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Introduction.

The purpose of the present paper is twofold. The first purpose is to establish
a theorem of the following type:

Let X be a locally compact space, and v an inner regular Borel measure on
X. If an isometric linear operator T on L=(X, v) fixes every continuous function
on X vanishing at infinity, then T is the identity.

In Part I, we prove this as Theorem 1 under somewhat more general for-
mulation. In fact, we formulate an L>-space relative to a Boolean algebra of
sets, where we need neither measure nor ¢-completeness.

Part II is devoted to the second purpose, an application of the above result
to a characterization of left translations on L>(G), where G is a locally compact
group. The principal result in Part II is Theorem 6, which states that an
isometric linear operator on L*(G) commuting with every right translation is a
scalar multiple of a left translation. Similar results on L?(G) were obtained by
Wendel [12] for p=1 and generally by Strichartz [9] and Parrott [7] for
1<p<oo, p+#2.

Let us explain the contents in more detail. Part I consists of six sections.
In §§1 & 2, we give the formulation of L®-spaces and some basic properties. In
§ 3, we introduce a key notion, “tracing a function by its perturbation”, and then
present two important propositions that extract information of a function from
its perturbations. After these preparations, we prove our main theorem,
Theorem 1, in §4. A modification of the main theorem, Theorem 3, which
characterizes the identity operator as a bipositive operator, is treated in §5. In
§6, as a supplement to Part I, we discuss the change of the base space of an
L~-space and describe its spectrum space in terms of the Boolean algebra that
defines the L*-space.

Part II consists of three sections. We treat there the problem of determining
the isometric linear operator on L>(G) commuting with all right translations.
In §7, we apply the main theorem of Part I to this problem and obtain Theorem
6. For a weaker theorem with an additional assumption of the surjectivity of the
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operator, we present another proof in §8. We also mention there some related
facts and their relations. In the last section, we give an alternative proof for
the theorem of Takesaki-Tatsuuma, which is closely related to the consideration
in §8.

The author wishes to express his thanks to Professor H. Yoshizawa for
valuable suggestions in this presentation. Thanks also go deeply to Professor
N. Tatsuuma and to Professor T. Hirai for their encouragement and various
advices.

Notations.

R : the set of real numbers,
C : the set of complex numbers,
B.={asC; |a|<Z¢}, the closed disk of radius ¢ in C.
Let X be a set. For subsets M and M’ of X, we use the following notations
throughout this paper.

M¢e : the complement of M in X,
MAM . the symmetric difference of M and M’,
Y . the characteristic function of M.

For aeC, we denote the constant function aXy simply by a.

PART I. CHARACTERIZATION ON THE IDENTITY OPERATOR ON L*-SPACES.
§1. Formulation of L~-spaces.
In this section, we formulate an L>-space for a Boolean algebra of sets.

1.1. Let X be a set. We consider a pair (B, %) of a Boolean lattice B of
subsets of X and an ideal Nof B: B, B'eB=>B¢, BUB’eB,and N, NN, BB
SNUN’, NnBeN. We call a set null if it belongs to M. We exclude the trivial
case M=B. Let Sy and Sy be the space of step functions and that of null step
functions (i.e., of the linear combinations of Xz's, BE®, and of those of Xy’s,
NeM respectively). We define seminorms |||z on Sy for EEB by

(e I/ le=inf {£20; {x; [f(DI>ENEER} .

It is clear that ||-|z<| g if ECE’, and that |f|x=0 if and only if f&Ss.
Now, we define the space L(X, B, N) as the completion of Sy/Ss by the norm
I-lx. Note that the seminorms |||z, EE®, are well defined on L=(X, B, N).

Remark 1. Note that the space Sy forms a ring under the pointwise multi-
plication and that Sz is an ideal of Sy. Further the involution 3 a¥Xp,—> @:Xs,
is naturally extended to L=(X, B, M). Thus L=(X, B, N) forms a commutative
C*-algebra. Note also that || f| g is equal to || fXzlx. The structure of L*(X, B, N)
as a C*-algebra depends only on the quotient Boolean lattice B/M. For details,
see §6.
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1.2. Realization of L=(X, B, N) as a function space on X,
The space L=(X, B, N) can be realized as the space of (equivalence classes
of) functions on X. First, when B is ¢s-complete (i.e., B is a o-field on X), put

L2(X, B, W= {f; B-measurable, || f||x <o},
X, B, N)={f; B-measurable, ||f||x=0} .

Here a function f on X is called B-measurable if f~}(U)eB for every open set
U in C, and | f|lx is defined by the formula (*)y. Note that the o-completeness
of M is not required. As is easily seen, L£(X, B, N) and (X, B, N) are linear
spaces. Then L>(X, B, N) is realized as the quotient space L7(X, B, N)/T(X, B, N).

Now, for a general B, take a g-complete Boolean lattice B of subsets of X
including B, and let N be the ideal generated by N in B. Then L=(X, B, N) is
realized as the closure of the image of Sg in L=(X, B, N)=_L(X, B, N)/7(X, B, N).
Here the image of Sy in L=(X, B, N) is isomorphic to Ss/Sy, because Syp=
SaNJUX, B, N).

Thus a function f on X represents an element of L=(X, B, N) if it can be
approximated by the step functions in Sy in the sense of ||-||x. In this case we
say that the function f is admitted by the system (X, B, N).

Hereafter we often employ the following conventions on notation. (1) |-
=|-llx. (2) A subset of X without any notice will be understood to be in B.
(3) For a function and for the element of L*(X, B, M) represented by it, we use
the same notation.

1.3. The essential image of a set in B.

Definition 1. For feL=(X, B, N) and E=B, we define the essential image
of E by f, denote by f[E], as the set of a=C satisfying the following: for
every ¢>0, there exists a non-null set BE®B such that BCE and | f—alz<e.

It is clear by definition that for a€f[E] and for every £>0, there exists a
non-null set BB such that BCE and f[B]lCa+B.. Note that f[E] is closed
and bounded, hence compact in C. In fact, for as& f[E], there exists a 6>0 such

that ||f—alz=0 for any non-null set BCE, whence ||f—b||ng for Ib—algg.
The boundedness of f[E] follows from fLEJC®.

For E€N, fLE] is the empty set. The converse of this fact is fundamental
in what follows.

Proposition 1. The essential image f[E] is not empty for EEN.

Proof. Suppose f[E] is empty. Then for every a<C, there exists a d,>0
such that |f—b||z=0d, for any non-null BCE and for |b—al|<d,. Moreover, if
la|>2|fllg, then |f—alz>|flle. Therefore by the compactness of the closed
disk By, there exists a 0>0 such that || f—alz=0 for any non-null BCE and
for any a=C. But this is impossible because f can be approximated by step
functions. Q.E.D.
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Proposition 2. (f+g)[EIC/[E]+g[E].

Proof. Let ce(f+g)[E]. For >0, there exists a non-null BCE such that
lf+g—cls<e. Take an a<f[B] and a non-null B’'C B such that |f—allz<e.
Further take a beg[B’] and a non-null B”C B’ such that |g—blls-<e. Then
we have |c—a—b|=|c—a—b|p<3¢, or c€f[E]+ gl E]+ B;.. Since f[E]+g[E]
is compact and ¢>0 is arbitrary, we see that cef[E]+g[E]. Q.E.D.

Corollary 1. If | f—glz=e, then fLE]JCg[E]+ B..
Proof. fLEJCgLE]+(f—g)E] Q.E.D.
Corollary 2. || flz=sup {lal|;acsf[E]} for E€N.

Proof. This relation is clear for a step function. For a general fe L=(X, B, N),
we can see this from the corollary above, because f is approximated by step
functions. Q.E.D.

We have also the following useful relations:
FLEVE]=fLEIVSLE],
fLE]=f[E"] if EAE'eN.

The assertions can be obtained directly from the definitions.

§2. Support of a set in B.

From now on, the base space X is assumed to be a Hausdorff topological
space, and we put a natural topological condition on (B, ) :

(0) B contains a basis of open sets in X.

We make further an essential assumption, the inner regularity of (B, N):

(I) For every non-null set BEB, there exists a non-null compact set K&B
such that KCB.

Definition 2. For E&B, we define the support [E] of E as theset of xeX
satisfying the condition that VAE is not null for every open neighbourhood
Ve®B of x.

We see easily the following properties.
(1) [E] is closed.
(2) [EJC E-=the closure of E.
() [EVEI=[EIVLE].
(4) If E is null, then [E] is empty.

The converse of (4) holds under the assumption of the inner regularity.
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Proposition 3. If E is not null, then [E] is not empty.

Proof. By the inner regularity, there exists a non-null compact set KB
such that KCE. Therefore if [E] is empty, so is [K]. Then for every x€X,
there exists an open neighbourhood V,€% of x such that KNV, is null. Since
K is compact, we can find a finitely many V,’s that cover K. So we have

K=Kn(\J V)= (KNV)ER,

finite

nite

a contradiction. Q.E.D.

Remark 2. Under the inner regularity, we have the following for the
essential image f[E]:

Let a=f[E]. Then for any >0, there exists a non-null compact set KB
such that KCF and f[K]Ca+B..

Remark 3. Let us assume the condition (O*) stronger than (O):
(O*) B contains every open set in X.

In that case, [E]€®B for E€®B. Then we have the following (£x) quite similarly
as Proposition 3:

(%) EN[EI°eRN.
From this we can deduce the following.
(5) If Fis closed, then FA[F]eN.
(6) [CEII=LCE].
(7) If E is not null, neither is [E].

Note further that under the condition (O*) every bounded continuous function
on X is admitted by (X, B, N).

§3. Tracing of f by its perturbations.

Let us begin with a definition.

Definition 3. A set & of continuous functions on X is called fundamental
if it satisfies the following: (i) For every he¥ and x€ X, 0=<h(x)<1. (ii) For
every point a= X and a closed set F®a, there exists an 1€ such that h(a)=1
and Ah(x)=0 on F.

For a fundamental set & and a€ X, put F,={heF; h(a)=1}.

We assume that there exists a fundamental set & admitted by (X, B, N).
Under this assumption, the base space X must be completely regular.

For feL*(X, B, M), ceC, and k=0, we define

M(f; o)(x)=inf {|f+chl|; heg,},
m(f; k) (x)=sup {M(f; c)(x); |c|<k}.
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These functions play an important role for our main theorem, Theorem 1,
through the following propositions.

Proposition 4. If there exists an x,€X such that M(f; D)(xo)=|fII+1, then
SLX1=lfI

Proof. For any heF,, we have
(F+HMIXICfIXI+A[XICf[X]+{aeR; 0<a <1} .

This shows that the absolute value of any be(f+h)[X] cannot attain the value
I f1+1 when f[X] does not contain the value || f].

Proposition 5. If m(f; k)(x)<k holds on a non-null set E, then f[E]={0}.

Proof. Assume that f[E]>a+0. Then for any ¢>0, there exists a non-

null compact set KB such that KCFE and f[K]Ca+B.. Put c:lZ—|k. Let

s€[K], then s€E. For every he%,, we can take an open neighbourhood VB
of s such that hA[V]C1+4+B.. Therefore

(fHchIENVICSLK]+ch[V]

a

Ca+B.+
lal

k‘l'Bsk

=|Z—|<|a|+k>+BE<1+k> .

Hence m(f; k)s)=|a|+ %, a contradiction. Q.E.D.
From the definitions, we can easily deduce the following.

Lemma 1. For E€9,
MXg; D(x)=m@g; D)(x)=Xxi(x)+Xzlx)  (x€X).

(Needless to say, this equality holds exactly at each point x X, not in the sense
of L=(X, B, N).)

Lemma 2. Let k=|f|l. If fLVI1={0} foran open set VEB, then m(f; k)x)<k
on V.

Remark 4. When we replace the condition of the inner regularity (/) with
the following (/x), Proposition 5 does not hold.

(Ix+) For every non-null set BE®, there exist a null set N and a non-null
compact set KB such that KCBUN.

For example, let X be the interval [0, 1], and put B=2%, and N=the totality
of finite subsets of X. Then the Bolzano-Weierstrass theorem shows that (B, N)

satisfies (I). Put A:{%; n=1, imeger}. Then m(Xs: 1)(x)=1 for x<(0, 1), but
XA[(Oy 1)]51'
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§4. Characterization of the identity operator on L*(X, B, N).

In this section, we prove the main theorem of Part I. Our assumptions are
the following.

(A) The system (B, N) satisfies the condition (O) and the inner regularity ().

(B) There exists a fundamental set & admitted by (X, B, N).

Theorem 1. Let T be an isometric linear operator on L=(X, B, N). Assume
that Th=h for he¥. Then T is the identity operator on the whole L=(X, B, N).

Let us recall that according to our convention we use the same notation for
a function on X and the element in L>(X, B, N) represented by it.

Before the proof of Theorem 1, we make some preparations. The next lemma
is quite obvious.

Lemma 3. Let T be a linear operator on L=(X, B, N). Assume that T fixes
each element in F. Then the following hold.
(1) M(Tf; O=\TIM(S; ¢), and (TS ; R)S|T|m(f; k).
di) If \ITA\=rlf\ holds for all f€ L=(X, B, N), then

M(Tf; c)=zr-M(f; c), and m(Tf; R)=r-m(f; k).

Corollary. Let T be an isometric linear operator on L=(X, B, MN). Assume
that T fixes each element in F. Then the following hold.
(i) For a non-hull set E€®B, (TXg)[X]>1.
@Gi) If fLVI=A{0} for an open set VEB, then (Tf)LV]={0}.

Proof. By Lemma 3, we have M(Tf;c)=M(f;c) and m(Tf; k)=m(f; k).
Then (i) follows from Proposition 4 and Lemma 1, and (ii) from Proposition 5
and Lemma 2.

Proposition 6. Let T be a linear operator with norm 1. Assume that
(TX)LK]>21 for every non-null compact set K€B. Then T is the identity.

Proof. 1t suffices to show that TXz=Xy for all E€®B. For this, we have
only to show (TXg[EJC{l} and (TXg)[E]C{0}. But the former implies the
latter. In fact, putting E=X, we see that T1=1 and then obtain (TXz)[E°]
=(1—TXge)LEJC {0}. Hence it remains to prove that (TXgz)[EJC {1}.

Suppose (TXg)[E]>a+1. For ¢>0, take a non- null compact set K=®B such

that KCE and (TXg)[K]Ca+B,.. Put f=Xg—Xx+-— |b| Ax, with b=a—1. Then

IfI£1. On the other hand, since (TXx)[K]=1, there exists a non-null set BEB
such that BCK and (TXx)[B]C1+B.. Then

(THIBIS(TAe)B1—(TX )L B]+— —(TXx)[ B]

lbl

CcCa+B.—1+B.+—— lbl
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b

:m(l+lb|)+385~

Hence |Tf||[=1+|b|, a contradiction. Q.E.D.

Proof of Theorem 1. In view of Proposition 6, we have only to show that

(TXx)K]>1 for every non-null compact set K€®B. This follows from Corollary
of Lemma 3. In fact, we have

(T X121 and (TZg)[KC]C{0}. Q.E.D.

In case where X is locally compact, we have a typical situation: B contains
all open subsets of X, and & is taken from Cy(X), the space of all continuous

functions on X vanishing at infinity. In this case, Theorem 1 is rewritten in
the following form.

Theorem 2. Let X be locally compact, and assume (O*) and (I) on (B, N).
Let T be an isometric linear operator on L=(X, B, N). If T is the identity on
Co(X), then T is also the identity on the whole L™(X, B, N).

Remark 5. Let X be a totally disconnected locally compact space, B the
totality of closed open subsets of X, and f={@}. In this case (B, N) satisfies
(0) and (I). By Proposition 6, for such a system (X, B, N), we find that a con-
tinuous linear operator on L*(X, B, N) with norm 1 is the identity if it fixes each
Xk, for K compact. In particular, in the case that X is discrete, we see that a
continuous linear operator on [®(X) with norm 1 is the identity if it fixes every
element which vanishes except on a finite subset of X.

§5. A variant of the main theorem.

In this section, we characterize the identity operator as a bipositive operator
that fixes every element of a fundamental set.

Referring to its essential range, we call an element f of L=(X, B, N) real or
positive according as fLX]ICR or fTX]C{aesR; a=0} respectively. We denote
by LX, B, N) or LI(X, B, A) the set of all real elements or positive elements
respectively. Then LR(X, B, N) is an ordered vector space with positive cone
L3(X, B, N). We use the notation = for the order.

As usual we call an operator on L#(X, B, M) positive or bipositive if it
satisfies that f=0=>Tf=0 or f=0=Tf=0 respectively.

We keep to the same assumptions on (X, B, M) as in §4:

(A) The system (B, N) satisfies the condition (O) and the inner regularity (I).

(B) There exists a fundamental set & admitted by (X, B, N).

Theorem 3. Let T be a bipositive linear operator on L% X, B, N). Assume
that Th="h for heF. Then T is the identity operator on LHX, B, N).
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For the proof we need a lemma.

Lemma 4. Let T be a positive linear operator on LR X, B, N). Assume that
T fixes each element of F. Then we have the following.
(1) For every open set VeB, TAy=Xy.
(ii) For every compact set KB, (Txx)[K°]c {0}.
(iii) For every non-null compact set KB and r>1, there exists a non-null compact
set K;€®B such that K,CK and TXg Srkg,.

Proof. For short, we write A=a for AC{beR; b=a}, and similarly for
AZa, A>a, and A<a.

For (i). Since T is positive, TXy=0. Therefore it suffices to show that
(T2,)[VI1=1. Suppose not, then there exist an ¢>0 and a non-null compact set
Ke®B such that KCV and (TX,)[K]<l—e. Let s€[K] and take an heF,
satisfying h<X,. We can choose an open neighbourhood We&®B of s such that
h[W]=1—e, whence h[KNnWJ]=1—e. But this contradicts the fact that
(TX)H[K]<1—e.

For (ii). Let F be a compact set disjoint from K. For every a= I, take an
ho,€F such that h,(a)=1 and h,(F)={0}. Let V, be an open neighbourhood of
a such that ho,(V,)>1/2. Since K is compact, we can choose a finitely many
a, -+, G, such that \UL,V,,DK. Put h=312h,,. Then h=Xg, hence h=Th
=>TXx. This and the inner regularity show that (TXx)[K°]C {0}.

For (iii). As is shown in (ii), we have an A such that h=X, and that A is
a linear combination of elements in #. Let se[K], and take an open neigh-
bourhood We®B of s such that AW)Ch(s)+B., with »r—1=2¢>0. Put

f:—%- h(ls) -h. Then fIWNK]Cl+4+e+B.. Let K, be a non-null compact
set included in WNK. Then f=Xg,, so that f=Tf=TXx, Note that f[K,]
<1+2¢<r. On the other hand, we know by (ii) that (TXx)[K,°JC{0}. Hence

TXKlérXKl. Q. E.D.

Proof of Theorem 3. Let us first show that T1=1. By (i) of Lemma 3, we
have T1=1. Therefore if T1+1, then there exist a non-null compact set KB
and r>1 such that T1=rXg. By (iii) of Lemma 4, we can find a non-null com-
pact set /{; such that K;CKand TXg, <r'*Ak,. Therefore T1Zrlxzrig,zr"*TXxk,.
But this implies by the bipositivity of T a contradiction that 1=#'*({x,. Hence
T1=1.

Now, for fel%X, B, N) and r=0, we see by the bipositivity of T that
—r<f=<re—r<Tf=<r. This shows that T is isometric with respect to the
norm of L% X, B, N). Hence by Theorem 1, T is the identity operator on
L#X, B, N). We note here that Theorem 1 does not depend on the scalar field
Cor R. Q.E.D.

Similarly as Theorem 2, this theorem is rewritten in the following form when
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X is locally compact.

Theorem 4. Let X be locally compact, and assume (O*) and (I) on (B, N).
Let T be a bipositive linear operator on LR(X, B, N). If T is the identity on
Co(X), then T is also the identity on the whole LR(X, B, N).

§6. Remarks on the change of the base space X.

In this section we make some remarks on the change of the base space X
and the structure of L=(X, B, N).

6.1. Let us consider two systems (X, B;, W) and (X,, B,, N;). Let ¢ be a
Boolean lattice homomorphism of B, to B, with ¢(RN,)CN,. Then it is not difficult
to see that g(Xg)=X,cz defines a linear map ¢ of Sp, to Sp, With G(S,)CTSa,.
Further since | flz=[&(Nllee, ¢ is continuous with respect to the norms ||| x,
and |-llx, so that ¢ can be extended to a linear map of L(X,, B;, M) to
L=(X,, B,, N;). We can easily see that if ¢ '(M)=N,, then ¢ is isometric, and
that if ¢ is surjective, then ¢ is also surjective.

It should be noted that ¢ is an algebra homomorphism when we consider
the natural algebra structures on L®’s.

6.2. Change of the base space X by a map ¢: X—Y.

Let us consider (X, B, M). Let ¥ be a set and ¢: X—Y be a map. We
define (4B, M) on Y by ¢«B={B'CY ; ¢ (B)EB} and ¢:N={N'CY ; ¢~ '(N')
€N}. Further define ¢*(B’)=¢ (B’) for B’€¢xB. Then ¢* is a Boolean lattice
homomorphism of ¢«B to B such that ¢*(«MCTN. Thus we get a situation in
6.1, so that we have a continuous linear map ¢*> of L=(Y, 4B, ¢N) to L=(X, B, N).
Note that ¢*~ is automatically isometric because ¢* '(M)=¢4N. Moreover if ¢ is
injective, then ¢* is surjective. Hence ¢*~ gives an isometric isomorphism be-
tween L=(X, B, N) and LY, ¢«B, M) when ¢ is injective.

Next let us consider topological conditions. Assume that X and Y are Haus-
dorff topological spaces and ¢ is continuous. Then the system (Y, ¢«B, ¢«MN)
satisfies the conditions (O*) and (/) when so does the system (X, B, N). More-
over if ¢ is a homeomorphism onto a subspace of ¥ and (X, B, N) satisfies (0)
and (I), then (Y, ¢4B, ¢sN) satisfies the same conditions.

Thus we can change the base space X by Y preserving the topological
conditions (O) and (I) of the systems. One may therefore expect further that
keeping the conditions (A) and (B) we can arrive at a locally compact space Y
from any (X, B, M) in a certain way; for example using the spectrum space of
the algebra generated by the fundamental set #. But the auther does not know
whether it is possible or not.

6.3. The spectrum space of L~(X, B, N). Let us recall the Stone’s repre-
sentation theorem for a Boolean lattice: For a Boolean lattice B, let M be the
set of all maximal ideals of B. Then the map BE—E={MeM; M>3E}
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defines a Boolean lattice isomorphism onto a sublattice of 2%. Being equipped
with the topology generated by 3={E; E, 8}, M is found to be compact. Further
B is characterized as the set of all closed open subsets of M.

By the definition of the topology on M, Xz for E< @ is continuous. Further
the algebra of step functions S3 separates the points of 9. Therefore by the
Stone-Weierstrass theorem, S5 is dense in the space C(IM) of all continuous
functions on M with respect to the supremum norm. So we see that L=(M, B, {&})
=C(M).

Applying the argument in 6.1 to the lattice isomorphism 8— & for 8=3B/%,
we obtain the following.

Theorem 5. Let M be the maximal ideal space of the quotient Boolean
lattice B/N. Then L=(X, B, N) is isomorphic to C(M) as a C*-algebra. The isomor-
phism f—f is given by fLE]=f(E) for E€B.

By abuse of notation, we denote the class of E in B/N by the same notation
E.

Proof. The fact f(E)=f[E] follows from §z=Xz. Conversely from §z(B)
=X[B] for B, E€B, we see ¥r=Xz And the isomorphism is uniquely deter-
mined by ¥z=1%. Q.E.D.

Corollary. Every character, i.e., algebra homorphism onto C, of L*(X, B, N)
is given in the form Lig}f[E], wheve F is a maximal filtre of B/N.

Remark 6. From the above theorem, the properties on essential images
stated in §1 are readily seen.

PART II. LINEAR ISOMETRIES ON L*(G) COMMUTING WITH TRANSLATIONS.

Throughout Part II, G will always denote a locally compact group, and e its
neutral element. For 1=<p<oo, p+#2, Strichartz [9] and Parrott [7] proved that
isometric linear operators on LP(G) commuting with every translation are scalar
multiples of left translations. Here LP(G) is the space of p-th power integrable
functions relative to the Haar measure. In Part II, we shall apply our main
theorem of Part I, Theorem 2, to the case of L=(G) and obtain a similar result
as of Strichartz and Parrott.

§7. Linear isometries on L”(G) commuting with translations.

7.1. In this paper we understand the Haar measure as the left invariant
regular Borel measure defined on B, the ¢-ring generated by all compact subsets
of G. Let B be the totality of locally measurable sets in G and N that of locally
null sets in G. Here a subset B is called locally measurable (resp. locally null)
if BNK belongs to B, (resp. belongs to B, and measure zero) for an arbitrary
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compact set K. We define L=(G) as L=(G, B, N) given in §1. From the defini-
tion, we see that the system (B, N) satisfies the condition (O*) and the inner
regularity (I) in § 2.

The left and right translation operators L(¢) and R(t) for t€G are defined
by L@®)f(x)=/(t""x) and R()f(x)=f(xt) (x€G).

The main theorem in Part Il is the following.

Theorem 6. Let T be an isometric linear operator on L*(G) commuting with
every right translation. Then T is of the form alL(s), where s€G and a is a
scalar of modulus 1.

Note that we do not assume the surjectivity of 7.
Before the proof, we deduce from Theorem 6 the case that T preserves the
pointwise multiplication of L*(G).

Corollary. Let S be an injective algebra endomorphism of L*(G) commuting
with every rvight translation. Then S is a left translation.

Proof. Let us prove that an injective endomorphism S is isometric. Then
by Theorem 6, S=aL(s) for some s€G and |a|=1. And letting S act on 1=1%,
we get a=a?, whence a=1.

Now, since Xp=X% we have SXz=(SXg)?:. So SXy is of the form ¥z Here
E is not in M if E is not, because S is injective. Thus S transfers a step
function isometrically to a step function. Since the space of step functions is
dense, S is isometric on the whole L=(G). Q.E.D.

By virtue of Theorem 2, the proof of Theorem 6 is reduced to the following
Proposition 7. We note here that to Corollary of Theorem 6, we can take a
shortcut not through Proposition 7 but through Proposition 8 in §9.

Proposition 7. Let T be an isometric linear operator on L™(G) commuting
with every right translation. Then CyG) is stable under T and the restriction of
T to CfG) is of the form aL(s), where s€G and « is a scalar of modulus 1.

7.2. Lemmas on continuous linear forms on Cy(G). For the proof of
Proposition 7, we make some preparations.

Let g be a continuous linear form on Co(G) with respect to the supremum
norm. As usual we define supp ¢ (the support of ) to be the set of x€G
satisfying the following: for every neighbourhood W of x, there exists some
f€Co(G) such that supp fCW and pf+0. Note that supp ¢ is closed, and that
uf=0 if suppfNsupp p=@. For a point a of G, d, denotes the Dirac measure
at a:d.f=f(a) (feCy(G)).

We need the following three lemmas. The first one is well known.

Lemma 5. Let u be a continuous linear form on C(G). Assume that supp p
is a one point set {a}. Then p is a constant multiple of the Dirac measure at a.
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Lemma 6. Let p be a continuous linear form on CG), and let f&Cy(G) be
non-zero. If supp psupp f, then |pf|<|pllfl, where I71=sup [ fC)I.

Proof. Since supp pdsuppf, we can find an heC(G) satisfying supph
Nsupp f=@ and ph#0. We may assume in addition that [A|=<|f]. Then
lef+c’ml=If|l for ¢, ¢/, complex numbers with modulus 1. Taking such an h,
and choosing ¢, ¢’ in such a way that |uf|=c-uf, |phl=c’-ph, we have

lpef | <|pfl+lphl=c-puf+c' ph
=u(cf+c m=lplllcf+c rI=1plf1.
This completes the proof. Q.E.D.

Lemma 7. Let p be a continuous linear form on CyG), and f€CyG). Put
o(x)=p(R(x)f). Then ¢ is in C(G).

Proof. Clearly ¢ is continuous, because f is uniformly continuous. More-
over since |p(x)|=llplllfll, we have only to prove the assertion for f with com-
pact support.

For >0, take an heCy(G) with compact support such that |ph|=|ul—e
and [A|=1. Then we have the following () for gCy(G) with supp gsupp A
=g

® lpgl=clgll.

In fact, put g’=cl|lgllh+c’g, where ¢, ¢’ are such complex numbers with modulus
1 that |ph|=c-ph, |pgl=c’-pg. Then we see that [lg|l=Ilg’ll whence [gllgl
=|pg’l, and that

g'=lglluhl+pglzlgllpl—e)+1 gl .
So we obtain (#).
Now, let f be with compact support. If xe(supp A) *(suppf), then supp h
Nsupp R(x)f=@. Therefore by (#) we get

o) = (RGN el RS I=el ]

for any x outside the compact set (supp i) *(supp f). Q.E.D.

7.3. Proof of Proposition 7. Note first that the space B.(G) of all right
uniformly continuous bounded functions is stable under T. In fact, T is isometric
and commutes with every right translation, whence

IROT/—TFI=ITROf=TfI=IROf—S].

Although this norm is not the supremum norm but the essential supremum norm,
one can see without difficulty that Tfe B.(G) for f= B.(G) using the convolution
by an approximate identity (see e.g. Parrott [7, Lemma 2J). Then since |7Tf(e)]
ZITfI=IfI, the linear form p:f—Tf(e) is continuous and with norm =1 on
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Co(G). Since Tf(x)=R(x)Tf(e)=TR(x)f(e), we have
Tfx)=w(R(x)f) (feCLG)).

So by Lemma 7, we see that Co(G) is stable under T.

We show next that supp ¢ is of one point. Suppose that supp ¢ contains
distinct two points a and b. Let V be a neighbourhood of e such that VV-'35ab™'.
Then for any x=G, VxD{a, b}, hence VxDsupp p. Therefore for non-zero
feCy(G) satisfying suppfCV, we have supp R(x)f=(supp f)x *Dsupp p¢. For
such an f, we see from Lemma 6 that |Tf(x)|=|pu(R(x)f)I <l fl. On the other
hand, the function |Tf(x)| attains its maximum, because Tf=Cy(G). So we have
ITAII<IfI, a contradiction. It is clear that supp p# @&, therefore supp ¢ is a one
point set.

By lemma 5, ¢ is of the form ad;-:1 for some s€G and « a scalar. Con-
sequently Tf(x)=af(s7'x)=aL(s)f(x) holds for f€C«(G). Note here that |a|=1
because T is isometric. This completes the proof of Proposition 7. Q.E.D.

Thus Theorem 6 is now proved.

§8. Remarks on related facts.

In Theorem 6, we do not assume that the surjectivity of the operator 7.
When we add this assumption on T in Theorem 6, we can prove it in another
way. We shall explain this and give some remarks on related facts.

8.1. Relation between isometries and algebra automorphisms.

Theorem BS. Let A be a commutative C*-algebra with the unit element 1,
and T an isometric linear operator on A onto itself. Then there exists an algebra
automorphism S of A such that

Tf=T1-Sf (feA).

This follows from the following Banach-Stone theorem via the Gelfand-
Naimark representation theorem.

Theorem (Banach-Stone). Let X and X' be compact spaces, and T an isometric
linear isomorphism of C(X’) onto C(X). Then there exist a homeomorphism © of
X onto X’ and a continuous function a on X with values of modulus 1 such that

T/(x)=a(x)f(z(x)) (x€X, feC(X").

Here for a compact space X, C(X) denotes the space of all continuous complex-
valued functions on X with the supremum norm.

The Banach-Stone theorem is due to Banach [1, p.173] and to Stone [8, p.
469]. They consider real-valued function spaces. For the case of complex-valued
functions, see for example Dunford-Schwartz [4, p.442].
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8.2. The following theorem is obtained in Takesaki-Tatsuuma [10, Theorem
1]. We shall give an elementary proof of it in the next section.

Theorem (Takesaki-Tatsuuma). Let S be an algebra automorphism of L*(G)
commuting with every right translation. Tnen S is a left translation.

Combining Theorem BS and the above theorem, we get the following.

Theorem 7. Let T be a surjective isometric linear operator on L=(G) commuting
with every right translation. Then T is of the form aL(s), where s€G and «
is a scalar of modulus 1.

Proof. By Theorem BS, there exists an algebra automorphism S of L%(G)
such that Tf=T1-Sf (f€L>(G)). Observe that T1 is a scalar of modulus 1.
In fact, T1 is invariant under every right translation, because so is the constant 1
and T commutes with these translations. Since 7 is isometric, T1 is of

modulus 1. Thus Theorem 7 is reduced to the theorem of Takesaki-Tatsuuma.
Q.E.D.

8.3. Implications among our results and related facts. It is known that
algebra automorphisms of a W*-algebra are automatically weak* continuous. By
virtue of this fact and Theorem BS, Theorem 7 can be rewritten in its dual form:

Theorem 7*. Let T be a surjective isometric linear operator on LYG) com-
muting with every vight translation. Then T is of the form aL(s), where s€G
and a is a scalar of modulus 1.

This in turn is a special case of Wendel's theorem [12, Theorem 3] that
requires no surjectivity of 7.
We illustrate in the following diagram how these theorems imply each other.

Th. of Wendel Th. 6 —————) Cor. of Th. 6
! J
Th. 7* (————) Th. 7 {————) Th. of Takesaki-

(by duality) (by Th. BS) Tatsuuma

8§9. A proof of the theorem of Takesaki-Tatsuuma.

In this section, we give another proof of the theorem of Takesaki-Tatsuuma,
which is essentially on the same line as the original one in [10], but somewhat
direct.

By C(G) or %(G), we denote the space of all continuous functions or that of
all continuous functions with compact support on G respectively.

Proposition 8. Let A be a subalgebra of C(G) including X(G), and S an
algebra homomorphism of A to C(G). Assume that SR(x)h=R(x)Sh for he x(G),
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x€G, and that S does not vanish identically on K(G). Then S is a left trans-
lation.

Remark. For A and S, we assume no topological property.

Proof. 1t is not difficult to see that every character of X(G), i.e., algebra
homomorphism of #(G) to C, is of the form hA— Ah(t) for some tG if it is not
identically zero. Now, let us consider a character & of X(G) defined by £h=Sh(e).
Then we have &(R(x)h)=Sh(x) because S commutes with R(x) on X(G). Since
S is not identically zero on X(G), neither is £&. Therefore from the fact mentioned
above, we see that Eh=h(s"?) for some s€G. Then for every heX(G), Sh(x)
=&(R(x)h)=h(s"'x)=L(s)h(x). Since fheK(G) for f€ A and heX(G), we have

(L(s)"'Sf)h=L(s)"'S(fh)=fh .

Here h is an arbitrary function in #(G), so we obtain L(s)"'Sf=f for feA.
Hence S=L(s) on A. Q.E.D.

Proof of the theorem of Takesaki-Tatsuuma. As is shown in the proof of
Proposition 7, the space B.(G) of all right uniformly continuous bounded functions
is stable under S. Applying Proposition 8 for A=B.(G), we see that S=L(s) on
B,(G) for some s G. Since both S and L(s) are continuous in the weak* topology
o(L>=, L) and coincide on a weak* dense subspace B.(G), they coincide on the
whole L*(G). Q.E.D.

Remark 7. Corollary of Theorem 6, which is stronger result than the theorem
above, can also be proved directly by Theorem 2 and Proposition 8 independently
of Theorem 6.
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