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§1. Introduction.

The set £(X) of homotopy classes of homotopy equivalences of a based
space X to itself forms a group under composition of maps. This group is called
the group of self-homotopy equivalences of X. The group £(X) has been studied
by several authors (e.g. [2], [5], [10], [12], [14]).

In the present paper, we study the group &(X) for a simply connected,
finite H-complex X of rank 2. The classification of simply connected, finite H-
complexes of rank 2 has been given in [8] as follows: X is homotopy equiva-
lent to one of S*xS% SU@), E. (=0, 1, 3,4,5), S'XS" and G, , (—2=b=5).
Here E, is the principal S®bundle over S” with the characteristic class
kwen,(BS)=Z,,, w a generator. For example E,=S*XS", E,=Sp2) and G,
is the principal S*®*-bundle over the Stiefel manifold V, ,=SO(7)/SO(5) induced by
a suitable map f,: V,,—BS?® (see §3 for details) such that G, ,=G, is the
compact, exceptional Lie group G, of rank 2.

For torsion free, finite H-complexes X of rank 2 which have been classified
in [4], [17], the group &(X) is already known, that is, for S‘xS7 (i, j=1,3,7)
in [137], [14], for SU(3) and Sp(2) in [10], and for £, (k+0, 1) in [12]. So we
will determine &(G, ;) for —2=<b=<5.

In a short exact sequence: 0—A—B—C—1, we write the group composition
in A as addition, and it in B and C as multiplication.

Then the following is our main result obtained in §4.

Main Theorem. We have the following exact sequences:
(1) 0—>D(Z,;s P Z,) —> &(Gyp) —> Z, —> 1 h=-10,23,5),
(ii) 0—>D(Z16sD Z;) —> €(Gyp) — Z, —> 1 (b=1, 4),
(i) 0—=>Z1;PZs —> &(Gy-y) —> G —>1,
0—Z,7Z,—>GC—2Z,—>1,

where, for an abelian group H, D(H) is a group given by the split exact se-
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quence: 0—H—D(H)—Z,—1, with the splitting action Z, on H given by (—1)-h
=—h for —1€Z, and he H.

The paper is organized as follows. The Barcus-Barratt theorem is intro-
duced in §2. In §3 some results on homotopy of G, , which will be needed in
§4, are prepared. In §4 we study the group &(G,,,) by making use of the re-
sults of the previous sections and we obtain the main theorem. In the last
section, § 5, we give a proof of the lemma used in §4.

Throughout the paper, all spaces have homotopy types of CIV-complexes
with base points and all (continuous) maps and homotopies preserve the base
points. For given spaces X and Y, we denote by [X, Y] the set of (based)
homotopy classes of maps from X to Y, and by the same letter f a map f:
X—Y and its homotopy class f[X, Y]. The integral coefficient of the homo-
logy is omitted: H(X)=Hi(X; Z). X stands for the n-skeleton of X and
wi(X: p) the p-component of z,(X) and @, the ring of those fractions, whose
denominators, in the lowest form, are prime to p.

§2. The theorem of Barcus-Barratt.
Let K be a simply connected CW-complex of finite dimension. Let

a 1 b
St — K —> K\ e?*! —» S g>dim K,

be the sequence of induced cofiberings. The coaction

[ KJet — (K\Uett) v So+!
is defined by shrinking the equator S?X {1/2} of ¢?*'. We define a map
2.1) A mo(K\Jet) — [K\Uet™!, K\Uet*]

by A(E)=V-(1\VvE&)-l, where V is the folding map and 1 is the class of identity
map of K\Ue?!, Furthermore, since ¢>dim K, by the restriction 4 on zym,,(K)
we can define a homomorphism (cf. Lemmas 1.4 and 1.8 of [10])

At 1y Tgn(K) —> E(K\Je?*?)
Since ¢>dim K, the induced maps
2.2) ix: [K, K] —[K, K\Je?'] and
p¥: [STH, S9] — [K\Je™!, S™']  are both bijective.

So the maps @: [K\Uet, KU ]-[K, K] and ¥ : [K\Ue®!, K\Uet]—[S,
S9*+17] can be defined by the following homotopy commutative diagram :

K
l o) l h l V(h)

Sq+l

K \Jgat+! > Sa+1

K K\Uett!
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Since these two maps preserve composition of maps, a homomorphism
PpXP: E(K\Jett) —> £(K)XE(S)

can be defined by the restriction of @X¥. Let g: (5% s,)—(K, k,) be a map
representing a€r,(K). Let X be the function space of maps: (Y, yo)—(X, xo).
Then Barcus-Barratt defined in [2] a homomorphism

- G
;. 7T1(XK, 71) I 7T’l(‘Xvsqr 1‘°g) -

ah

Tq+ 1(X) .

Here X=K\Ue??, g*(F)=F.(gX1y), 1; is the identity of I=[0, 1], (i-g),(F)=
d(F, (i-g)") where (ieg)®*: SIXI—K\Ue* is the map defined by (1. g)"(s, t)=1°g(s),
and d(F, (1eg)*) is the separation element of F and (i-g)’ (see [2] for the defini-
tion). Then we have the following theorem due to Barcus-Barratt.

Theorem 2.1. (Theorem 6.1 of [2]) The following sequence is exact:

A 284
0— A — iymg(K) — (KU ) — G —> 1.

Here A=1ympi(HK)Na;m,(K\Je™ )X 1), the subgroup G of E(K)XE(S™) is iso-
morphic to

Gi={heK)| hya=cea, e==*1, in n(K)}, if 2a+0,
and G is isomorphic to G, X Z,, if 2a=A0.

The next corollary will be used in the later section.

Corollary 2.2. (cf. Remark in p. 304 of [12]) If K\Je™ has a multiplication,
the homomorphism A and the group A are given as follows:

AO=1+Ep, E€imu(K),
A=(Sa)*[SK, K\Ue?*].
Therefore we have the exact sequence:
(2.3) 00— H—&KJe®*) —> G —>1,
where G is given in the above theorem, and H is given as follows:
(2.4) H=1iy70.(K)/(Sa)*[SK, K\Je?*].

Proof. By the definition of 2, we have a homotopy commutative diagram:

KUatt —s (KUerrtyy o+t IVE RUanyvE U Y s g

(K\Uet ) X (K\Jet*) ———9 (K\Jet*t) X Sett ———9 (K\Uet )X (K\Je?*?),
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where m is a multiplication on K\Ue!, j is the inclusion and ¢ is the diagonal
map. Hence we have A(§)=1+&-p and so we have

A7 (D)= p* O ixmes:(K) .

Consider the following commutative diagram consisting of the Puppe exact
sequence :

* *

a)
[SK, K\JUet] —— [S%*1 [\ Ugt+1]

[K\Uet™, K\Uet+!]
o Lo

I:Sq-}-l, Sq+l:| [Kueq+l’ Sq+l:l

where the lower p* is bijective by (2.2). We have

(Sa)*[SK, K\Ue™'JCKer {px 1 mes1(H V) — 7140 1(ST)} =14 7401(K)

. I p
since 7y i(K) — mgy (KU A Tq41(S??) — -+ is exact. Therefore we have
P*HO)=(Sa)*[SK, K\Jet™ ]Cixmes(K).

So, we have A=21"1(1)=(Sa)*[SK, K\Uet*'], q.e.d.

§ 3. Some homotopy of G, ,.

Let G, be the compact, exceptional Lie group of rank 2. Let f: V,,—BS?
be the classifying map of G,. Let ¢: V,,—V,.VS" be the map shrinking the
equator S**X {1/2} in V, ,=M*JCS*. Let a be a generator of x;,(BS®)=m,,(S?)
=~Z,; which corresponds to 8» under the monomorphism: m,o(S*)—m(GS®) (see
Lemma 3.9). For each integer b, let g,: S*—BS? represent ba and let G, , be
the principal S:-bundle over V, , induced by the composition

[o=Ve(fV g)ed: Vi —> Vi, vVS"* — BS*VBS* —> BS®.

For example, G,=G,, .
Recall the following

Theorem 3.1. (Theorem 5.1 of [8]) Let X be a l-connected, finite H-complex
of rank 2 such that Hy(X; Z) has 2-torsion. Then X is homotopy equivalent to

Gs.p for some b. There are just 8 homotopy types of such H-complexes: Gqp for
—2=bh=5.

i
By making use of the exact sequence associated with the fibering SU(3) —

p .
G, — S° one can compute 7:(G,: 2) (the odd primary components of z(G.) are

computed by the killing-homotopy method).

Lemma 3.2. ([6]) 7:«(G,) for i<14 are as follows:
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i 1 2 3 4 5 6 7 8 9 10
7i(Gy) 0 0 Z 0 0 Z, 0 Z, Z; 0
gen. of 2-comp. Txls <& p&ems
11 12 13 14
ZPZ, 0 0 ZiDZ, D Z,,
{24e1sy, 1x[vE] Feteer, txlvilovn

where the notation [a] means such an element of w;(SU(3): 2) that gi[al=
acn(S°: 2) for the projection q: SUB)—S*=SU@3)/SU(2), and the notation {f)

means such an element of wwi(Gz: 2) that ps{p>=LEn(S": 2) for the projection p:
G,—S"

By [8, §6] we have

Gy G, for p#3,5,
p

G, b=-—1,0, 2, 3,5)
G s™
3 SE'XS“ (b:_zy 1, 4) )
G, (b=-—1,0,1,2,4,5)
[eRrad
o SEx St (b=-2, 3).
By Lemma 3.2 and by the results in Toda’s book [15] these p-equivalences give
Lemma 3.3. (i) 7m(Gy, -2)=Zss, m1o(Gop)=Z,y (b=1, 4), 7:1o(Gs,3)=Z;.
(ii) ﬂxs(GZ,b)gza (b:—zy 1, 4).
(i) 7(Go0)=Z16s P Z; (b=—2,1, 4).

(iv) The other homotopy groups wi(Gsp) for 0=i<14 (—2=Zb<5b) are iso-
morphic to wG,) given in Lemma 3.2.

By Theorem 2.2 of [8] we have

Theorem 3.4. (i) H*(Gup; Zo)=Z:[ x51/(x5)QA(Sq*xs) .
(i) H*Gao; Zp)=A(xs, x11) for each prime p=3, where deg x;=1.
Therefore G, , has a cell structure:
Gy, y 53U Ut U g\ U\ Ugtt\U gt ,
Let M"=S""! kzj e™ be the mapping cone of a map: S™*'—S""! of degree 2.
Then we have two cofiberings :

@D §'—> G —> M, G, —> GP,—> M,
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which are equivalent to induced cofiberings by some maps f,: M°—S® and f,:
Mi—G®, respectively by [3].

Lemma 3.5. (i) [M°® G®]=[M¢ G&1=[M", G,]=0.

(ii) [M?, G&1=[M?®, G, ,]=Z, generated by an extension of a non-trivial
element of wy(Ga, p)=2Z,.

(iii) [M?, G, p]1=Z, generated by an extension of a non-trivial element of
wo(Gop: 2)=Z,.

Proof. (i) Consider the Puppe exact sequence

p*
(3.2) o —>[S", Goo] —> [S7, Gop]l —> [M7", Gyl
i*

— [Sn-l} GZ. D] - I:Sn_l, GZ. b] >

We have 7(Gs 5)=75(Gs,5)=r:(G2)=0 and n4(G,,)=Z, by Lemmas 3.2 and 3.3.
Therefore we have that [M5, G, ,]=[M®, G, ,]=[M’, G, ,]=0, since [M™, X] is
a Z,-group by [11.
For dimensional reasons, we have [M°® G&,]=[M*, G&,]=[M", G&,]1=0.
(ii) Since m4(Gsp)=Z, and wo(G,,p: 2)=Z,, by the above exact sequence for
n=9, we have an exact sequence:
0—Z,— [M®° Gypp] —Z,—> 0.

Since G,,, is 2-equivalent to G., we may verify it in the case b=0. Let Ext{»{>
be an extension of (I emy(G,). Since 2 1,o=ieypg°p by [16], we have 2 Ext (2>
=Ext {9 eienge p=<{9i>ns°p and so 2 Ext {p{>+#0 in [M?® G,] by Lemma 3.2
(Recall that {»#>-7s#0 and that p* is monic). Therefore we have [M?, G, ,]=Z,
generated by an extension of a non-trivial element of 74(G;,,)=Z,.

(iii) By Lemmas 3.2 and 3.3 we have 7(Gs,: 2)=Z, and m,o(Gsp: 2)=0.
Therefore we have immediately [M?°, G, ,]1=7y(Gsp: 2)=Z, by (3.2). g.e.d.

Lemma 3.6. (i) 14: [S% S*] —[S? G&,] and
*: [G, G]1 —> [S?, G,] are both bijective.
(i) [SGE,, G1=[SCGH, G2,»]1=0.

Proof. (i) For dimensional reasons we see easily that i, : [S?, S*]—[S?, G&,]is
bijective. Consider the Puppe exact sequence associated with (3.1):
i* I
— [M®, G&,] — [GF,, G] —> [S?, GF]1 —> [M°, G,] —.
By (i) of Lemma 3.5 [M™, G&,]=0 for n=5, 6. Therefore i* is bijective.
(i) Consider the Puppe exact sequence associated with (3.1):

- —>[M", GE£,] —> [SGE, GE] —> [S*, Gi] —> -
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Since [M’", G,1=[S*, G£,]1=0 by (i) of Lemma 3.5 and Lemmas 3.2 and 3.3 for
dimensional reasons, we have

[SGy, Geop]=[SG, Gi%1=0. g.ed.
Lemma 3.7. (i) #G&)=Z,.
(il) w(GEH)=Z,.

Proof. Let F be the 3-connective fibre space over G{. Then we have a
fibering :

T
F—> G, — K(Z, 3).

Since H¥GE,; Z:)={l, xs, x;=S¢*xs, x5}, we see that =*: HXZ, 3; Z,)—
H*G,; Z,) is an epimorphism with Ker z*= %H“(Z, 3; Z,). Therefore, there

exists a transgressive element y,eH'(F; Z,) whose transgression image is
(y.)=uSq*u where ue€HXZ, 3; Z,) is the fundamental class. Then z(Sq¢'y.,)=
Sq'z(y.)=Sq¢*(uSq*u)=u®. So there exists a transgressive element y,€H¥F; Z,)
such that 7(ys)=S¢*Sq*u. Then z(Sq'ys)=Sq't(y)=Sq'Sq*Sq*u=5¢°Sq*u=(Sq*u)*
and 7(Sq?y,)=Sq*(y.)=Sq*(uSq*u)=(S¢*v)?, whence Sq'y;=Sq®y,. Thus we have

HXF; Zy)={1, y1, Sq'y7, ¥s, Sq'¥s, Sq°Sq*ys, =} .

Take a CW-complex L with minimum cells 2-equivalent to F, and so we may
take L=((S"Ue*)V S5 )\Je*Ue'\U.--. The attaching class of the 9-cell in L is ie9,V 24
S8—(S"Ue®) Vv S® where 1: S™—=S"Ue® is the inclusion. Consider the exact sequence
of the pair (L, S"Ue®V S8):

0
(L, S™VePV S8 —ry(SVeV S8 )—ay(L)—my(L, STVeP Vv S%)—,

where 7o(L, S'UeV S®) =, (S%)= Z generated by ¢, (L, S™"JebV S8)=0, 14(S"Je?
VvV S8)=Z,PZ generated by i-y, and ¢, and d(¢,)=1i°7,+2¢,. Therefore ny(L)=Z,.
Also, we have immediately w,(L)=Z, Since z(L: 2) for i=7, 8 is isomorphic
to (G, 2), (G, 2) and we(GYY,: 2) are isomorphic to Z, and Z, respectively.
Since i*: HXGY,; Z,)—H*(S*; Z,) is isomorphic for any odd prime p, the
inclusion i: S*—G{), is a p-equivalence. So 7.(G$,: p)=ns(G¥,: p)=0 for any
odd prime p, since w,(S*)=Z, and =i(S*)=Z, by [15]. Therefore, we have
G =Z, and w(GE)=Z,. g.e.d.

Lemma 3.8. Let B be a generator of [M®, GP,21=Z, and let =n: G,—M*=
G/ G, be the projection. Then we have myef=2 lysc[M°, M*]1=Z,.

Proof. Consider the following commutative diagram of the exact sequence :

0
(S8, G¥,] __) [Se, G¥,] ___) [SE, M*] —> [S7, G&,] _) [S%, G®]
By e Ex e e

1 0
(M2, G = WUAS G“’)] = [M?, M*] — [M?, G&,] = M3, G
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where j: S"—M™** and i: G¥—GY), are the natural inclusions. Recall that
(G =Z; and 7(G)=Z, by Lemma 3.7, 7y(G¥y)=Z, and z.(G§H)=0 by
Lemmas 3.2 and 3.3 and wg(M°)=Z, generated by j, by [9].

Clearly the upper 7y is trivial and so j*myS=msj*B8=0. Therefore =4S is
not a generator of [M®, M*]=Z,, since [M®, M°]=Z, generated by 1, by [9].
We have Im{j*: [M°, G&,]—[S? G&]} =Tor (n(GsH), Z,)=Z, by (ii) of Lemma
3.7. It follows from this fact that j*iy=ixj*=0 in the left diagram and that a
generator €[ M?®, G$,] is not contained in Im{iyx: [M®, G&,1—-[M?°, G£,]}, since
7*B is non-trivial by (ii) of Lemma 3.5. Therefore 748 is non-trivial and is not
a generator of [M?®, M*]. Thus n4f=2 lys. q.ed.

The following lemma is a summary of Lemmas 4.3, 5.2 and 5.3 in [&].

Lemma 3.9. (i) GG and n,(GLy)=Z,s.

(ii) The attaching class of the ll-cell in GEY=G\Je is (14+8b)w with w
a generator of m(G$H)=Z,s0.

(iii) Let w: GP—-M°’=G/GS be the projection. Then wy(w)=7 is a genera-
tor of mw(M=Z,.

Let i: G,—G§Y be the inclusion.
Lemma 3.10. 747 (GY))=Z,.

Proof. Consider the exact sequence of the pair (G§¥, G :
{

ES
> 1y(GE) —> Tn(GEY) —> Tiu(GEY, GE) —> m1o(GEY) —> -+,

where 7, (G8N=m1,(Gs,»)=Z@BZ; by Lemmas 3.2 and 3.3, 7,,(G§Y, G =z, (SM) =
Z by the Blakers-Massey theorem, and 7,i(G})=Z,, by (i) of Lemma 3.9. Then
we have immediately

141 (G =2, . g.e.d.
Lemma 3.11. For w a generator of w,(G$%), the homomorphism

(Sw)*: [SGP, Gap] —> [SY, Goo]
is trivial for —2=<b=5.

Proof. Since the suspension homomorphism: z,o(M®*)—r,,(M*) is clearly
isomorphic, we have m-Sw=7 by (iii) of Lemma 3.9, where = : SG{,—AM' is the
projection and 7 is a generator of z;;(M'). We have the following commutative
diagram :

(3.3) —= [M?, GZ,,]——% [SGE, Gop] ———= [SGS), G1,»]
* (Sw)*

[SY, Gabl
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where the horizontal sequence is the Puppe exact sequence associated with the
cofibering (3.1).
Since [SG¥),, G, ,]1=0 by (ii) of Lemma 3.6, we see that

3.4) a*: [M*, Gov] —> [SGY,, Gsp] is epimorphic.
Next we will show that
(3.5) 7*¥=0: M"Y, G,.y] —> [SY, G1.0].

As [M", X] is a Z,-group and G, , is 2-equivalent to G,, it is sufficient to show
it for the case b=0. By Lemma 3.2 and (iii) of Lemma 3.5 we have [M?, G,]
=7, generated by an extension Ext{{n-ns of {(9Bens=n,(G,). Since 7 is a
coextension of 7,,€m;,(S*), we have

Ext {{98>ens} or € {K9&>ns, 2t5, Do} .
By (5.4) and (5.5) of [15] and Lemma 3.2 we have
92> ens, 25, No} D LNE>o {s, 2t9, 7}
=D {S", —S*'}
=92 {2v5, —2vg} =0
modulo {98 °ns° m1:(S*)+ m1o(G2)on10= {<9i>° ni} = {<(55) o4ve} =0.

Therefore we have Ext{{5&>-ns r=0, and so (3.5) was proved. By (3.4) and (3.5)
and by the commutativity of (3.3) we have

Im (Sw)*=Im (Sw)*>z*=Im r*=0. q.e.d.

Lemma 3.12. (i) For b=—1,0, 2, 3, 5, m,,(GS'Y)=Z generated by the attach-
ing class of the l4-cell in G, ,=GgPJe.
(ii) For b=—2, 1, 4, the short exact sequence

0 —> 7,.(G2. s, G(”)) — 7’13(6(“)) —> 713(Ga,p) —> 0

has a splitting homomorphism p: 73(Gyp)—=7(GEY), where 7,(G.y GY)=Z
and 7,(Gyp)=Z;, and so we have

T1(GEP) = p718(Go,0) B 0m1(Gan, GEY)=Z,D Z.

Here the free part of m.(GYY) is generated by the attaching class of the 14-cell
in Gy, y=G§P e,

(iii) Let i: G$Y—Gas.y be the inclusion. Then the homomorphism iy : 7,(G§Y
—71.(Gap) 1S epimorphic for —2=b=<5.

Proof. Consider the exact sequence of the pair (G,,, G§¥):
Ix J*
3.6 e > 71'14(6(“)) —> T1(Gsp) —> T1(Ga, s, G(m

—> 71'13(G(m) —> 115(Gap) —> -+,



340 Mamoru Mimura and Norichika Sawashita

where 7,(Gs,,, G8P)=r,(S")=Z by the Blakers-Massey theorem. Recall from
Lemmas 3.2 and 3.3 we have 7,,(Gs,,)=Z1DZ; and 7,4(G,,5)=0 for b=—1, 0, 2,
3, 5. Therefore we see that z,,(G§!})=Z generated by the attaching class of the
14-cell in G,,=G§Y\Je. For b=—2, 1, 4, we have 7,,(G,,»)=Z, by (ii) of Lemma
3.3 and G} is 3-equivalent to S°®VS' by [8, §6], where m5(S®V S =7,4(S%)
D7 (SD71(SEX S, S*VSN=Z,.DZ.DZ,PZ by [15]. Therefore we see that
T(GEN)=Z,PZ, and so by (3.6) we have the split exact sequence in the lemma
and the desired results.

It follows from the above argument that the homomorphism jy: 7.(Gs,s)
—11/Gs, 5, GY) is trivial, and so by (3.6) we have (iii). q.e.d.

Lemma 3.13. Let f be the attaching class of the ld-cell in G, ,=GEPUel,
Then the homomorphism

(SFY*: [SGEY, Gon] —> [SY, Ga]

is trivial for —2<b<5.

Proof. Let z: SG,—SGL,/SG¥,=M* be the projection. Let 7 be a gene-
rator of m;,(AM?). Then by (iii) of Lemma 3.9 we have a commutative diagram

7(SGS) _> T1(SGHP)——= wu(SGEP, SGEY) 2 m1(SGEY)

7514(512) - Tl'xa(su) —-——%Wn(M 9,

nn

N

where the horizontal sequence is exact. Since we can see that m«(Sw)xnh
:r*n%1 is a generator of m,3(M')=Z, by [9], the homomorphism a: x,,(SG§Y,
G —m1(SGY%) is monomorphic, and so 7k : 7, (SGE,)— . (SGEY) is epimorphic.
Therefore for Sfer,(SG{Y) there exists an element fer,(SG§ ) such that
Consider the Puppe exact sequence associated with cofibering (3.1):
7'L'*
== [M"*, G3,4] —>[SGE, Gop] —> [SGS, Gop] —> -
Since [SG®, G.p]=0 by (ii) of Lemma 3.6, n*: [M*, G, ,]>[SGE, G, »1
is epimorphic. Also we have refer, (M)=0 by [9]. Therefore we have

Im (Sf)*=Im (i-f)* C Im f*=Im f*oz*=0. q.e.d.

§4. Self-homotopy equivalences of G).

In this section, we study the group &(G$,) for the k-skeleton G, of G,
for —2=<b<5 by making use of the results of the previous section, and obtain
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our main result of this paper.

Lemma 4.1. (i) &(GH=Z, for k=3, 6.
(i) &GPHN=Z.DZ. D Z,.

Proof. (i) Clearly, &(G®)=&(S*=Z,. Let i: S*—G§), be the inclusion.
. 1

Then, by (i) of Lemma 3.6 the composition: [S® Saj—l*—>[83, G“”]Z—>[G§“)b, IR
is a bijection which preserves the composition. Hence we have &(G ,},):8(53)
=7,

(ii) Let p be an odd prime and let P be the set of all primes. Let o,=—¢s
X —500 S3XS1—S53x S and let o, be the inversion of G, then the localizations
(61)p» and (o2)p-i, are two side inversions of H-complexes (S*XS™), and
(Go)p-1p such that (¢,)pe(d1)py=1and (62)p-1p°(02)p-(»=1, respectively. Further-
more the localization (g)e is homotopic to (o2)e.

Therefore G, , has the two side inversion ¢ as a pull-back of (o,)p» and
(62)p-¢py such that goo=1 by [5].

Let ¢®: G¥—G$, be the restriction of ¢ for £=3,6,9, 11. Then we
define two maps

A and 1: [M®, G$,] —> [G, GE,

by A&)=Ve(1\VE&)el and A(E)=Ve(c® V&)l respectively, where [: G£)—GV M?
is the map shrinking M?*X {1/2} in G£,=G§,\JCMS®. Since ix: [GF), GFH1—

2,b
[GS®, G is bijective for dimensional reasons, we can define a homomorphism

¢ (G, —> &(GFY)
i*

by the restriction of the composition [G$), G‘9’]——>[G‘26},, (9)]——>[G§%, G$,]. By

(i) we have &(G$¥),)=Z, generated by o¢®. If he[G§), (9’] satisfies ix'7*(h)
=1 or iz*(h)=0®, then there exists an element &£=[M?®, G$,] such that A(§)
=h or A(€)=h by p. 326 of [11]. Therefore we have

4.1) {28), 2&), Ee[M?, GD]} D &GSy,
since 34%*()=1 or ¢ for any re&(Gy).
We have the following homotopy commutative diagram for any §€[M?®, G,

by the definition of A:

Gy —— GIVM® {0
FRY | |

1X=n
GOy X Gy —> Gy X M?®

m
Gzrbx Gz,b GZ.b

where m is a multiplication on G,,; Let j+z* and oej+=n*: [M? Gs ]
—[G$%, G.»] be the maps defined by (j+7z*)E)=j+=*&) and (gej+x*)E)
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=g°j+n*(§) respectively, where 4 is the multiplication induced by a multiplication
on G, Then we have the following commutative diagram :

EG;‘?;’ (9)] E [‘[9 G(Q)] E I:G(Q) G(Q)

42 Ji Jx Jw

-+ ogoj+a*
[GS), Gonl < (M2, Goy] — 2" L [GE), Gu]

where all j4 are bijective for dimensional reasons. If A(§,)=Ai(&,), then we have
(J+a*)j(ED)=0+7%)jx(§:), and so 7*j(£))=n*j4(5,). We have &,=¢,, since zn*:
[M?, G, s1—=[ G, Gs,»] is monomorphic by (ii) of Lemma 3.6 and since j, is
bijective. Thus we have that A is injective. Quite similarly we have that 21 is
injective. Let B be a generator of [M® G{,]=Z, and 0=¢=<3. Then by the
definition of A, we have that A(¢8)| G, is the inclusion j: G¥—G¢),. Also, by
Lemma 3.8 we have the following homotopy commutative diagram :
1Vt v
GE, G M —— GELV GE) )
l o l zV1 l FAVE 4 l b

l
M? ——— MV M?

MV M?

M®.

: H(G®)—H{(GY,) is isomorphic for 0=/=<7 and =zy: Hi(G)—H;(M° is
1som0rph1c for 7/=8. Therefore by the above diagram, A(¢38)x: Hi(GE)—H(GS,
is isomorphic for all 7 and so we have

4.3) AtBee(GE) .
We have ¢ 4(8)=—8, since ji: [M°, G]—[M?°, G, ,] is bijective and gp=—1:
[M?®, Gy, p]—[M?®, Gsp]. So the diagram

G(s) l E G(e) VA[Q N ‘BE G(9)VG(9) VB G(°>

o® \V a® 0.(9)
gVt

N
GOV 68— G

homotopy commutes and leads us that 2(1‘,8):0(9)02(—1‘,8). Hence we have
(4.4) A(tBee(GS,
by the fact that ¢ &(Gf)) and A—tpB)s&(GE)). Thus by (4.1), (4.3) and (4.4)
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we have

4.5) e(G=1{A(tB), 2(¢B); 0<t<3} as a set
with B a generator of [M®, G&,1=2Z,.

Remark that the self homotopy equivalences f, and f, of G§, for 0</=<3 have
been defined in (5.1) of [8] and f,=A(tf) and f,=A(¢B). It is also shown in p.
623 of [8] that fix(w)=w+1B«r and fix(w)=—w+1p«r where w is a generator of
710G = Z 100, T=msw is a generator of m,,(M?®) (see Lemma 3.9) and B47=+30w
By taking a suitable generator 8 such that B4«r=30w, we have

(4.6)  AtPxw)=(14+30t)0 and A(tP)Nw)=(—14+30t)w  for t=0, 1,2, 3.
It follows from this that the natural homomorphism
&(GEy) —> Aut m1o(GE
is monomorphic by (4.5). This fact and the equality
At Bt B@)=(1+30tFo=w

lead to a conclusion that A(¢8)’=1. By a similar calculation we have i(tﬁ)zzl.
Thus we have €(G)=Z, P Z, D Z,. q.e.d.

By Lemma 4.1 and Theorem 2.1, we have

Lemma 4.2. (i) &(G¥N)=Z. P Z, for —1=b=5.
(ii) There is an exact sequence:

0*Z269Z2—98(G(2{1_)2)'—)Z2é1.

Proof. We apply Theorem 2.1 to the cell structure
Ep=Cehen

in which the attaching class of the 1l-cell is (148b)w by (ii) of Lemma 3.9.
First we compute the group

G={hee(GE), hx(1+8b)w=¢c(1+8b)w, e==+1}
given in Theorem 2.1, since 2(1+8b)w+#0. By (4.6) the conditions
At B)x(1+8D)w=e(14+8b)w  and A(tP)x(1+8b)w=e(1+8b)w
are equivalent to
(1+8b)(1+30)w=e(1+80)w  and (148b)(—1+30t)w=e(14+8b)w

respectively. For —1=b<5, we have easily

(1+8b)(14-308)w=(1+8b)w if and only if ¢t=0;

(1+8b6)(1430)w+# —(1+8b)w if t=0,1,2, 3;

(1+8b)(—1+30t)w=—(1+8b)w  if and only if t=0;
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(14-86)(— 1430w+ (1+8b)w if 1=0, 1, 2, 3.

Therefore, if a non-trivial element he&(GE,) satisfies the condition /4(14+8b)w
=¢(1+8b)w with e==+1, then h=2(0)=0¢. Thus we have

4.7 G,=Z, generated by o .
For b=—2, we have the following
(1+8b)(1+308)w=(148b)w if and only if t=0;
(1+8b)(1+308)w=—(1+8b)w if and only if t=1;
(1+80)(—1+30t)w=—(1+8h)w  if and only if t=0;
(1+8b)(—1+30t)w=(1+8b)w if and only if ¢=3.
Therefore by the definition of G, and by Lemma 4.1 we have
G,={A0)=1, A(B), 2(0)=0, ABN =Z, D Z..
Next we consider the homomorphism
(4.3) At sy (GEY) —> &(GLY)

given in Theorem 2.1, where 747,(GS))=Z, by Lemma 3.10. This homomorphism
A is the restriction of the map 4 defined by (2.1).

Let j4=z*: [SY, G, o]—[GY, G..»] be a map defined by (j+a*)N&)=7+r*&)
where 4+ is a multiplication induced by a multiplication on G, , Then we have
a commutative diagram by the similar way to that in (4.2)

[S™, GEY] —A—’ LGP, GE¥]
| 3+ | 3
jtm*
[S™, Gop] ———[GEY, Gal
where both ji are bijective for dimensional reasons, and hence we have
T A7 (D)=7*"(0)=(14+8b)(Sw)*[SGEs, Ga,5]

from the Puppe exact sequence:

(14-8b)(Sw)* T*
[S, Goo] —> [GEY, Gopd —> .

Therefore 47*(1)=0 by Lemma 3.11, since j4 is bijective. By this fact, (4.7), (4.8)
and Theorem 2.1 we have a short exact sequence:

- —>[SGE, Ga.bl

0—Z,—&(GiY) — G, —> 1,

where G, is isomorphic to Z, generated by ¢ for —1=<b=<5 and G, is isomor-
phic to Z,PZ, generated by ¢ and A(B) for b=—2. In the above sequence the
subgroup Z, generated by o® of G, splits, since the splitting homomorphism p:
Z,—&(G$Y) can be defined by p(c®)=09>. Hence we have &(GiP)=Z:DZ:
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for —1=<b<5 and there is an exact sequence
0—Z,DZ,— &G}y —> Z, —> 1. q.ed.

Let y: &(G§Y) —> Aut 7,5(G$Y) be the natural homomorphism.

Lemma 4.3. For b=—2,1, 4, Im{y: &(GLY)—Aut 7, o(GEY)} s contained in
Z,DZ, generated by —1D1 and 1P —1: n,(GEY) = Z,PZ—Z P Z=r,,(GSY), where
the isomorphism : (G = Z,DZ is the one given in (ii) of Lemma 3.12. Specifically,
for the attaching class f of the 14-cell in G, ,=G§Y\Je!* and for any element h
of &(GEY),

hxf=¢f, e==1.
(A proof will be given in §5.).
Now, we apply Corollary 2.2 to the cell structure
Gav=G{p\ e

and we have the following main result.

Theorem 4.4. Let G, , be an H-complex of type (3, 11) in Theorem 3.1. Then
we have the following exact sequences:

(i) 0—=>D(Zi6s D Z) —> &(Gop) — Z, —>1  (b=—1,0, 2,3, 5),
(i) 0—>D(Z16s®D Zs) —> &(Gop) — Z; —> 1 (=1, 4),
(i) 0 —>ZisP Zs —> &(Gs,-5) —> E(GIL;) —> 1.

Here the group &(G{V,) is given in (ii) of Lemma 4.2 and for an abelian group
H, D(H) is a group given by the following split exact sequence: 0—H—D(H)
—Z,—1, where the splitting action Z, on H is given by (—1)-h=—h for —1€Z,
and heH.

Proof. Since G,,, has a multiplication, we can apply Corollary 2.2 to the cell
structure G, ,=G§P\Uet,

First let H be the group given in (2.4): H=ixm(GSY)/(SF*[SGLY, Ga, b,
where f is the attaching class of the 14-cell in G§{!}Y\Ue'%., Then we have

(4.9) H=m,(Gs,0)

by (iii) of Lemma 3.12 and Lemma 3.13.
Next we compute the group

Gi={hee(GEV) haf=cf, e==x1 in 7(GED)}

given in Theorem 2.1, since 2f#0 by Lemma 3.12.

For b=-1, 0, 2, 3, 5, f is a generator of m,,(G§¥)=Z by (i) of Lemma 3.12 and
Aut 7 (GEY)=Aut Z=Z, generated by —1. Therefore for any element h=&(G{y
we have
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haf=f or —f.
Hence we have G,=&(G§Y).
For b=—2, 1, 4, by (ii) of Lemma 3.12 and Lemma 4.3, we have the same
results G,=&(G§Y).
Thus, by this results, (4.9) and (2.3), we have the exact sequence

A
(4.10) 0 —> 71(Ge.p) —> E(Go.p) —> E(G)) —> 1.

The subgroup Z, generated by ¢@" of &(G§¥) splits, since a splitting homomor-
phism p: Z,—&(G,,;) can be defined by p(c9?)=¢. We can easily see that
o*=1: H'YGyv; Z,)—H"™(G,»; Z,) for any odd prime p by the ring structure
of H¥(G.,; Z,) and by the fact that

o*=—1: H(Gsy; Zp) —> H{(G.; Z)) for /=3, 11.
Also o4=—1: 71,(Gy,5)—7m1(Gs). Therefore we have a homotopy commutative
diagram :
l
Gop = G,y VS ——— G5,V Gy y — Gap
l o l oV1 l oVo l o
l Iv(=§
Goyp——— G2 ) VSY ———— G5,y VGoy ——— G1
From this diagram we see that the splitting action is given by ¢-&=—¢&. Hence
the desired results are obtained by (4.10) and Lemmas 3.2, 3.3 and 4.2. q.ed.

§5. A proof of Lemma 4.3.

Let G§{%s be the localization of G} at 3, and let [ : &(G$!P)—E(GE Kis)) be the
natural homomorphism defined by the localization [(h)=h(y: GShs— G s (see
[5] and [7]). First we show the lemma for the case b=—2. Consider the
following exact sequence of the pair (G§Y,, G¥.,):

> -ll(G o) —> 71y (11)2) I 7T11(G(2m2y G(g) 2) —> ﬂlO(G(g)—Z) >,

where 7,,(G{Y)=ZPZ, by Lemmas 3.2 and 3.3, 7., (G§Ys, G p)=r,,(S)=Z
generated by ¢, m(GE )= Zm generated by o and 3(:11)-——15w by Lemma 3.9.
There exists a coextension 8:1, SU—SGEY of 8:1, S11—-S" and so we can define
a 3-equivalence g¢: S*VS"—-G{Y, by ¢=V- (z\/8z“) where 7: S*—>G{Y, be the
inclusion. Then we have a commutative diagram :

[ q’
EGYD) ——— E(GEPuw) —— E(StyV/SH,
(5.1) | L« |z

’ ”

Aut 71'13(6(“)2) —> Aut ﬂls(G(“ 2(3)) <— Aut 75(S% V SH),

where I’ : Aut 7,5(G8Y,)—Aut ,5(G§Vs¢s) is the canonical homomorphism defined
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by '(h)=hQL: 7s(GE es) = ﬂxs(G(ll)2)®Q3“’ﬂ'13(G“1)2)®Qa——ﬂla(G(ll)z(a)) and ¢’ and
g” are isomorphisms induced by the 3-equivalence g.

By (ii) of Lemma 3.12 7,(G{Y)=Z,PZ and m5(G{Lss)=Z:PA;, and so
Aut 7,5(G$Y,) is isomorphic to a group of matrices:

{(g Z)IaeAutZ3, beAut Z, CEHom(Z’Z”)}

where Aut Z,=Z, generated by —1, Aut Z=Z, generated by —1 and Hom (Z, Z;)
=Z, generated by the mod 3 reduction. Therefore we see that [’ is monomor-
phic. By (ii) of Lemma 4.2 we have

(5.2) E(GEL)={L, A&), "V, h, A&)a ", AE)h, 0 Vh, AoV h}.

Here A(€), £+0 is given in (4.8) and /1 is an element satisfying the following
homotopy commutative diagram :

—15w
S G§™, — GD, su
(5.3) |- | «® | » |1
—15w
st G, Gy, su,

where A(8) is given in (4.5).
Since 2£=0, we have a homotopy commutative diagram :

Got, — st Gy, — G,
| |/ |7 |
@ (AIVE)w Ve
G sy ——— (GHL2,V S gy — > (G2, V GE2y) 5y ——— G§ s
Vs

GV St

GV Gy

where £y =0€[St), G s 1=, (G s») Hence we have [(A(&))=1. Therefore
Uy(AE)=yxI(4(6))=1 and so we have y(AE))=1: m,(G§)—m5(GHYy). Since o@P
is the restriction of o: G, _s—G,, _,, Wwe have

0
H (Gs, -2) _~> H, (G, _s, Gm)z) <« 7t14(Gz -2 G(mz) — ﬂla(G(”)z) —> 7115(Gs, _2)

lU* lU* J/U* la(“)* lﬂ*
5 F)

H, (G, _3) —> H (G, s, G(zl,l—)z) <~ 11(Gs, s, Gél,l—)z) —_— 71'13(6(21,1—)2) —> w13(Ge, _2)

where gx=1: H((G, _2)—H.(G,,-,) by the ring structure of H*(G, _»; Z,) (p:
odd prime), 5: 714G, -5, GRL)—H 4(Gs, -2, G$2,) is the Hurewicz isomorphism
and 7w (GER) = p71o(Gs, - )BT 14(Go, -2, G82)=Z,DZ by (ii) of Lemma 3.12.
Therefore, ox=1: m,(Gs -2, G{8)—m1(Gs s, G&Y,).  Since iy : 75(S?: 3)—
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T15(Go, -2 1 3) is isomorphic and since o®ye=—1: 7,5(S*)—>m4(S?), ox=—1: 715(Gs, -5)
—115(Gs _2). Thus we have

0=—191: Z,®Z—>Z,D Z.

By the definition of ¢ and (5.3), we can see that as an element of 7(GEL)D
77-'11(0(21,1—)2)

h°(]=(]°(ls\/—[“) mOdulO Zg C 77.'11( ;{LE)EZ@ Zg y
since h|G§., is the inclusion. Therefore we have

g N(h) =ty V(—t11)sy in (5.1).
It follows from this that
q" Wy (h)=xq""(h)=(tscsy V(—t11))x =1 D —1:
T15(Sty V Sid)=(715(S*) @ Qs) D (714(S* X SM, S*V S™) ® Q)
=7, DQ;s —> Z; P Qs=r5(SkV SY).

Therefore by considering a commutative diagram :

0— 77-'14(62,—2(3), G(zl,l—)zu)) —> ﬂls(Gal,l—)zts)) —> T15(Ge, ap) —> 0

Tcim* T(](s)* Ti(s)*
0

0 —> 7. ((S*X Sy, (S*V S ay) —> m1a((S*V S eey) —> m15(Shy)) —> 0

where q=i+§11: SEXS"—G,, -, and all vertical homomorphisms are isomorphic,
we have y(h)=1P—1: m(GyL)=ZDZ—Z,PZ=r,(G{Y,), since ¢”" '’ is
monomorphic. The other elements of &€(G{!L,) are given by the composition of
A8), o and h by (5.2). Hence we complete the proof for the case b=—2.

The proof for the other b+ —2 is given more easily by a similar way.

The latter half of Lemma 4.3 is obtained immediately from (ii) of Lemma
3.12. q.e.d.
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