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Introduction.

The purpose of the present paper is twofold. The first purpose is to establish
a  theorem of the following type :

L et X  be a locally compact space, and v an  inner regu lar B orel measure on
X .  If  an  isometric linear operator T  on L"(X , I)) f ixes every continuous function
on X vanishing at inf inity , then T  is  the identity.

In Part I, we prove this a s  Theorem 1 under somewhat more general for-
mulation. In  fact, we formulate a n  L - -space relative to a  Boolean algebra of
sets, where we need neither measure nor a-completeness.

Part II is devoted to the second purpose, an application of the above result
to a  characterization of left translations on L"(G ), where G  is a  locally compact
gro up . T h e principal result in  P art II  is Theorem 6, which states that an
isometric linear operator on L°°(G) commuting with every right translation i s  a
scalar multiple of a left translation. Similar results on L P(G) were obtained by
Wendel [12 ] fo r  p = i  and  generally  by Strichartz [9] and Parrott [7 ] for
i. p<co, p#2.

Let us explain the contents in more detail. Part I consists of six sections.
In §§ 1 & 2, we give the formulation of L - -spaces and some basic properties. In
§ 3, we introduce a  key notion, "tracing a  function by its perturbation", and then
present two important propositions that extract information of a function from
it s  perturbations. A fter these preparations, w e prove our m ain  theorem,
Theorem 1, in  § 4. A modification of the main theorem, Theorem 3, which
characterizes the identity operator as a bipositive operator, is treated in  § 5. In
§ 6, a s  a  supplement to Part I, we discuss the change of the base space of an
L - -space and describe its spectrum space in terms o f th e  Boolean algebra that
defines the L - -space.

Part II consists of three sections. We treat there the problem of determining
the isometric linear operator on L ( G )  commuting with all right translations.
In § 7, we apply the main theorem of Part I to this problem and obtain Theorem
6. For a weaker theorem with an additional assumption of the surjectivity of the
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operator, we present another proof in  § 8. We also m ention there some related
fac ts  a n d  th e ir  relations. I n  t h e  last section, w e give a n  alternative proof for
th e  theorem o f Takesaki-Tatsuuma, which is closely related to t h e  consideration
in §8 .

T h e  author w ishes to ex p ress  his thanks to  P rofessor H . Yoshizawa for
valuable su g gestio ns in  th is presentation. Thanks also go  deeply to Professor
N . Tatsuuma a n d  to Professor T .  H irai f o r  th e ir  encouragem ent and various
advices.

Notations.

R  :  th e  se t o f  real numbers,
C  : th e  se t o f  complex numbers,
B s = f a E C ; l a l e l ,  th e  closed disk of radius s in C.

L e t X  be a  s e t .  F o r  subsets M and M ' o f  X , we use the following notations
throughout this paper.
M c:  th e  complement o f M  in  X,
M A M ' : th e  symmetric difference o f M  and M ',
Xm:  th e  characteristic function o f M.

F o r a EC, we denote the constant function aX x  sim ply by a.

PART I. CHARACTERIZATION ON THE IDENTITY OPERATOR ON /,̀ °-SPACES.

§ 1. Formulation o f  LW-spaces.

In  this section, we formulate a n  L - -space fo r  a  Boolean algebra of sets.

1.1. L et X  be a  s e t .  We consider a  p a ir  (0, N) o f  a  Boolean lattice T  of
subsets o f X  and  an  ideal N of T : B , B ' E 0 * B c , BUB' E 0 , and N , N'EN, BET

N n B E T .  W e call a  se t null if it belongs to N .  We exclude the trivial
case N=s-13. L et S o  a n d  S R  b e  the  space o f step functions and that o f  null step
functions (i. e., o f  t h e  linear combinations o f  XB 's, B  ET, and  o f those o f XN 's,
NET respectively). We define seminorms 11•11E o n  ST for E E J 3 by

(*)E If{ 1 ? 0  ;  Ix ; I f(x)1> klnEENI .

It is c lear that II .I I  • i f  E c E ',  a n d  th a t  IlfIlx --=0 if  and  only if f  E S R .
Now, we define th e  space L - (X , 0, at) a s  th e  completion o f So/S R  b y  t h e  norm
II • II x. N o te  th a t  t h e  seminorms • 11E, Ee0, a r e  well defined on  L"(X , I , 91).

Remark 1. Note that th e  space S o  form s a  r in g  under th e  pointwise multi-
plication and that S R  i s  a n  ideal of S .  F u r th e r  the involution E & X 1 3 ,

is naturally extended to L - (X , T , N ). T h us L - (X , 0, N ) forms a commutative
C*-algebra. Note also that 11f ME  is equal to l l f X E l l x .  T h e  s tru c tu re  o f  L "(X , 0 , N)
a s  a  C*-algebra depends only on the quotient Boolean lattice 0/92. F o r  details,
see § 6.
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1.2. Realization o f  L.,̀ "(X, 91) a s  a  function  space  o n  X.
T he  space L- (X, T, al) can be realized a s  th e  space  o f  (equivalence classes

of) functions o n  X .  First, w hen T  is  a-complete (i. e., T is  a  a-field on  X ), put

..C- (X, 0, {f ; T-measurable, Ilf II x < 00}

gZ(X, 0, ) = {f; 0-m easurable, If II x=0} .

Here a  function f  on X  is called 0-measurable if f - 1 (U )E T  f o r  e v e ry  open set
U  in  C, a n d  Ilf II x  is defined by the form ula ( * ) x .  Note th a t  t h e  a-completeness
o f  a t  is  n o t  r e q u ire d . A s is easily seen, ..C- (X, T, 91) and  gi(X, 8 ,  91) are  linear
spaces. Then L- (X, T, 91) is realized as the quotient space ..C- (X , 0,91 )/ 2(X, T, VI).

N ow , for a  general T, take  a  a-complete Boolean lattice 0  o f  subse ts o f  X
including T, and  le t VI be th e  ideal generated by al in  0 .  T h e n  L"(X, T, 91) is
realized as the closure of the image of So  in  L- (X, 0, gi)=-- ±"(X, 0, TI)Ig2(X, 0, TO.
H ere th e  im a g e  o f  S o i n  L- (X, a l)  is  iso m o rp h ic  to  So/Sm, because S o =
S o n T (X , .0, al).

T h u s  a  function f  o n  X  represents a n  element o f  L - (X, 8 ,  VI) if  it can be
approximated by th e  step functions in  S o  in  th e  sense o f  II • x .  In  th is  case we

II •
say  tha t th e  function f  is adm itted by th e  system  (X , 0, at).

Hereafter we often employ t h e  follow ing co n v en tio n s  o n  n o ta tio n . (1)
•Mx. ( 2 )  A  su b se t o f  X  w ith o u t an y  notice w ill be understood to be in  T.

(3) F o r a  function and  fo r the  element o f  L- (X, 0, 91) represented by it , w e  use
the  same notation.

1.3. The essential im a g e  o f  a  se t in  B .

Definition 1 .  For T, VI) and  B E T , w e  d e f in e  t h e  essential image
o f  E  b y  f ,  denote by f [ E ] ,  a s  th e  s e t  o f  a EC  satisfying t h e  following :  for
every E>0, there exists a  non-null s e t  B E T  su c h  th a t B E E  a n d  Ilf—all o <E.

It is c lear by defin ition  that f o r  a E f[ E ]  an d  fo r every  E >0, there  exists a
non-null s e t  B E T  su c h  th a t B E  and f [ B ] C a + B E. Note th a t  f [ E ]  is closed
and bounded, hence co m p ac t in  C . In  fac t, fo r  a EE f [E], there exists a (3>0 such

3 3that II f fo r any non-null s e t  B c E ,  whence for I b —  a l— 2
T he  boundedness of f [ E ]  follows from f [E ] ( - 0— -1111E  •

F or EE91, f [ E ]  is  th e  em pty se t. T h e  co n v erse  o f this fact is fundam ental
in  what follows.

Proposition 1 .  T he essential im age f [ E ]  is not em pty  f o r  Ect T.

Pro o f . Suppose f  [E ]  is  e m p ty . T h e n  fo r every  a E C , there  ex ists a  d̀a >0
s u c h  th a t  Ilf—blIB->-5„, fo r any non-null B E  a n d  fo r  I b— a <5 a .  Moreover, if

a l> 2 11f11E, th e n  Ilf—a IIB> Ilf 11E. Therefore by t h e  compactness o f  t h e  closed
disk B a p E ,  th e re  ex is ts  a  0>0 such that II f  —a11,3 ___3 fo r any non-null B CE  and
for any amC. B u t  th is  is  impossible because f  can  be  approx im ated  by  step
functions. Q .  E .  D .
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Proposition 2 .  ( f +g )[E ]c f E E ]+g [E ].

Pro o f . L et c G (f+ g ) [E ] .  For r> 0, there exists a  non-null B E  such that
Ilf+g—c11B<6. Take a n  a G f [B ] a n d  a  non-null B 'c B  such that
Further take a  bŒ g[B '] a n d  a  non-null B "c B ' such that II g—bIl B .< s .  Then
w e h a v e  I c— a — b1=11c — a — billy<3s, or c Ef CEI-E-gEE1H-Bs„ Since f [E ]d -g [E ]
is  compact and s > 0 is arbitrary, we see that c E f [E ]i-g fE l. Q. E. D.

C oro llary  1 . I f  !If—g- s, then f[E ]C g [E ]d -B ,.

Proo f . f [E ]c g [E ]+ (f— g ) [E ] Q. E. D.

C o ro llary  2 . IlfilE=sup { I a I ; aEf [E ] l  f o r EEE T.

Pro o f . This relation is clear for a step function. For a general fE  ./7 (X , T, 91),
we can see this from t h e  corollary above, because f  is approximated by step
functions. Q .  E .  D .

We have also th e  following useful relations :

f [E U E 'l= f [E ]U fE E '] ,

f [E ]-= I [E 'l if EA E ieT

The assertions can be obtained directly from th e  definitions.

§ 2. S u p p o rt o f  a  s e t  in  93.

From now on, the base space X  is  assum ed  to  be a  H ausdorff topological
space, and w e p u t a  natural topological condition on (0, T)

(0) contains a  basis of open sets in  X.
We make further a n  essential assumption, th e  inner regularity of (T, 31):
( I )  For every non-null set B 8, there exists a  non-null compact set KET

such that KcB .

D efinition 2. F o r E ET, we define th e  support [E l  o f  E  as the  set of x EX
satisfying th e  co nd ition  th a t  V n E  is  n o t n u ll fo r  every open neighbourhood
VET o f  x.

We see easily the following properties.

(1) [E] is closed.

(2) [E ]c  E - = the closure o f  E .

(3) [E U E ']=E E 1U [E 'l .

(4) I f  E  is  null, then [E ] is em pty.

The converse of (4) holds under th e  assumption o f th e  inner regularity.
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Proposition 3 .  I f  E  is not null, then [E ]  is not empty.

P ro o f. By th e  inner regularity, there exists a  non-null co m p ac t se t KET ,

such that K c E .  Therefore i f  [E ]  is em pty, so is [K ]. Then fo r every x EX,
there exists an open neighbourhood V., GT o f  x such that K r )V , i s  n u l l .  Since
K  is compact, we can find a  finitely many V x 's that cover K .  So we have

K = K n (Ufinit e Vx) = f iU e (KnVx)E31,

a contradiction. Q. E. D.

Remark 2. U n d e r  t h e  inner regularity, w e h a v e  th e  following fo r  th e
essential image f [E] :

L et a E f [ E ] .  Then fo r  any e>0, there exists a  non-null com pact set K E 3
such that K E  and f [K ]C a + B ,.

Remark 3. Let us assum e the condition (0*) stronger than (0 ):
(0*) contains every open se t in  X.

In  that case, [E ]E 3  for E E . T h en  w e have the  following (*) quite similarly
as Proposition 3 :

( * )  E [ E ] 9 l .

From this we can deduce th e  following.

(5) If  F  is closed, then FL[F ]e31 .

(6) [ [E ] ]= [E ] .

(7) I f  E  is not null, neither is [E]

Note further that under the condition (0 * ) every bounded continuous function
on X  is admitted by (X, 31).

§ 3. Tracing of f  by its perturbations.

L et us begin with a  definition.

Definition 3 .  A  se t  g  o f continuous functions o n  X  is called fundamental
if  it satisfies th e  following : (i) F or every h E g  and  x E X , 0 - h(x) - 1. ( i i )  For
every point a E X a n d  a  closed se t F 53, a , there exists a n  h  g  such that h(a)-=1
and  h (x )=0  on F.

F o r a  fundamental se t 2 ' an d  a E X , p u t a' a =  {12 9' ; h(a)=1}
W e assum e that there exists a  fundamental se t  a" admitted by (X, T, 91).

Under this assumption, th e  base space X  m ust be completely regular.
For fEL`°(X, T, 91), c C ,  a n d  le z.0, we define

M (f ; c)(x)=inf 111.f+ch11;hEgx}

m (f  k)(x)--suP {M (f; c)(x ); k} .
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These functions play an important ro le  fo r  o u r  m ain  theorem , Theorem  1,
through the following propositions.

Proposition 4. I f  there ex ists an x o E X such that M(f ; 1)(x0=11f 11+1, then
fEX 1B Ilf M.

Pro o f . For a n y  h x o , w e have

(f+h)EXiCfrX1 - F h [X ]C f[X ]+  la ER ; a .

This shows th a t  the absolute value of an y  b e (f + h )[X ] cannot attain  the value
Ilf 11+1 when f [ X ]  does not contain the value Mf

Proposition 5 .  I f  m(f ; k)(x) k holds on a non-null set E, then f[E]= {0} .

Pro o f . Assume th a t f[E13  a * O . T h e n  for a n y  e > 0 , th e re  ex is ts  a n o n -

n u ll com pact set K ET such  tha t K C E  and f [K ]c a -F B , .  Put c= k .  Let
I al

s E [K ], then  sE E .  For every  h E g„ w e can  take  an open neighbourhood VET
of s such  tha t h [V ]C l+  B ,.  Therefore

( f  c h )[K r\ V ]c f [K 1 ± c h [V ]

C a+B H - a  

= (  a I +k)+Bw.+k) •I al
Hence m(f ; k)(s)a. a k, a contradiction. Q. E. D.

From  the definitions, we can easily deduce the following.

Lemma 1. For E ET,

11I(XE ; 1)(x)=m(X E  ; 1)(x)=Xcx3(x)+X[E](x) (x E X ) .

(Needless to say, this equality holds exactly at each point x  X , not in the sense
of L - (X, T, 91).)

Lemma 2 .  Let k fE Vi= {0} for an open set V EO, then m(f ; k)(x) -5_k
on V.

Remark 4 .  W hen w e replace the condition of the inner regularity  ( I )  with
the following (4 ),  Proposition 5 does not hold.

(4 )  F or every  non-nu ll s e t  B EO, there  ex ist a  null set N  and a non-null
compact set KeT such  tha t KCBU N.

For example, le t X  be the interval [0, 1 ], and put 8 =2z, and T=the totality
of finite subsets of X .  T hen the Bolzano-Weierstrass theorem shows th a t  (0, V2)

1
satisfies (4 ) .  Put A =i—

n  
; n 1, in te g e r l . T hen  m(XA ; 1)(x)=1 for x (0, 1), but

XA[(0, 1)]D1.
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§  4 .  Characterization o f th e  identity operator on L - (X, 0, T).

In  this section, we prove the  m ain  theorem o f  P a r t I. O ur assumptions are
th e  following.

(A )  T h e  system (0, 92) satisfies the condition (0) and the inner regularity (/).
( B ) There exists a  fundamental se t g  admitted by (X, 0, 91).

Theorem 1. Let T  be an isom etric linear operator on L - (X, 0, 91). Assume
that Th=h fo r  h E g .  T hen T  is  the identity  operator on the whole L"(X, 0, 91).

L et us recall that according to our convention we use  the  same notation for
a  function on  X  and  the  element in  L - (X, 0, T) represented by it.

Before th e  proof o f Theorem 1, we make some preparations. The next lemma
is quite obvious.

Lemma 3. Let T  be a linear operator on L - (X, 0, 91). Assume that T fixes
each element in  a- . Then the follow ing hold.
(i) M(Tf ; c) . 11T11M(f ; c), and m(Tf ; ; k).
(ii) I f IITf II . 7-11f II holds fo r  all f  L " (X ,  0, 91), then

M(T f ; c)_>_r • M(f ; c) , and m(T f ; k) ..4- • m(f ; k) .

Corollary. Let T  be an isom etric linear operator on  1.7(X, 0, 91). Assume
that T  fixes each element in  9% Then the following hold.
(i) For a non-hull set EET, (TX E ) [X ]p l .
(ii) I f  f [V ]=  101 fo r  an open set V m ,  then  (T f)[V ]= {0 }.

Pro o f . By Lemma 3, w e  h a v e  M(Tf ; c)=11(f ; c) a n d  m(Tf ; k)-=m(f ; k).
Then (i) follows from Proposition 4 a n d  Lemma 1, and (ii) from Proposition 5
and Lemma 2.

Proposition 6. L e t  T  b e  a  linear operator w ith  norm  1. Assume that
(TX K )[K ]B 1  fo r  every non-null compact set IC E 0 . Then T  is  the identity.

Pro o f . It suffices to show  that TXE =XE  f o r  a l l  E E 0 . F o r  th is , w e have
only to  sh o w  (TXE )[E1C {1 } a n d  (TXE )[.Ecic {0}. B ut the  form er implies the
la t te r . In  fa c t , putting E = X , w e see  th a t T1=1 a n d  then obtain (TXE ) [E 9
=(1—TXE c )[E 9 C  {0} . Hence it remains to prove that (TXE )[.E1C {I} .

Suppose (TXE )[E1D a = 1 . F o r s >0, take a  non-null com pact se t K E 0  such

that K C E  and (TZE ) [K ]c  a +  B ,. Put f= X E — X K ±  Z K , w ith  b= a — 1 . Then

f I1< 1 . O n the  other hand, since (TXK )[IC]B I, there exists a  non-null set BmB
such that B K  and (TXK )1/3]C1-1-Be . Then

(77)[13](TXE)1B1—(TXK)1B1+ (TXK)[B]Ibl

c a + B s — l+B ,+ +B,ibl
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= (1+ibi)+B3,.

Hence II Tf11-1±11,1, a contradiction. Q. E. D.

Proof  o f  Theorem  1. In  view of Proposition 6, we have only to sh o w  that
(T 4 ) [K ]  1  fo r every non-null compact set Ke T .  T h is  follows from Corollary
o f Lemma 3. In  fac t, we have

(T X K )[X ] 1 a n d  (TY,K )[1(c1C {0} . Q. E. D.

In case where X  is locally compact, we have  a  typical situation :  0  contains
all open subsets o f X , and  g  is taken from C0 (X ) ,  t h e  space o f  all continuous
functions o n  X  van ish ing at in fin ity. In  this case, Theorem 1 is rewritten in
th e  following form.

Theorem 2. L et X  be locally  compact, and assume (0 * ) an d  ( I )  o n  (0, 9i).
L e t  T  b e  an  isom etric linear operator on L - (X, 0, 92). I f  T  is  the identity  on
Co (X ), then T  is also the identity  on the w hole 1,- (X, 0, 92).

Remark 5. L et X  be a  totally disconnected locally com pact space, B  the
totality o f  closed o p e n  subsets o f X , and 91= ø } .  I n  this case (0, 92) satisfies
(0 ) and (I). By Proposition 6, for such a  system (X , 0, 92), we find that a  con-
tinuous linear operator o n  L - (X, 0, 92) with norm 1 is  th e  identity if it fixes each
XK, fo r K  com pact. In  particular, in  the case  that X  is discrete, we see that a
continuous linear operator on  M X ) with norm 1 is th e  identity if  it  fixes every
element which vanishes except o n  a  finite subset o f X.

§ 5 . A  v a ria n t o f  th e  m a in  theorem.

In  this section, we characterize th e  identity operator a s  a  bipositive operator
that fixes every element o f  a  fundamental set.

Referring to its essential range, we call a n  element f  o f  L - (X, 0, 92) real or
positive according as f [X ] c R  or f [X l c  { a ER ; a 0} respectively. We denote
by L (X , 0, 91) o r  LT(X, 0, 9 0  th e  se t  o f  all real elements o r p o s itiv e  elements
respectively. Then L(X, 0, 91) is a n  ordered vector space with positive  cone
L7(X, 0, 92). We use the notation  f o r  t h e  order.

A s  usual w e call a n  operator o n  LcRs(X , 0, % ) p o s itiv e  o r  bipositive i f  it
satisfies that f_ - () T f_O  or f_()<=>Tf__0 respectively.

We keep to th e  same assumptions on  (X , 0, 92) a s  in  § 4:
(A) T he  system (0, 92) satisfies the condition (0 ) and the inner regularity (/).
(B) There exists a  fundamental set g  admitted by (X , 0, 92).

Theorem 3. L et T  be a  bipositive linear operator on L 'i i(X, 0, 92). Assume
th at T h= h f o r h S E E . T hen T  is  the identity  operator on L171(X, 0, 92).
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For the proof we need a  lemma.

Lemma 4 .  L et T  be a positive linear operator on L ( X , 0 , al). A ssume that
T  fixes each element o f  g .  Then we have the following.
(i) For every open set V 9 3 , T X v .>_Xv .
(ii) For every compact set K ET , (T X K ) [K 9 C  {0}.
(iii) For every non-null compact set K E T  and r>1 , there exists a non-null compact
set K 1 m s u c h  th a t  K i C K  and TX i c i rXK i .

Pro o f . For short, w e w rite A >.a  fo r A C {bER ; b.>_ a} ,  and similarly for
A >a, and A G a.

For (i). Since T  i s  positive, TX v 0. Therefore it suffices to show that
(TXT,)[V ] l. Suppose not, then there exist an e > 0 and a non-null compact set
K E Z  such that K c  V  and (7117)EK1<1 -  E. L et s E [K 1  and take  a n  h E g s
satisfying W e  c a n  c h o o s e  an open neighbourhood WET of s  such that
h[T/T71 - 1—  s, whence h [K n W ]_ 1 —  s .  B u t th is contradicts t h e  fact that
(TX v )[K ]<l— e.

For (ii). Let F  be a compact set disjoint from K .  For every a E K , take an
E g such that h a (a)=1  and h a (F)= IC  Let V a  be an open neighbourhood of

a  such that h a (Va )> 1/2 . Since K  i s  compact, we can choose a  finitely many
a l , •-• , a n  such that  U i V a D K .  P u t  h=ni--- 12h a i . Then h_X K ,  hence h =T h
_ TX . f c . This and the inner regularity show that ( T X / r ) C K c i C  {0}.

For (iii). As is shown in (ii), we have an h  such that h  .2(i c  and  th at h  is
a  linear combination o f elements in  g .  Let s E[K 1, and take an open neigh-
bourhood WET o f  s su c h  th a t  h (W )c h ( s )+B ,, w ith  r - 1 2 e > 0 .  Put

1 1 
f = h .  Then f [W n K ]c l + s + B s . Let K , be a  non-null compact1—s h(s)
se t included in  W n K .  Then f _ X • i c i ,  so that f =T f _ T X K i . Note that f iK ii
_<1-1-2s r. On the other hand, we know by ( ii)  that (TXK1)EKi c 1C  {0}. Hence

Q. E. D.

Proof  o f  Theorem 3. Let us first show that T 1 = 1 . By (i) of Lemma 3, we
have T 1 _ 1 . Therefore if  T1#1, then there exist a  non-null compact set KET
and r> 1  such that T l_ rX i c . By (iii) of Lemma 4, we can find a  non-null com-
pact set K, such that Ki CK and TXIc i

r't 2 Xici .  Therefore T1rXic_rX if 1 r 1 i2 TXrc1.
But this implies by the bipositivity of T  a contradiction that 1 7-1-1 2 2Li c 1 . Hence
T1=1.

Now, for fE  L ( X , T, a l) and r 0 ,  w e  s e e  b y  th e  bipositivity of T  that
— r-f r<=>-7 ,-. _ T f r .  This shows th a t T  is isom etric w ith respect to  the
norm o f  L (X , T, al). H ence by T heorem  1 , T  i s  th e  identity operator on
L7?(X , T, al). W e  note here that Theorem 1 does not depend on the scalar field
C  or R. Q. E. D.

Similarly as Theorem 2, this theorem is rewritten in the following form when



310 Tôru Umeda

X  is locally compact.

Theorem 4. Let X  be locally  compact, and assume (0 * ) a n d  (I) on  (0, 91).
L e t T  b e  a  bipositive linear operator on  Lls(X, 0, VI). I f  T  is the identity  on
Co (X), then T  is also the identity  on the whole L7?(X, 0, 91).

§ 6. Remarks o n  th e  ch an g e  o f  th e  b a se  space X.

In  this section we make some remarks o n  th e  c h a n g e  o f  th e  b a se  space X
and the structure  of L - (X, 0, 91).

6.1. L et us consider two systems (X1, 01, TO and (X2 , B 2 , 9-1
2 ).  L e t  ç9 b e  a

Boolean lattice homomorphism of 0, to 0 2 w ith  ço(91,) 912. Then it is not difficult
to see that ço- (XE)=Zw (E) defines a  linear map (9 o f  S o ,  t o  So 2  w i t h  ç-6(S121)cS 2.
Further since 110(f )II,(E), 0 is continuous with respect to th e  norms II • II xi
a n d  11. , 2 , so  th a t  (0 can  be extended to  a  linear m ap  o f  L - (Xi, 01, TO to
L - (X2, 2 ,  9i2). W e can easily see that if  ço'(2)-=911, th en  (0 is isom etric, and
that if  ço is  surjective, then (0 is also surjective.

It should be noted that "(0. i s  a n  algebra homomorphism when we consider
th e  natural algebra structures on  L 's .

6.2. C hange  o f the  base  space X by a  map 0 :
L et us consider (X, 0, 91). L e t Y  b e  a  s e t  a n d  0 : X— Y b e  a  m a p .  We

define (0* 0, 0 * 91) o n  Y  by 0,03-= {B/cY ; 0 - 1 (B ')E 0 } and  001.-- {N' Y ; 0 - 1 (N')
E T } . Further define 0*(./3')=0 - '(B ') fo r  B' E0 * 0 .  Then 0* is a  Boolean lattice
homomorphism o f  04,0  to s u c h  t h a t  0*(000c91. Thus we get a situation in
6.1, so that we have a continuous linear map 0* -  o f L - (Y, 0* 0, 001) to L.- (X, 0, 91).
Note that 0* -  is automatically isometric because 0* - 1 (91)=0* 9rt. Moreover if  0 is
injective, then 0* is  su rjec tiv e . Hence 0* -  g iv e s  a n  isometric isomorphism be-
tween L - (X, 0, 91) an d  L"(Y, 0 * 0, 0 * 91) when 0 is  injective.

Next le t u s  consider topological conditions. A ssum e that X  and Y  are  Haus-
dorff topological spaces a n d  0  is continuous. T hen t h e  system  (Y, 0* 0, 04 )
satisfies the  cond itions (0 * ) and (/) when so does th e  system (X, 0, 91). More-
over if  0 is  a  homeomorphism onto a  subspace o f  Y  a n d  (X, 0, 91) satisfies (0)
and (I ), then (Y, 0* 0, 0 * 91) satisfies th e  same conditions.

T h u s w e  can  c h a n g e  th e  b a se  space X  b y  Y  preserving th e  topological
conditions (0 ) and (/) o f  th e  sy s tem s. O n e  may therefore expect further that
keeping the  cond itions (A ) and  (B) we can arrive a t a  locally compact space Y
from any (X, 0, 91) in  a  ce rta in  way ; fo r example using t h e  spectrum space of
th e  algebra generated by th e  fundamental se t g .  B ut the  auther does not know
whether it is possible or not.

6.3. T he spectrum space o f  L,- (X, 0, 9 ). L e t u s  reca ll th e  S to n e 's  repre-
sentation theorem f o r  a  Boolean lattice : For a B oolean lattice g , let 9J11 be the
s e t o f a l l  maximal id e als  o f  3 .  T hen the m ap  g p  { M ET Z ; M E}
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defines a B oolean lattice isom orphism  onto a  sublattice of
 2 .  B eing equipped

with the topology generated by 2=  ; E , 21, 912 is found to be compact. Further
49‘ is characterized as the set of all closed open subsets of 9R.

By th e  definition o f th e  topology on 9R, Xp fo r  EE _B is continuous. Further
th e  algebra o f step functions SI separates th e  p o in ts  o f  9R. Therefore by the
Stone-Weierstrass theorem, ,.3 3 i s  d e n s e  in  th e  space C(9R) o f  all continuous
functions on 9R with respect to the suprem um  norm . So we see that L - (931, {0 })

Applying the  argum ent in  6.1 to the  lattice isomorphism g--> fo r  g=0/91,
we obtain th e  following.

Theorem 5. L e t 9R b e  th e  maximal ideal space of the quotient Boolean
lattice  Z IT . T hen  I(X , 0, 91) is isomorphic to C(3R) as a C*-algebra. The isomor-
phism f— , f  is  g iv en  by  f [E ]=I(P) fo r  E e T.

By abuse of notation, we denote the  class o f  E  in  0/91 by th e  same notation
E.

Pro o f . T h e  fact f (Ê ) =f [E ] follows from 2 . = 1 .  Conversely from 2E(L)
=4 [1 3 ] f o r  B, E G 0 , w e  see  2E =X p . A nd the  isomorphism is uniquely deter-
mined by 2E =X'p. Q. E. D.

C oro llary . Every character, i. e., algebra homorphism onto C, o f L - (X , 0, 91)
is given in the f orm  lim  f [E], w here F is a maximal filtre of

EaF

Remark 6. From t h e  above theorem, t h e  properties o n  essential images
stated in  § 1 a re  readily seen.

PA RT II. LINEAR ISOMETRIES ON Lw(G) COMMUTING WITH TRANSLATIONS.

Throughout P a rt II, G  will always denote a  locally compact group, and e  its
neutral element. F o r i. p<c)o, p#2, Strichartz [9] and Parrott [7 ] proved that
isometric linear operators o n  L P(G) commuting with every transla tion  a re  scalar
multiples of left tran sla tio n s. Here LP(G) is  th e  space o f p-th  p o w er integrable
functions re la tive  to  t h e  H aar m easure . In  P a r t  I I ,  we shall apply our main
theorem o f P a rt I , Theorem 2, to the case of  L°°(G) and obtain a  similar result
as  o f  Strichartz and  Parrott.

§  7 .  Linear isometries on L ( G )  commuting with translations.

7 . 1 .  In  this paper we understand t h e  H aar m easure a s  t h e  le f t  invariant
regular Borel measure defined on 0 0 , th e  a-ring generated by all compact subsets
o f  G .  L et 0  be th e  totality o f locally measurable se ts  in  G  and 91 that of locally
null se ts  in  G .  Here a  subset B  is called  locally  measurable (resp. locally  null)
i f  B n K  belongs to 0 0 (resp. belongs to 0 0  a n d  measure z e r o )  f o r  a n  arbitrary
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compact set K .  We define L°°(G ) a s  L - (G, 0, 91) given in  § 1. From th e  defini-
tion, we see that th e  system (0, 91) satisfies the  cond ition  (0 * )  a n d  th e  inner
regularity ( I )  in  § 2.

T h e  le ft a n d  righ t translation operators L (t) and  R(t) fo r t E G a re  defined
by L (t)f(x )= f(t - 'x ) and  R(t)f(x)=f(xt) (xEG ).

The m ain theorem in  P a rt II  is th e  following.

Theorem 6 .  Let T  be an isometric linear operator on L ( G )  commuting with
ev ery  righ t translation. T hen T  is of the f orm  aL(s), where sEG and a is a
scalar o f modulus 1.

Note that we do not assume the surjectivity o f  T.
Before th e  proof, we deduce from Theorem 6 the case th a t T  preserves the

pointwise multiplication of L - (G).

C orollary. Let S be an injective algebra endomorphism of L (G )  commuting
w ith ev ery  right translation. T hen S is a lef t translation.

Pro o f . L et us prove that an injective endomorphism S  is isometric. Then
by Theorem 6, S-=- - aL(s) fo r some s E G a n d  I a  = 1 . A nd letting S act on 1=1 2 ,
we get a= a ',  whence a=1.

N ow , since XE = X i, w e h a v e  SXE =(SXE )2 . So SXE  is  o f th e  form X. Here
É  is  n o t in l  i f  E  i s  n o t , because S  is injective. T h u s  S transfers a  step
function isometrically to a  step function. Since t h e  space o f  step functions is
dense, S is isometric o n  th e  whole L — (G). Q. E. D.

By virtue o f Theorem 2, th e  proof o f Theorem 6 is reduced to the following
Proposition 7 . We note here that to Corollary o f  Theorem 6, w e can  take a
shortcut not through Proposition 7 but through Proposition 8 in  § 9.

Proposition 7 .  L e t  T  b e  an isometric linear operator on L (C )  commuting
w ith every  right translation. Then Co (G ) is stable under T  and the restriction of
T  to Co (G ) is of the f orm  aL(s), where sEG and a is a scalar o f modulus 1.

7.2. Lemmas o n  continuous linear forms on Co (G). F o r  th e  proof of
Proposition 7, we make some preparations.

L e t  p  be a  continuous linear form on Co (G) with respect to the supremum
n o rm . A s  usual we define supp p  ( th e  su p p o r t  o f  p ) to  b e  t h e  s e t  o f  xEG
satisfying t h e  following :  for every neighbourhood W  o f  x, there exists some
fEC o (G ) such that supp .t- W a n d  p f* O . Note that supp p is closed, a n d  that
ttf= 0  i f  supp fnsupp p=25 . For a  po in t a o f  G, 3„ denotes the D irac measure
a t a: a a f=  f(a ) ( f  Co(G)).

We need th e  following three lemmas. T he  first one is well known.

Lemma 5. Let p  be a continuous linear form on Co (G ) .  Assume that supp p
is a one point set { a} . T hen p is a constant multiple of the Dirac measure at a.
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Lemma 6. L et p be a continuous linear form  on Co (G), and le t  fEC 0(G ) be
non-z ero. If  supp (tsuPP then 1 pf 1 <II PIIII f II, w here 11 f NI:d I f(x)I.

Pro o f . S ince  supp pcsuppf, w e  c a n  f in d  a n  h EC0(G ) sa tisfy ing  supp h
nsuppf =0 a n d  p h  O. W e  m a y  assum e in  add ition  t h a t  11h11-11./̀ II. T h e n
II cf+ c'h fo r  c, c', complex numbers with modulus 1 . T a k in g  su c h  a n  h,
and choosing c, c' in  such a  w a y  th a t  trif , =c•pf, lph1=c'•ph, w e have

lp fl< lp fl-F lph l -=c•pf-Fe•ph

=p(cf - kc'h)11P1111cf±c'h11=11P1111f .
T his completes th e  proof. Q. E. D.

Lemma 7 .  L et p be a continuous linear form  o n  Co (G), and  fEC 0 (G). Put
ço(x)=p(R(x)f). Then ço is in  Co (G).

Pro o f . Clearly ço is continuous, because f  is uniform ly continuous. M ore-
over since I ço(x)I 5_11p1111f II, w e have only to prove the assertion  for f  with com-
pact support.

F o r  s> 0, take  a n  h ECo(G) w ith  com pact support such  tha t  p h f pM-

and III/ 1 . T h e n  w e  have  the  following (#) fo r  gEC 0 (G) w ith  supp gnsupp h
= 0 :

I pgI IIgM
In  fac t, pu t gi=c11glih-Fc'g, w here  c, c' a re  such complex numbers with modulus
1 th a t  1 ph1 -= c • ph, I pg1=-c' • p g .  Then w e see that II whence II p1111 gll

pg'I , and that

=I1g111 Ph 1 + P.g1-11g11(IIPII - -  s)+ I P gl
So we obtain (#).

Now, let f  be  w ith  c o m p a c t su p p o r t . I f  x  (supp h) - 1 (supp f ), th e n  supp h
rlsuPP R(x)f=-0. Therefore by (#) we get

1ç(x) I = 1 P(R(x)f )1 --611 R(x)f 11= EV  11

fo r any  x outside the com pact set (supp h) - 1 (supp f). Q. E. D.

7.3. Proof of Proposition 7 .  Note first tha t th e  space  B7-(G ) o f  a ll r igh t
uniformly continuous bounded functions is stable under T .  In  fac t, T  is isometric
and commutes w ith  every  righ t translation, whence

11 R(OT f — T f 11 =11T R(t)f —T f = — f II .
A lthough this norm  is not the supremum norm  bu t the  essential supremum norm,
one can see without difficulty that T f  B r (G) for f 13,-(G) using the convolution
by an  approximate identity (see e. g . P arro tt [7, Lemma 2 ]). Then since 1Tf(e)1
5_-117Y11=11f II, t h e  lin e a r  fo rm  p: f ,--4Tf(e) is continuous and with norm  on
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C 0(G ) .  Since T f(x)= R(x)T f(e)=T R(x)f(e), w e have

T f (x )= p (R (x )f )  ( fC 0 (G ) ) .

So by Lemma 7, w e see  tha t Co (G ) is  stable under T.
W e show n ex t tha t supp p  i s  o f  o n e  p o in t . S u p p o se  t h a t  supp p  contains

distinct tw o  points a  and  b. Let V be a neighbourhood of e such that VV - 1

T h en  f o r  a n y  x  G , V x 1 ) {a, b}, h e n c e  V x  supp p. T herefore  for non-zero
fE C 0(G )  sa tisfy ing  supp fc V , w e  h a v e  supp R(x)f=(suppf )x - 1  supp p. For
such an f ,  we see from  Lem m a 6 th a t 1 T f(x)i = I [t(R (x )f)i <  O n the other
hand, the function 1Tf(x )1  a tta ins its  maximum, because T fE C 0 (G ) .  So we have
11T f , 11< 1 1 f a contradiction. It is c lear that supp 0 ,  therefore supp ,u is  a one
point set.

By lemma 5, p  is  o f  th e  form  a5s _i fo r som e s E G  a n d  a  a  scalar. C o n -
sequently T f(x )= a f(s - l x )= a L (s )f(x ) holds for f e C o (G). Note h e re  tha t la  1 =1
because T  is  isom etric . T h is  completes th e  proof of Proposition 7. Q. E. D.

Thus Theorem  6 is now proved.

§ 8. Rem arks o n  rela ted  facts.

In  Theorem 6, w e do n o t assum e th a t  t h e  surjectivity o f  t h e  o p e ra to r T.
W hen  w e  add  th is  assum ption  o n  T  in  Theorem 6, w e can prove it in  another
w a y .  W e shall explain this and give som e rem arks on  related facts.

8.1. Relation betw een isometries a n d  algebra automorphisms.

T h e o re m  B S . L et A  be a commutative C*-algebra w ith  th e  un it elem ent 1,
and T an isom etric linear operator on A  onto itself . T hen there ex ists an algebra
automorphism S of  A  such that

T f= T 1 .S f  ( fE A ) .

T h is  fo llow s from  t h e  follow ing Banach-Stone theorem  v ia  t h e  Gelfand-
Naimark representation theorem.

Theorem  (Banach-Stone). L et X  and X ' be compact spaces, and T an isometric
linear isom orphism  of  C (X ') onto C (X ).  T hen there ex ist a homeomorphisni r of
X  onto X ' and  a continuous function a on  X  w ith values of  modulus 1 such that

T f(x ) -=a (x )f(z -(x )) (x  E X , f EC(X')) .

Here for a com pact space X , C(X) denotes the space of all continuous complex-
valued functions on  X  w ith  the supremum norm.

T h e  Banach-Stone theorem  is due t o  Banach [1, p. 173] and t o  Stone [8, p.
469]. They consider real-valued function spaces. For the case of complex-valued
functions, see fo r example Dunford-Schwartz [4, p. 44211.



Characterization o f  the identity  operator on L"-spaces 315

8.2. T he  following theorem is obtained in  Takesaki-Tatsuuma [10, Theorem
1 ]. W e shall give an  elementary proof o f it  in  th e  next section.

Theorem (Takesaki-Tatsuuma). L et S  be an algebra autom orphism  of  L ° (G )
commuting with every right translation. T nen S  is a  le f t translation.

Combining Theorem BS and  the  above theorem, we get th e  following.

Theorem 7. Let T  be a surjective isometric linear operator on L ( G )  commuting
w ith ev ery  right translation. Then T  is of  the f orm  aL (s) , w here s E G  an d  a
is a scalar o f  modulus 1.

Pro o f . By Theorem BS, there exists an  algebra automorphism S  of L ° (G )
such  th at T f = T 1 .S f  ( f E L " ( G ) ) .  O bserve th a t  T i  is  a  scalar o f modulus 1.
In  fac t, T i is  invariant under every right translation, because so is the constant 1
a n d  T  com m utes w ith  th e s e  translations. S ince T  is  iso m e tr ic , T i is  of
modulus 1. Thus Theorem 7 is reduced to th e  theorem o f Takesaki-Tatsuuma.

Q. E. D.

8.3. Im plications among our results a n d  re la ted  fac ts . It is  kn o w n  th at
algebra automorphisms o f  a  W*-algebra are  automatically weak* continuous. By
virtue of this fact and  Theorem BS, Theorem 7 can be rewritten in its dual form :

Theorem 7 * . L et T  be a surjective isom etric linear operator o n  L i(G ) com-
m uting w ith every  right translation. T hen T  is of  the f orm  aL (s) , where sE G
and a  is a scalar o f  modulus 1.

T h is  in  turn is a  special c a s e  o f  Wendel's theorem [12, Theorem 3 ] that
requires no surjectivity o f  T.

We illustrate in  th e  following diagram how these theorems imply each other.

Th. of Wendel Th. 6 > Cor. of Th. 6

Th. Takesaki-7* < > Th. 7 < > Th. of
(by duality) (by Th. BS) Tatsuuma

§9. A  proof o f  th e  theorem o f  Takesaki-Tatsuuma.

In  this section, we give another proof o f th e  theorem o f Takesaki-Tatsuuma,
which is essentially on  the  same line as the  orig inal one  in  [10], b u t  somewhat
direct.

By C(G) o r  ,K(G), we denote th e  space o f all continuous functions o r that of
all continuous functions with compact support on G  respectively.

Proposition 8 .  L et A  be a subalgebra o f  C (G ) including JC(G), an d  S  an
algebra homomorphism o f  A  to C (G ). Assume that S R (x )h=R (x )S h f o r hE.X (G),
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x a G , and that S  does not vanish identically on ,X (G ). Then S  is  a  left trans-
lation.

R em ark . F o r A  and  S , w e assume no topological property.

P ro o f. It is not d ifficult to  see  that every  character o f  ,X(G), i .  e ., algebra
homomorphism o f  ,X (G) to  C, is  o f th e  form  h■—h(t) fo r some tE G  if  it is not
identically ze ro . N o w , le t u s  consider a character e of ,X (G) defined by eh=S h(e).
T hen w e have e(R (x )h)=S h(x ) because S  commutes w ith  R (x ) o n  ,X (G ) . Since
S  is not identically zero on „X(G), neither is e. Therefore from the fact mentioned
above, w e see that eh =h (s - ')  fo r some sE G .  T hen f o r  e v e ry  hE,X (G ), S h(x )
=e(R (x )h) ,  h(s - i x )-= L (s)h(x ). Since f h Jc(G) for fE A  an d  h E.X (G), we have

(L(s) - 1 S f)h = L(s) - 1 S(f h)= f h

H ere h is  a n  a rb itra ry  fu n c tio n  i n  ,X (G), so  w e  o b ta in  L(s) - 'S f = f  for fm  A.
Hence S =L (s)  on A. Q. E. D.

Proof of the theorem o f T ak esak i-T atsuum a. A s is  s h o w n  in  t h e  p roof of
Proposition 7, the space B r (G) o f all right uniformly continuous bounded functions
is  stable under S .  Applying Proposition 8 fo r A =B r (G), w e see  tha t S =L (s) on
13,(G) for some s G. S in ce  b o th  S an d  L(s) are continuous in  th e  weak* topology
c r (1 , ,  L.') and coincide o n  a  weak* dense subspace 13,(G), they  co inc ide  o n  th e
whole L"(G). Q. E. D.

Remark 7 .  Corollary o f  Theorem 6, which is stronger result than the theorem
above, can also be proved directly by Theorem  2 and Proposition 8 independently
o f  Theorem 6.
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