]$ by the definition of λ :

where m is a multiplication on $G_{2, b}$. Let $j+\pi^{*}$ and $\sigma^{\circ} j+\pi^{*}$: [$\left.M^{9}, G_{2, b]}\right]$ $\rightarrow\left[G_{2, b}^{(9)}, G_{2, b}\right]$ be the maps defined by $\left(j+\pi^{*}\right)(\xi)=j+\pi^{*}(\xi)$ and $\left(\sigma^{\circ} j+\pi^{*}\right)(\xi)$
$=\sigma \circ j+\pi^{*}(\xi)$ respectively, where + is the multiplication induced by a multiplication on $G_{2, b}$. Then we have the following commutative diagram:

where all j_{*} are bijective for dimensional reasons. If $\lambda\left(\xi_{1}\right)=\lambda\left(\xi_{2}\right)$, then we have $\left(j+\pi^{*}\right) j_{*}\left(\xi_{1}\right)=\left(j+\pi^{*}\right) j_{*}\left(\xi_{2}\right)$, and so $\pi^{*} j_{*}\left(\xi_{1}\right)=\pi^{*} j_{*}\left(\xi_{2}\right)$. We have $\xi_{1}=\xi_{2}$, since π^{*} : $\left[M^{9}, G_{2, b}\right] \rightarrow\left[G_{2, b}^{(9)}, G_{2, b}\right]$ is monomorphic by (ii) of Lemma 3.6 and since j_{*} is bijective. Thus we have that λ is injective. Quite similarly we have that $\bar{\lambda}$ is injective. Let β be a generator of $\left[M^{9}, G_{2, b}^{(9)}\right] \cong \boldsymbol{Z}_{4}$ and $0 \leqq t \leqq 3$. Then by the definition of λ, we have that $\lambda(t \beta) \mid G_{2, b}^{(6)}$ is the inclusion $j: G_{2, b}^{(6)} \rightarrow G_{2, b}^{(9)}$. Also, by Lemma 3.8 we have the following homotopy commutative diagram:

$j_{*}: H_{i}\left(G_{2, b}^{(6)}\right) \rightarrow H_{i}\left(G_{2, b}^{(9)}\right)$ is isomorphic for $0 \leqq i \leqq 7$ and $\pi_{*}: H_{i}\left(G_{2, b}^{(9)}\right) \rightarrow H_{i}\left(M^{9}\right)$ is isomorphic for $i \geqq 8$. Therefore by the above diagram, $\lambda(t \beta)_{*}: H_{i}\left(G_{2, b}^{(9)}\right) \rightarrow H_{i}\left(G_{2, b}^{(9)}\right)$ is isomorphic for all i and so we have

$$
\begin{equation*}
\chi(t \beta) \in \mathcal{E}\left(G_{2, b}^{(9)}\right) . \tag{4.3}
\end{equation*}
$$

We have $\sigma^{(9)} *(\beta)=-\beta$, since $j_{*}:\left[M^{9}, G_{2, b}^{(9)}\right] \rightarrow\left[M^{9}, G_{2, b}\right]$ is bijective and $\sigma_{*}=-1$: $\left[M^{9}, G_{2, b}\right] \rightarrow\left[M^{9}, G_{2, b}\right]$. So the diagram

homotopy commutes and leads us that $\bar{\lambda}(t \beta)=\sigma^{(9)} \circ \lambda(-t \beta)$. Hence we have

$$
\begin{equation*}
\bar{\lambda}(t \beta) \in \mathcal{E}\left(G_{2, b}^{(9,)}\right) \tag{4.4}
\end{equation*}
$$

by the fact that $\sigma^{(9)} \in \mathcal{E}\left(G_{2, b}^{(9)}\right)$ and $\lambda(-t \beta) \in \mathcal{E}\left(G_{2, b}^{(9)}\right)$. Thus by (4.1), (4.3) and (4.4)
we have

$$
\begin{equation*}
\mathcal{E}\left(G_{2, b}^{(9)}\right)=\{\lambda(t \beta), \bar{\lambda}(t \beta) ; 0 \leqq t \leqq 3\} \text { as a set } \tag{4.5}
\end{equation*}
$$

with β a generator of $\left[M^{9}, G_{2, b}^{(9)}\right] \cong \boldsymbol{Z}_{4}$.
Remark that the self homotopy equivalences f_{t} and \bar{f}_{t} of $G_{2, b}^{(9)}$ for $0 \leqq t \leqq 3$ have been defined in (5.1) of [8] and $f_{t}=\lambda(t \beta)$ and $\bar{f}_{t}=\bar{\lambda}(t \beta)$. It is also shown in p. 623 of [8] that $f_{t *}(\omega)=\omega+t \beta_{*} \gamma$ and $\bar{f}_{t *}(\omega)=-\omega+t \beta_{*} \gamma$ where ω is a generator of $\pi_{10}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{120}, \gamma=\pi_{*} \omega$ is a generator of $\pi_{10}\left(M^{9}\right)$ (see Lemma 3.9) and $\beta_{*} \gamma= \pm 30 \omega$ By taking a suitable generator β such that $\beta_{*} \gamma=30 \omega$, we have

$$
\begin{equation*}
\lambda(t \beta)_{*}(\omega)=(1+30 t) \omega \quad \text { and } \quad \bar{\lambda}(t \beta)(\omega)=(-1+30 t) \omega \quad \text { for } t=0,1,2,3 . \tag{4.6}
\end{equation*}
$$

It follows from this that the natural homomorphism

$$
\mathcal{E}\left(G_{2, b}^{(9)}\right) \longrightarrow \text { Aut } \pi_{10}\left(G_{2, b}^{(9)}\right)
$$

is monomorphic by (4.5). This fact and the equality

$$
\lambda(t \beta)_{*} \lambda(t \beta)_{*}(\omega)=(1+30 t)^{2} \omega=\omega
$$

lead to a conclusion that $\lambda(t \beta)^{2}=1$. By a similar calculation we have $\bar{\lambda}(t \beta)^{2}=1$.
Thus we have $\mathcal{E}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$. q.e.d.

By Lemma 4.1 and Theorem 2.1, we have
Lemma 4.2. (i) $\mathcal{E}\left(G_{2, b}^{(11)}\right) \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ for $-1 \leqq b \leqq 5$.
(ii) There is an exact sequence:

$$
0 \longrightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \longrightarrow \mathcal{E}\left(G_{2,-2}^{(1,1)}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1
$$

Proof. We apply Theorem 2.1 to the cell structure

$$
G_{2, b}^{(11)}=G_{2, b}^{(9)} \cup e^{11}
$$

in which the attaching class of the 11 -cell is $(1+8 b) \omega$ by (ii) of Lemma 3.9.
First we compute the group

$$
G_{1}=\left\{h \in \mathcal{E}\left(G_{2, b}^{(9)}\right), h_{*}(1+8 b) \omega=\varepsilon(1+8 b) \omega, \varepsilon= \pm 1\right\}
$$

given in Theorem 2.1, since $2(1+8 b) \omega \neq 0$. By (4.6) the conditions

$$
\lambda(t \beta)_{*}(1+8 b) \omega=\varepsilon(1+8 b) \omega \quad \text { and } \quad \bar{\lambda}(t \beta)_{*}(1+8 b) \omega=\varepsilon(1+8 b) \omega
$$

are equivalent to

$$
(1+8 b)(1+30 t) \omega=\varepsilon(1+8 b) \omega \quad \text { and } \quad(1+8 b)(-1+30 t) \omega=\varepsilon(1+8 b) \omega
$$

respectively. For $-1 \leqq b \leqq 5$, we have easily

$$
\begin{array}{ll}
(1+8 b)(1+30 t) \omega=(1+8 b) \omega & \text { if and only if } t=0 ; \\
(1+8 b)(1+30 t) \omega \neq-(1+8 b) \omega & \text { if } t=0,1,2,3 ; \\
(1+8 b)(-1+30 t) \omega=-(1+8 b) \omega & \text { if and only if } t=0 ;
\end{array}
$$

$$
(1+8 b)(-1+30 t) \omega \neq(1+8 b) \omega \quad \text { if } t=0,1,2,3 .
$$

Therefore, if a non-trivial element $h \in \mathcal{E}\left(G_{2, b}^{(9)}\right)$ satisfies the condition $h_{*}(1+8 b) \omega$ $=\varepsilon(1+8 b) \omega$ with $\varepsilon= \pm 1$, then $h=\bar{\lambda}(0)=\sigma^{(9)}$. Thus we have

$$
\begin{equation*}
G_{1} \cong \boldsymbol{Z}_{2} \text { generated by } \sigma^{(9)} . \tag{4.7}
\end{equation*}
$$

For $b=-2$, we have the following

$$
\begin{array}{ll}
(1+8 b)(1+30 t) \omega=(1+8 b) \omega & \text { if and only if } t=0 ; \\
(1+8 b)(1+30 t) \omega=-(1+8 b) \omega & \text { if and only if } t=1 ; \\
(1+8 b)(-1+30 t) \omega=-(1+8 b) \omega & \text { if and only if } t=0 ; \\
(1+8 b)(-1+30 t) \omega=(1+8 b) \omega & \text { if and only if } t=3
\end{array}
$$

Therefore by the definition of G_{1} and by Lemma 4.1 we have

$$
G_{1}=\left\{\lambda(0)=1, \lambda(\beta), \bar{\lambda}(0)=\sigma^{(9)}, \bar{\lambda}(3 \beta)\right\} \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} .
$$

Next we consider the homomorphism

$$
\begin{equation*}
\lambda: i_{*} \pi_{11}\left(G_{2, b}^{(9)}\right) \longrightarrow \mathcal{E}\left(G_{2, b}^{(11)}\right) \tag{4.8}
\end{equation*}
$$

given in Theorem 2.1, where $i_{*} \pi_{11}\left(G_{2, b}^{(9)}\right) \cong \boldsymbol{Z}_{2}$ by Lemma 3.10. This homomorphism λ is the restriction of the map Λ defined by (2.1).

Let $j+\pi^{*}:\left[S^{11}, G_{2, b}\right] \rightarrow\left[G_{2, b}^{(11)}, G_{2, b}\right]$ be a map defined by $\left(j+\pi^{*}\right)(\xi)=j+\pi^{*}(\xi)$ where + is a multiplication induced by a multiplication on $G_{2, b}$. Then we have a commutative diagram by the similar way to that in (4.2)

where both j_{*} are bijective for dimensional reasons, and hence we have

$$
j_{*} \Lambda^{-1}(1)=\pi^{*-1}(0)=(1+8 b)(S \omega)^{*}\left[S G_{2, b}^{(9)}, G_{2, b}\right]
$$

from the Puppe exact sequence:

$$
\cdots \longrightarrow\left[S G_{2, b}^{(9)}, G_{2, b}\right] \xrightarrow{(1+8 b)(S \omega)^{*}}\left[S^{11}, G_{2, b}\right] \xrightarrow{\pi^{*}}\left[G_{2, b}^{(11)}, G_{2, b}\right] \longrightarrow \cdots
$$

Therefore $\Lambda^{-1}(1)=0$ by Lemma 3.11, since j_{*} is bijective. By this fact, (4.7), (4.8) and Theorem 2.1 we have a short exact sequence:

$$
0 \longrightarrow Z_{2} \longrightarrow \mathcal{E}\left(G_{2, b}^{(1,1)}\right) \longrightarrow G_{1} \longrightarrow 1
$$

where G_{1} is isomorphic to \boldsymbol{Z}_{2} generated by $\sigma^{(9)}$ for $-1 \leqq b \leqq 5$ and G_{1} is isomorphic to $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ generated by $\sigma^{(9)}$ and $\lambda(\beta)$ for $b=-2$. In the above sequence the subgroup \boldsymbol{Z}_{2} generated by $\sigma^{(9)}$ of G_{1} splits, since the splitting homomorphism ρ : $\boldsymbol{Z}_{2} \rightarrow \mathcal{E}\left(G_{2, b}^{(11)}\right)$ can be defined by $\rho\left(\sigma^{(9)}\right)=\sigma^{(11)}$. Hence we have $\mathcal{E}\left(G_{2, b}^{(11)}\right)=\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$
for $-1 \leqq b \leqq 5$ and there is an exact sequence

$$
0 \longrightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \longrightarrow \mathcal{E}\left(G_{2,-2}^{(11)}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1 . \quad \text { q.e.d. }
$$

Let $\chi: \mathcal{E}\left(G_{2, b}^{(1,1)}\right) \longrightarrow$ Aut $\pi_{13}\left(G_{2, b}^{(1,1)}\right)$ be the natural homomorphism.
Lemma 4.3. For $b=-2,1,4, \operatorname{Im}\left\{\chi: \mathcal{E}\left(G_{2, b}^{(11)}\right) \rightarrow\right.$ Aut $\left.\pi_{13}\left(G_{2, b}^{(11)}\right)\right\}$ is contained in $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ generated by $-1 \oplus 1$ and $1 \oplus-1: \pi_{13}\left(G_{2, b}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{3} \oplus \boldsymbol{Z} \cong \pi_{13}\left(G_{2, b}^{(11)}\right)$, where the isomorphism : $\pi_{13}\left(G_{2, b}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}$ is the one given in (ii) of Lemma 3.12. Specifically, for the attaching class f of the 14 -cell in $G_{2, b}=G_{2, b}^{(11)} \cup e^{14}$ and for any element h of $\mathcal{E}\left(G_{2, b}^{(11)}\right)$,

$$
h_{*} f=\varepsilon f, \quad \varepsilon= \pm 1 .
$$

(A proof will be given in $\S 5$.).
Now, we apply Corollary 2.2 to the cell structure

$$
G_{2, b}=G_{2, b}^{(1,1)} \cup e^{14}
$$

and we have the following main result.

Theorem 4.4. Let $G_{2, b}$ be an H-complex of type $(3,11)$ in Theorem 3.1. Then we have the following exact sequences:
(i) $0 \longrightarrow D\left(\boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{2}\right) \longrightarrow \mathcal{E}\left(G_{2, b}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1 \quad(b=-1,0,2,3,5)$,
(ii) $0 \longrightarrow D\left(\boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{6}\right) \longrightarrow \mathcal{E}\left(G_{2, b}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 1 \quad(b=1,4)$,
(iii) $0 \longrightarrow \boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{6} \longrightarrow \mathcal{E}\left(G_{2,-2}\right) \longrightarrow \mathcal{E}\left(G_{2,-2}^{(11)}\right) \longrightarrow 1$.

Here the group $\mathcal{E}\left(G_{2,-2}^{(11)}\right)$ is given in (ii) of Lemma 4.2 and for an abelian group $H, D(H)$ is a group given by the following split exact sequence: $0 \rightarrow H \rightarrow D(H)$ $\rightarrow \boldsymbol{Z}_{2} \rightarrow 1$, where the splitting action \boldsymbol{Z}_{2} on H is given by $(-1) \cdot h=-h$ for $-1 \in \boldsymbol{Z}_{2}$ and $h \in H$.

Proof. Since $\mathrm{G}_{2, b}$ has a multiplication, we can apply Corollary 2.2 to the cell structure $G_{2, b}=G_{2, b}^{(11)} \cup e^{14}$.

First let H be the group given in (2.4): $H=i_{*} \pi_{14}\left(G_{2, b}^{(11)}\right) /(S f) *\left[S G_{2, b}^{(11)}, G_{2, b}\right]$, where f is the attaching class of the 14 -cell in $G_{2,6}^{(11)} \cup e^{14}$. Then we have

$$
\begin{equation*}
H \cong \pi_{14}\left(G_{2, b}\right) \tag{4.9}
\end{equation*}
$$

by (iii) of Lemma 3.12 and Lemma 3.13.
Next we compute the group

$$
G_{1}=\left\{h \in \mathcal{E}\left(G_{2, b}^{(1)}\right) \mid h_{*} f=\varepsilon f, \varepsilon= \pm 1 \text { in } \pi_{13}\left(G_{2, b}^{(1,1)}\right)\right\}
$$

given in Theorem 2.1, since $2 f \neq 0$ by Lemma 3.12.
For $b=-1,0,2,3,5, f$ is a generator of $\pi_{13}\left(G_{2, b}^{(1)}\right) \cong \boldsymbol{Z}$ by (i) of Lemma 3.12 and Aut $\pi_{13}\left(G_{2, b}^{(11)}\right) \cong$ Aut $\boldsymbol{Z} \cong \boldsymbol{Z}_{2}$ generated by -1 . Therefore for any element $h \in \mathcal{E}\left(G_{2, b}^{(1,1)}\right)$ we have

$$
h_{*} f=f \text { or }-f .
$$

Hence we have $G_{1} \cong \mathcal{E}\left(G_{2,6}^{(1,1)}\right)$.
For $b=-2,1,4$, by (ii) of Lemma 3.12 and Lemma 4.3, we have the same results $G_{1} \cong \mathcal{E}\left(G_{2, b}^{(11)}\right)$.

Thus, by this results, (4.9) and (2.3), we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \pi_{14}\left(G_{2, b}\right) \xrightarrow{\lambda} \mathcal{E}\left(G_{2, b}\right) \longrightarrow \mathcal{E}\left(G_{2, b}^{(1,)}\right) \longrightarrow 1 \tag{4.10}
\end{equation*}
$$

The subgroup Z_{2} generated by $\sigma^{(11)}$ of $\mathcal{E}\left(G_{2, b}^{(1,1)}\right)$ splits, since a splitting homomorphism $\rho: \boldsymbol{Z}_{2} \rightarrow \mathcal{E}\left(G_{2, b}\right)$ can be defined by $\rho\left(\sigma^{(11)}\right)=\sigma$. We can easily see that $\sigma^{*}=1: H^{14}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right) \rightarrow H^{14}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right)$ for any odd prime p by the ring structure of $H^{*}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right)$ and by the fact that

$$
\sigma^{*}=-1: H^{i}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right) \longrightarrow H^{i}\left(G_{2, b} ; \boldsymbol{Z}_{p}\right) \quad \text { for } i=3,11 .
$$

Also $\sigma_{*}=-1: \pi_{14}\left(G_{2, b}\right) \rightarrow \pi_{14}\left(G_{2, b}\right)$. Therefore we have a homotopy commutative diagram :

From this diagram we see that the splitting action is given by $\sigma \cdot \xi=-\xi$. Hence the desired results are obtained by (4.10) and Lemmas 3.2, 3.3 and 4.2. q.e.d.

§5. A proof of Lemma 4.3.

Let $G_{2, b(3)}^{(11)}$ be the localization of $G_{2, b}^{(11)}$ at 3 , and let $l: \mathcal{E}\left(G_{2, b}^{(11)}\right) \rightarrow \mathcal{E}\left(G_{2, b(3)}^{(11)}\right)$ be the natural homomorphism defined by the localization $l(h)=h_{(3)}: G_{2, b(3)}^{(111) \rightarrow G_{2, b(3)}^{(11)} \text { (see }}$ [5] and [7]). First we show the lemma for the case $b=-2$. Consider the following exact sequence of the pair ($G_{2,-2}^{(11)}, G_{2,-2}^{(9)}$):
$\cdots \longrightarrow \pi_{11}\left(G_{2,-2}^{(9)}\right) \longrightarrow \pi_{11}\left(G_{2,-2}^{(11)}\right) \longrightarrow \pi_{11}\left(G_{2,-2}^{(11)}, G_{2,-2}^{(9)}\right) \xrightarrow{\partial} \pi_{10}\left(G_{2,-2}^{(9)}\right) \longrightarrow \cdots$,
where $\pi_{11}\left(G_{2,-2}^{(11)}\right) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$ by Lemmas 3.2 and 3.3 , $\pi_{11}\left(G_{2,-2}^{(11)}, G_{2,-2}^{(9)}\right) \cong \pi_{11}\left(S^{11}\right) \cong \boldsymbol{Z}$ generated by $\iota_{11}, \pi_{10}\left(G_{2,-2}^{(9)}\right) \cong \boldsymbol{Z}_{120}$ generated by ω and $\partial\left(\iota_{11}\right)=-15 \omega$ by Lemma 3.9. There exists a coextension $\widetilde{8 \ell_{11}}: S^{11} \rightarrow G_{2, b}^{(11)}$ of $8 \ell_{11}: S^{11} \rightarrow S^{11}$, and so we can define a 3-equivalence $q: S^{3} \vee S^{11} \rightarrow G_{2,-2}^{(11)}$ by $q=\nabla \circ\left(i \vee \widetilde{8 \ell_{11}}\right)$ where $i: S^{3} \rightarrow G_{2,-2}^{(11)}$ be the inclusion. Then we have a commutative diagram:

$$
\begin{align*}
& \begin{array}{c}
\mathcal{E}\left(G_{2,-2}^{(11)}\right) \xrightarrow{l} \mathcal{E}\left(G_{2,-2(3)}^{(11)}\right) \stackrel{q^{\prime}}{\rightleftarrows} \mathcal{E}\left(S_{(3)}^{3} \vee S_{(3)}^{11}\right) \\
\downarrow \chi \\
\downarrow \chi \\
\downarrow \chi
\end{array} \tag{5.1}\\
& \text { Aut } \pi_{13}\left(G_{2,-2}^{(11)}\right) \xrightarrow{l^{\prime}} \text { Aut } \pi_{13}\left(G_{2,-2(3)}^{(11)}\right) \stackrel{q^{\prime \prime}}{\cong} \text { Aut } \pi_{13}\left(S_{(3)}^{3} \vee S_{(3)}^{(1)}\right) \text {, }
\end{align*}
$$

where l^{\prime} : Aut $\pi_{13}\left(G_{2,-2}^{(11)}\right) \rightarrow$ Aut $\pi_{13}\left(G_{2,-2(3)}^{(11)}\right)$ is the canonical homomorphism defined
by $l^{\prime}(h)=h \otimes 1: \pi_{13}\left(G_{2,-2(3)}^{(11)}\right) \cong \pi_{13}\left(G_{2,-2}^{(11)}\right) \otimes \boldsymbol{Q}_{3} \rightarrow \pi_{13}\left(G_{2,-2}^{(11)}\right) \otimes \boldsymbol{Q}_{3} \cong \pi_{13}\left(G_{2,-2(3)}^{(11)}\right)$ and q^{\prime} and $q^{\prime \prime}$ are isomorphisms induced by the 3 -equivalence q.

By (ii) of Lemma $3.12 \pi_{13}\left(G_{2,-2}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}$ and $\pi_{13}\left(G_{2,-2(3)}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Q}_{3}$, and so Aut $\pi_{13}\left(G_{2,-2}^{(11)}\right)$ is isomorphic to a group of matrices:

$$
\left\{\left.\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right) \right\rvert\, a \in \operatorname{Aut} \boldsymbol{Z}_{3}, \quad b \in \operatorname{Aut} \boldsymbol{Z}, \quad c \in \operatorname{Hom}\left(\boldsymbol{Z}, \boldsymbol{Z}_{3}\right)\right\}
$$

where Aut $\boldsymbol{Z}_{3} \cong \boldsymbol{Z}_{2}$ generated by -1 , Aut $\boldsymbol{Z}=\boldsymbol{Z}_{2}$ generated by -1 and $\operatorname{Hom}\left(\boldsymbol{Z}, \boldsymbol{Z}_{3}\right)$ $=\boldsymbol{Z}_{3}$ generated by the $\bmod 3$ reduction. Therefore we see that l^{\prime} is monomorphic. By (ii) of Lemma 4.2 we have

$$
\begin{equation*}
\mathcal{E}\left(G_{2,-2}^{(11)}\right)=\left\{1, \lambda(\xi), \sigma^{(11)}, h, \lambda(\xi) \sigma^{(11)}, \lambda(\xi) h, \sigma^{(11)} h, \lambda(\xi) \sigma^{(11)} h\right\} . \tag{5.2}
\end{equation*}
$$

Here $\lambda(\xi), \xi \neq 0$ is given in (4.8) and h is an element satisfying the following homotopy commutative diagram :

where $\lambda(\beta)$ is given in (4.5).
Since $2 \xi=0$, we have a homotopy commutative diagram:

where $\xi_{(3)}=0 \in\left[S_{(3)}^{11}, G_{2,-2(3)}^{(11)}\right] \cong \pi_{11}\left(G_{2,-2(3)}^{(11)}\right) \quad$ Hence we have $l(\lambda(\xi))=1$. Therefore $l^{\prime} \chi(\lambda(\xi))=\chi l(\lambda(\xi))=1$ and so we have $\chi(\lambda(\xi))=1: \pi_{13}\left(G_{2,-2}^{(11)}\right) \rightarrow \pi_{13}\left(G_{2,-2}^{(11)}\right)$. Since $\sigma^{(11)}$ is the restriction of $\sigma: G_{2,-2} \rightarrow G_{2,-2}$, we have

$$
\begin{aligned}
& H_{14}\left(G_{2,-2}\right) \underset{\cong}{\cong} H_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \stackrel{\Xi}{\cong} \pi_{14}^{\cong}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \xrightarrow{\partial} \pi_{13}\left(G_{2,-2}^{(11)}\right) \longrightarrow \pi_{13}\left(G_{2,-2}\right) \\
& \downarrow \sigma_{*} \quad \downarrow \sigma_{*} \quad \downarrow \sigma_{*} \quad \downarrow \sigma^{(11)} * \quad \downarrow \sigma_{*} \\
& H_{14}\left(G_{2,-2}\right) \underset{\cong}{\cong} H_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \stackrel{\Xi}{\underset{\cong}{\cong}} \pi_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \xrightarrow{\partial} \pi_{13}\left(G_{2,-2}^{(11)}\right) \longrightarrow \pi_{13}\left(G_{2,-2}\right)
\end{aligned}
$$

where $\sigma_{*}=1: H_{14}\left(G_{2,-2}\right) \rightarrow H_{14}\left(G_{2,-2}\right)$ by the ring structure of $H^{*}\left(G_{2,-2} ; \boldsymbol{Z}_{p}\right)(\mathrm{p}$: odd prime), $\Xi: \pi_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \rightarrow H_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right)$ is the Hurewicz isomorphism and $\pi_{13}\left(G_{2,-2}^{(11)}\right) \cong \rho \pi_{13}\left(G_{2,-2}\right) \oplus \partial \pi_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}$ by (ii) of Lemma 3.12. Therefore, $\quad \sigma_{*}=1: \pi_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right) \rightarrow \pi_{14}\left(G_{2,-2}, G_{2,-2}^{(11)}\right)$. Since $\quad i_{*}: \pi_{13}\left(S^{3}: 3\right) \rightarrow$
$\pi_{13}\left(G_{2,-2}: 3\right)$ is isomorphic and since $\sigma^{(3)}{ }^{*}=-1: \pi_{13}\left(S^{3}\right) \rightarrow \pi_{13}\left(S^{3}\right), \sigma_{*}=-1: \pi_{13}\left(G_{2,-2}\right)$ $\rightarrow \pi_{13}\left(G_{2,-2}\right)$. Thus we have

$$
\sigma^{(11)} *=-1 \oplus 1: Z_{3} \oplus Z \longrightarrow Z_{3} \oplus \boldsymbol{Z} .
$$

By the definition of q and (5.3), we can see that as an element of $\pi_{3}\left(G_{2,-2}^{(11)}\right) \oplus$ $\pi_{11}\left(G_{2,-2}^{(11)}\right)$

$$
h \circ q=q \circ\left(\ell_{3} \vee-\ell_{11}\right) \text { modulo } \boldsymbol{Z}_{2} \subset \pi_{11}\left(G_{2,-2}^{(11)}\right) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}_{2}
$$

since $h \mid G_{2,-2}^{(6)}$ is the inclusion. Therefore we have

$$
q^{\prime-1} l(h)=\iota_{3(3)} \vee\left(-\iota_{11}\right)_{(3)} \text { in (5.1). }
$$

It follows from this that

$$
\begin{aligned}
& q^{\prime \prime-1} l^{\prime} \chi(h)=\chi q^{\prime-1} l(h)=\left(\iota_{3(3)} \vee\left(-\iota_{11}\right)_{(3)}\right)_{*}=1 \oplus-1: \\
& \pi_{13}\left(S_{(3)}^{3} \vee S_{(3)}^{11}\right)=\left(\pi_{13}\left(S^{3}\right) \otimes \boldsymbol{Q}_{3}\right) \oplus\left(\pi_{14}\left(S^{3} \times S^{11}, S^{3} \vee S^{11}\right) \otimes \boldsymbol{Q}_{3}\right) \\
& \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Q}_{3} \longrightarrow \boldsymbol{Z}_{3} \oplus \boldsymbol{Q}_{3} \cong \pi_{13}\left(S_{(3)}^{3} \vee S_{(33}^{11}\right) .
\end{aligned}
$$

Therefore by considering a commutative diagram:

$$
\begin{aligned}
& 0 \longrightarrow \pi_{14}\left(\left(S^{3} \times S^{11}\right)_{(3)},\left(S^{3} \vee S^{11}\right)_{(3)}\right) \xrightarrow{\partial} \pi_{13}\left(\left(S^{3} \vee S^{11}\right)_{(3)}\right) \longrightarrow \pi_{13}\left(S_{(3)}^{3}\right) \longrightarrow 0
\end{aligned}
$$

where $\bar{q}=i+\widetilde{8 \iota_{11}}: S^{3} \times S^{11} \rightarrow G_{2,-2}$ and all vertical homomorphisms are isomorphic, we have $\chi(h)=1 \oplus-1: \quad \pi_{13}\left(G_{2,-2}^{(11)}\right) \cong \boldsymbol{Z}_{3} \oplus \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{3} \oplus \boldsymbol{Z} \cong \pi_{13}\left(G_{2,-2}^{(11)}\right)$, since $q^{\prime \prime-1} l^{\prime}$ is monomorphic. The other elements of $\mathcal{E}\left(G_{2,-2}^{(11)}\right)$ are given by the composition of $\lambda(\xi), \sigma^{(11)}$ and h by (5.2). Hence we complete the proof for the case $b=-2$.

The proof for the other $b \neq-2$ is given more easily by a similar way.
The latter half of Lemma 4.3 is obtained immediately from (ii) of Lemma 3.12. q.e.d.

Institute of Mathematics
 Yoshida College
 Kyoto University,
 Department of Mathematics
 Faculty of Engineering
 Tokushima University

References

[1] S. Araki and H. Toda, Multiplicative structures in $\bmod q$ cohomology theories I, Osaka J. Math., 2 (1965), 71-115.
[2] W.D. Barcus and M.G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
[3] P.J. Hilton, On excision and principal fibrations, Comment. Math. Helv., 35 (1961), 77-84.
[4] P. J. Hilton and J. Roitberg, On the classification problem for H-spaces of rank two, Comment. Math. Helv., 45 (1970), 506-516.
[5] G. Lieberman and D. L. Smallen, Localization and self-equivalences, Duke Math. J., 41 (1974), 183-186.
[6] M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[7] M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan, 23 (1971), 593-624.
[8] M. Mimura, G. Nishida and H. Toda, On the classification of H-spaces of rank 2, J. Math. Kyoto Univ., 13 (1973), 611-627.
[9] J. Mukai, Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ., XX (1966), 266-282.
[10] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J., 4 (1974), 9-28.
[11] D. Puppe, Homotopiemengen und ihre induzierten abbildungen I, Math. Zeit., 69 (1958), 299-344.
[12] J. W. Rutter, The group of self-homotopy equivalences of principal three sphere bundles over the seven sphere, Math. Proc. Camb. Phil. Soc., 84 (1978), 303-311.
[13] m . Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86.
[14] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math., 34 (1970), 789-802.
[15] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies., 49 (1962), Princeton Univ. Press.
[16] H. Toda, Order of the identity class of a suspension space, Ann. of Math., 78 (1963), 300-325.
[17] A. Zabrodsky, The classification of simply connected H-spaces with three cells I, II, Math. Scand., 30 (1972), 193-210; 211-222.

