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1. Introduction.

Given a polynomial ring R over a field, we are interested in prime ideals
PC R having the following property :
(A) p*=p™ for every positive integer n, where p™ denotes the n-th symbolic
power of p, i.e. the p-primary component of p™.

In [5, Theorem 1], Hochster proved that (A) is equivalent to each of the
following properties :

(B) gry(R):= éop"/p”“, the associated graded ring of R with respect to p,
is a domain. "

(C) The Rees ring R[T, pT-*], the subring of R[T, T-'] generated over R by
the indeterminate 7" and the elements a7 ! with a<), is a unique factorization
domain.

On the other hand, Samuel had conjectured that a unique factorization domain
is a Cohen-Macaulay ring. Thus, it may be possible that (A) or (B) implies the
Cohen-Macaulay property of gr,(R) because, by [6, Theorem 4.11], the Cohen-
Macaulay property of gr,(R) is equivalent to the Cohen-Macaulay property of
RLT, pT-*]. If we have a prime ideal pC R with (A) then we can construct
either a Cohen-Macaulay graded domain or a counter-example to Samuel’s con-
jecture.

Until now, beside some solitary examples, only two classes of prime ideals
p with (A) in polynomial rings over a field have been known:

1) p is a complete intersection prime (see, e.g., [5, (2.1)]).
2) p is generated by the » X7 minors of an »Xs matrix of indeterminates, »=s
(see [5, (2.2)], [143 or [2]).

By all known prime ideals p with (A) gr,(R) is always a Choen-Macaulay
domain. Note that Nagata had raised the question of whether the zero-graded
part of a positively graded Cohen-Macaulay ring is a Cohen-Macaulay ring [10,
Question 3]. So one might also expect that (A) implies the Cohen-Macaulay
property of R/p, the zero-graded part of gr,(R). But, like Nagata’s question
which was negatively answered in [10], that is not true. The first counter-
example for that was shown by Hochster [5, (2.3)], and an another can be found
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in [13]. However, in these two examples, using [12, Lemma, p. 740], one can
easily see that the local ring of R/p at the origin is a Buchsbaum ring. Here
we have to emphasize that the Buchsbaum rings generalize the Cohen-Macaulay
rings in a quite natural way. (See [11] or [12] for definition and further in-
formations ; notice that in [11] one used the term of [-rings instead of Buchs-
baum rings.)

Recall that an ideal aC R is perfect (i.e. dhgR/a=gradea) if and only if
R/a is a Cohen-Macaulay ring. We will give, in every polynomial ring A[X] of
2r+2 indeterminates over an arbitrary field, »=2, an imperfect homogeneous
prime ideal P of dimension r+42 having the equality of ordinary and symbolic
powers such that grp(k[X]) is a Cohen-Macaulay domain and k[ X]x,)/(P) is a
non-Buchsbaum ring of depth 3.

2. Statements about P.

Let X={x;;;7=1, 2 and j=1, -, r}\U{x;, x,} be a set of indeterminates.
Let

Dij=X11X0;— X15X0i
Gij=—X1XeiXoj— XoX1iX1j5

for all 7, j=1, ---, . We define P to be the ideal in k[ X] generated by all
elements p;; and ¢;;. P has the following geometrical meaning :

Proposition 1. Let u be an indeterminate. Let Q be the ideal in k[X, u]
generated by the 2X2 minors of the matrix

( Xip ot Xyp X1 U )
Xg1' Xop U Xo /"
Then Q is a prime ideal and P is the defining prime ideal of the projection of

the algebraic variety in k***Xk determined by Q on the first factor (i.e. Q
NEL[X]=P; see [7, Chap. 1V, §27]).

Let A denote the local ring [ X1(x, and m its maximal ideal. Let HiL(M)
denote the 7-th local cohomology group of a finitely generated A-module M. Let
X, and X, denote the sets {x,;, -, xy,} and {xa, -+, X}, respectively. Then,
considering the ring structure of A/(P) we obtain :

Proposition 2. Hi(A/(P))=0 for i#3, r+2, and H3(A/(P)=H%(A/(X,, X,)).

Since H%(A/(X,, X,)) is isomorphic to the injective hull of %k over E[[x,, x.]]}
(03, p. 67]), which is not a vector space over k, A/(P) is not a Buchsbaum ring
by [12, Corollary 1.1]. Moreover, by [3, Corollary 3.10], from Proposition 2 we
also get depth A/(P)=3.

Let Y={y:;;1=i<j=r} and Z={z;;; 1=i<j<r} be sets of indeterminates.
Let v;;=0, yj;;=—2y4; and z;=z;; for all /=1, ---, r and /<j<r. Let
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Gijz:xliyjl—xu‘yu+xuyij
biji=2X0iY 1 —X2;Y s+ XarVs;
Ciim=YimYit— YimYuTYimYij
dijlm:yjlzim_yjmzil_ylmzij
fijl:xlizjl—xljzil_xlleyij
Lijl=X2iZj1— X2j2uu— Xe X1 Yij
hijzm:Ziijz—Zqum—X1xzytmyij

for all 7, j, [, m=1, ---, . Let I denote the ideal in k[X, Y, Z] generated by
all elements pij, qijy Qijiy biﬂ, Cijimy dijlm; f,;]'[, gijts hijlm- USiI’lg the same tech-
nique employed in [4], we can show that I is a perfect prime ideal. Thus
we get:

Proposition 3. grp(k[X1)=k[X, Y, Z]/I and it is a Gorenstein domain.

As we already mentioned at the beginning of § 1, the fact that P"=P™ for
every positive integer n is only a consequence of Proposition 3.

3. Proofs of the Propositions.

Proof of Proposition 1. Let v be a new indeterminate. Let @, denote the
ideal in k[ X, u, v] generated by the 2X2 minors of the matrix

( Xyt Xir X1 U )
Xoy 't Xop U Xg [
By [4, Theorem 1], Q, is a prime ideal with ht Q,=r+1. Let @, denote the
ideal (Qy, u—v, X1— Xor, X1p—Xar-1, ***» X12— X21). Then R[X, u, v]/Q, is isomor-
phic to the coordinate ring of the Veronese variety V; ..;; see [1, §4]. Hence

Q. is a prime ideal and
ht Q,=dim k[ X, u, v]—dim V, ..

=2r+2)—2=2r+2.

Since Q,, Q, are homogeneous prime ideals with ht Q./Q,=ht Q,—ht Q,=r—+1
and Q,/Q, is generated by the r+1 elements u—v, x;— X, X1,—Xocr-1y, ***, X12—
X2, We can conclude that Q,C(Q,, u—v)C(Q,, u—v, x;—x,)C +-- CQ, is a chain
of prime ideals. From this it follows especially that k[ X, u, v]/(Q;, u—v) is a
domain of dimension r+2. But k[X, u, v]/(Q,, u—v)=k[X, u]/Q. Hence Q is
a prime ideal with

ht Q=dim A[X, ul—dim k[ X, u, v]/(Q,, u—v)

=2r+3—(r+2)=r+1.

As a consequence of this, ht Q k[ X]1=r. Further, it can be easily checked that
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PESQN\k[X]. Thus, to prove QN E[X]=P it suffices to show that P is a prime
ideal with ht P=r. For that we have the following relations:

Xupij=X1ip1j— X1jP1i
X11Gi;= X1iq1;— X1X2jq13 »

From these relations we see that Pk[X, xi'] can be generated by the elements
bigs =**» Dir q11» On the other hand, eliminating x.,, -+, Xsr, x» by the help of
these elements we also see that E[X, xi']/(Pies =+, P1rm qu) = k[ Xy, X2y, x5, X0
Hence, PE[X, x7}] must be a prime ideal of height » and x, is not a zerodivisor
on PR[X, x7]. Let P’ denote the inverse image of PE[X, xii}] in £[X]. Then
P’ is also a prime ideal with ht P’=7 and x, is not a zerodivisor on P’, i.e.
P’: x,=P’. Further, since x}{P’'SP for some large n, P'S(P, x,): x4. Note
that (P, x,) has the primary decomposition (P, x,, (X2)))\(P, x., x,), where
(P, x,, (Xp)? is a (X, x.)-primary ideal and (P, x,, x,) is a prime ideal ([4,
Theorem 17]), and that x,;; is not a zerodivisor on (X,, x,) and (P, x;, x,). So
(P, x5): x4=(P, x,). Hence, P'S(P, x,) or P'’=P+x,(P’: x,)=P+x,P’. Now,
applying Nakayama’s lemma we get P’=P, which shows that P is a prime ideal
with ht P=». The proof for Proposition 1 is completed.

To prove Proposition 2 and Proposition 3 we prepare some lemmas. Let R
be an arbitrary local ring with the maximal ideal 4. Then we have two well-
known lemmas about Cohen-Macaulay R-modules :

Lemma 4. A finitely generated R-module M is Cohen-Macaulay if and only
if H(M)=0 for all i=0, -, dim M—1.

Proof. 1t follows immediately from [3, Corollary 3.10].

Lemma 5. Let 0—M'—M—M"—0 be an exact sequence of finitely generated
R-modules. Then

(i) M’ is Cohen-Macaulay if M, M” are Cohen-Macaulay with dim M”
=dim M—1.

(i) M is Cohen-Macaulay if M', M” are Cohen-Macaulay with dim M”=dim M.

Proof. Notice that dim M=max{dim M’, dim M”} by [8, (12.D) and (12.H)].
Then we easily get the statements of Lemma 5 from Lemma 4 by considering
the local cohomology sequence

v —> HiWM”) —> H(M') — H{M) — Hi{(M") — -

The following lemma will play an important role in the proofs of Proposition
2 and Proposition 3:

Lemma 6. Let P; denote the ideal (P, x5, x55) in A, j=1, -+, r. Then P;/(P)
is a Cohen-Macaulay A-module of dimension r+-2.
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Proof. By permutation it suffices to show Lemma 6 for j=r. If =1, P,/(P)
=(x11, X21)/(q1;) and the statement follows immediately from Lemma 5(i) by con-
sidering the exact sequence

0 —> (x4, le)/((Iu) —> A/((]u) —> A/(x11, x21) —> 0.

Let»>1. Note that (P, x,,)/(P)=A/((P): x,,)=A/(P) and (P, x1,)/P,= A/(P;: x11)
=A/P,. We construct the following commutative diagram :

0 0 0
| | |

0 —= P, /(P) —> P,n\P,/(P) > F > 0
| e !

0 —> A/(P) —=> P/(P) ——= P,/(P, x,;) ———= 0,

' | '

0 _— 44/Pr — (P,-, X11, le)/Pr —>(Pr, X11, x?.l)/(Pry xll) e 0

| ' /

0 0 0

where « is induced by the multiplication with x,;;, and E denotes the module
P.A(P,, x11)/(P, x11). It can be easily seen that E=(P,, x1;): x01/(P, X11): X203
and that

(Pr, x10)=(Py, x11, x20N(X1, X1, X0IN(XL, X351, Koo, 0, Xop)

(P, x1)=(P, x11, X20N(X1, xI)N(X3, X531, Kooy =, Xor)
hence
(Pr, x11) 1 x2:=(X}, x1, x20)N\(X1, X2)

(P, x11)t xo=(X;, x)N(X1, Xo),

therefore E=(X,, x;, x:)N\(Xy, X2)/(Xy, x)N(X, Xa)= A/(Xy, x)NALL X))t %o
=A/(X,, X,), which is a Cohen-Macaulay module of dimension r+1. Further,
by induction we may also assume that (P, x5, x.)/P, is a Cohen-Macaulay
module of dimension »-+1. Thus, applying Lemma 4 to E and (P, xy1, X21)/P5,
we get the following commutative diagram :

HEW(Py, x11, x20/ P)=0

|

0=HiYE) —= Hi(P,/(P)) —= HL(P:N\P,/(P))

Lo >~

Hi(A/(P)) —————= Hu(P,/(P))



244 Ngo Viet Trung

for all /=0, ---, r+1. This diagram shows that a; and B; are injective for all
7=0, .-+, r+1. Now we consider the commutative diagram :

Hi(P,/(P) ——s HL(P,/(P))
; T
g xu\ .
a S HUA/P) — > HiA/(P)

/

HiP(P) —2 > Hi(P.J(P).

Like B;, 7: is also injective, hence x;8:=7:«; is injective, too. From this we can
conclude that x,; is not a zerodivisor of Hi(P./(P)), or, since every element of
Hi(P,./(P)) is annihilated by some power of x,;, Hi(P,/(P))=0 for =0, ---, r+1.
Therefore P,/(P) is a Cohen-Macaulay module by Lemma 4, where dim P,/(P)=
r+2 is evident.

Now we prove Proposition 2.

Proof of Proposition 2. By Lemma 6, P,/(P) is a Cohen-Macaulay module of
dimension r+2. Hence, using the local cohomology sequence of the middle row
of the first diagram in the proof of Lemma 6, we easily see that

. 0, if i=0
H&(A/P))E{ , o
HiW(P/(P, x4),  if i=1, -, r+1.

On the other hand, since
P /(P, x1)= A/(P, x11): x2=A/(X,, xON(X,, X)
A/(Xy, Xo)=(Xy, Xoy x0)/(Xy, Xo)=(X,, x0)/(Xy, x)N(X, Xo)
we have the following exact sequence
00— A/(X,, X;) —> PJ(P, x1,) — A/(X,, x;) — 0.

Hence, applying Lemma 4 to the Cohen-Macaulay modules A/(X,, X;)and A/(X,, x,),
we also get

0, if %3, r+2

HE(Py/(P, xu))“z’{ e s
Hu(A/(X,, X,)) if 7=3.

From the above two relations of local cohomology groups, Proposition 2 is clear.

Remark. Let A’ be the local ring R[XJcx, x,, and m’ its maximal ideal.
Using the same method as above we can show that H&.(A'/(P)=0 for i#1, »
and Hu(A’/(P))=A’/m’; hence A’/(P) is a Buchsbaum ring by [12, Corollary 1.1].

The following simple but useful lemma is due to [4, §5]:
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Lemma 7. Let a be an ideal and x an element such that v/a S(a, x). Then
a is radical, i.e. A0 =a, in the following cases:
(1) There exists an ideal b2+/a such that xb=a and b: x=".

() va :x=+a and ﬁl(a, XM=

Proof. From the assumption +/a S(a, x) we get +/a =a+x(+/a :x). In
the first case, x(+/a : x)Sx(6: x)=xbCq, and in the second case, vVa =a+xva

=atxVa = € A (o xM=a.

The proof of Proposition 3 begins, properly speaking, with the proof of the
following lemma, which is of independent interest because it gives a new class
of (generically) perfect prime ideals (see [4, §0]):

Lemma 8. Let
FijL:Xanz—XuZu

Gijt:xzizjz—xzjzu
Hijlm:'zilzjm'_zimzjl

for all i, j, I, m=1, -, r. Let ] denote the ideal in k[ X, Z] generated by all
elements  pij, qijy Fiji, Giji, Hijime Then J is a perfect prime ideal with

he J=( b2 )-2.

Proof. The case r=1 is trivial. Let »>1. We introduce some notations.
Let Z; denote the set {z;, -, 2z;;} for all j=1, ---, r. Let j;, -, ju, h<r, be an
arbitrary family of integers with 1=<j,< - <j,<r. We denote by J(j,, -, jn)
the ideal in k[ X, Z] generated by J, Z;,, -+, Z;, and all elements x,;, x,; with
j=Ju =+, jn- By induction we may assume that j(j,, ---, j;) are perfect prime
ideals of height

[( r—121-|—2 )—2]—]—[1’—}— +(r——h+1)+2h]=( 7_52 )+h—2.

Using these induction hypotheses, we claim :
(1) (J, 2z») is an unmixed radical ideal of height ( ,er 2 )—1.

To get (1), we have to consider a large class of ideals. Let s, t be arbitrary
integers with r=s=t=1. Let J,. denote the ideal in k[ X, Z] generated by
J, Zs4y, -+, Z, and the elements z, -, z;s5. We show that J; . is a radical ideal.
Of course, /,,, is a prime ideal because [, ;=(P, Z). Suppose s>1 and let

Z2i¢s-1) » if t=s
zZ= A
Z+1)s if t<s.
Notice that
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js-—l,l» if t:S

(]S.h Z)‘: .
Jooer, If t<s.

Then by induction on the number of elements in the set {z, -+, 21} I Zs4;\J -+

UZ,, we may assume that (J, . 2z) is a radical ideal. Hence +J,: S(Js.: 2).
On the other hand, if we define

Jis. ), if i=s
jé,t: .
.[(]-r e, s, "'r); if t<s,
then it can be checked that z/¢,S /. Further, by the induction hypotheses
on J(s, -, r)and J(1, - 1, s, =+, ), we see that J,,2+//;; and Ji.:z=]...
Thus, by Lemma 2 (i), /. is a radical ideal. Especially, [, ,=(/J, z:.) is a radical
ideal. From this we have
(2 (J, z2in=(P, Z)NJ)NJr).
Hence, using the induction hypotheses on J(1) and J(»), we see that (J, zi,)
is an unmixed ideal of height (r—é—Z)_l. Thus (1) is proved.
Next we will show the following facts:
(3) +/J has only one associated prime of height ("'52)—2.
(4) z, is not a zerodivisor on v/ .
Note that we have the following relations:
Xupij=X1iP1j— X1jP1
X11G ;= X1:¢1;— X1X25D 11
quijL:qu]jz—qum
xllGijL:x2iFljl_x2jFlil_lepij
quijzmz-\‘imFljz—ijFm—ZuFijm
for all 7, j, [, m=1, ---, r. From these relations we see that Jk[X, Z, x7}] can
be generated by the elements pi;, gui, Fis; with /=2, -, » and j=1, -, 7.

Eliminating x,, ***, Xar, Xs, Z12, -=-, Zrr Dy the help of these elements we then
get an isomorphism k[ X, Z, xi!1/(J)= k[ X\, X21, X1, 211, x17i]. Hence Je[ X, Z, x7}]

is a prime ideal of height < ”_12"2 )—2 and x,,, >+, Xar, 21 are not zerodivisors on
JE[X, Z, x7!]. Let J’ denote the inverse image of Jk[X, Z, xi] in k[X, Z].
Then J’ is also a prime ideal of height ( r—|2-2 )—2 and x,;, '+, Xy, 2, are not

zerodivisors on J’. Note that the same facts also hold if we replace x;; by an
arbitrary element of the set X,UX,. We easily see that J’ is the only associated
prime of J which does not contain X, X,. Thus, vVJ =J'"\v(J], X;, Xz). On
the other hand, it is not hard to see from [1, § 4, Corollary] that (J, X;, X,) is
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a prime ideal of height ( "‘52 )+2r>( "'52 )—2 and that z,, is not a zero-

divisor on (J, X;, X»). So +/J has only one associated prime of height ( 7’—52 )

—2 and z, is not a zerodivisor on +/J . Hence (3) and (4) are just proved.
Now, from (1) and (4) we conclude that +/J =/, by Lemma 7 (ii), and
that J is unmixed, by [8, (15.E), Lemma 4 and Lemma 5]. Hence by (3), J is

a prime ideal with ht]=( 7-52 )—2. It remains to show the perfection of J or,

equivalently, the Cohen-Maculay property of k[ X, Z]//.
Let B denote the local ring k[X, Z]cx.z- In order to show the Cohen-
Macaulay property of k[X, Z]/J we have only to show the Cohen-Macaulay

property of B/(J) (see [9]) or, equivalently, the Cohen-Macaulay property of
B/(J, zi»). For that consider the following exact sequence

0 — (JAN/(J, z17) —> B/(J, zix) —> B/(J(1)) —> 0.

Using the relation (2), by induction we know that B/(J(1)) is Cohen-Macaulay and
dim B/(J(1))=dim B/(J, z:,). Hence, by Lemma 5 (ii), it suffices to show that
(J()/(J, z,) is Cohen-Macaulay.

Let us consider the exact sequence

0 — (J)/(Jr.v) —> B/(Js.) —> B/(J(r)) —> 0.

B/(J(r)) is Cohen-Macaulay like B/(J(1)). Further, since J,, is a radical ideal
by the proof of (1), it can be checked that

) Jro=(P, 2)NJ(r).

Hence dim B/(J(r))=dim B/(J.») and (Je)/(J.=(P, Z, Jr)/(P, Z)=(P,)/(P),
which is a Cohen-Macaulay module by Lemma 6. Thus, (J(#))/(/J., is Cohen-
Macaulay by Lemma 5 (i). Note that (J.,, J(I)=(Jr» Z:, x11, Xs;) has a similar
structure like /... So using the same method as above, we can also show that
B/(]J., J(1)) is Cohen-Macaulay. Now, by Lemma 5 (ii), the exact sequence

0 —> (Jrr JAN/(Jr.x) —> B/(Jr.r) —> B/(Jr.r, J(1)) —> 0

implies that (/. , J(1))/(J.,) is Cohen-Macaulay. On the other hand, using the
relations (2) and (5), we have

(Jrrs JO)/ (T2, )= (JAD/(Jr - JD)

=(JAN/(P, 2INTJONTGN=JAN/(J1.+) .
Hence (J(1))/(/.,,) is Cohen-Macaulay, as required. This completes the proof of
Lemma 8.

Lemma 8 is used to prove the following lemma, which is, like Lemma 8, of
independent interest.
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Lemma 9. Let s (=r) be a positive integer. Let I, denote the ideal in
BLX, Y, Z] generated by I and all elements y; with i, j=1, -+, s. Then I, is a
perfect prime ideal with ht I;=r*+s—1.

Proof. The case s=r follows immediately from Lemma 8 because I,=(]J, Y).
Let s<r. By induction on s we may assume that I;,; is a perfect prime ideal
with ht Iy,,=r*+s.

Let ¢ (=s) be an arbitrary positive integer. Let I;, denote the ideal in
k[X, Y, Z] generated by I, and the elements y;cs413, ***, Vissn. We prove that
I, . is a radical ideal. Note that I =1, is already a prime ideal. We may
assume that #<s and that, by induction on #, (Is,¢, Y+ s+n)=1s ¢+1 i radical;
hence v/ Iy, SUs1, Yasnesn). Let Ii, denote the ideal in k[ X, Y, Z] gener-
ated by I, and all elements xy;, Xs;, ¥ij, 2;; with i=1, .-, t and j=I, .-+, r.
Since I; ; has a similar structure like I, by induction on » to the statement of
Lemma 9 (the case r=1 is trivial) we may assume that I; , is a perfect prime
ideal with

ht I ,=[(r—D)*+(s—1)—1]+[2t+2rt—1¥]=r2+s—t—1.

By this assumption we get I5 ,2+/T,, and I} ;: Y+ en=1s: On the other hand,
it can be easily checked that yipne+nls:S1s . Hence, by Lemma 7 (i), I, is a
radical ideal.

Since (Is, Vis+n)=[1s, 1 is the last member of the class of the ideals [,,,, we
have just shown that ([, y,;+p) is a radical ideal. From this we can easily
verify that (Is, yicen)=Iss1\[s 1. Note that Iy, I5,, and (Igyy, I5,)=1I54q,, are
perfect prime ideals of heights »?+s, >+s, and r°4s+1, respectively, by the
induction hypotheses. Then, applying [4, Proposition 18], we see that (J5, ¥ics+1)
is perfect. Thus it is clear that [I; is perfect if y,¢41) iS not a zerodivisor on
I.. Hence, to complete the roof of Lemma 9, we have only to show that I, is
a prime ideal with ht [;=»2+s—2, because the fact that y,¢+; iS not a zero-
divisor on I, is then an immediate consequence of this.

Consider the following relations:

X1ePij=X1iPoj— X1jDei

X12Gi;=X1iQ2;— X1X3jPai

X195, = X110 25— X 150251 X 11Q 245
X12bi51=X02Q 10+ V51 D2i— Vi1 P2+ VijDa
X12Ciim=Yi1021m— V1182jm+ Vj1Qsim— YemQiji+ X1mCaiji
szdijzmIyszzij—yjmfzzi‘l'yjzfzmi+zzi0jtm’xxxziczjzm
xlzfijl:xlifzjl_xljfzil_xlxuazij
X108in=ZXaefij1FZjDar—2uPest Yiiqu

xl?.hijlm:Zimfzjl_ijfzil_zzlfijm+xlyiiglm2+xlx21dMi.i2 .
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We see that Ik[X, Y, Z, xi7] can be generated by the elements p,j, Gz, Q2ij
Jfei; with 7, j=1, ---, » and the elements y;; with 7, j=1, -+, s. It follows by
eliminating  xs1, X2 ', Xor, X2 Y15 € Y\{Y2cstn, = Yorl) Zij; € Z\{zs} that
ELX)Y, Z, x3 1/ )= kL X, Xo2, X1, Yacssv, = » Yor 222, X152 ). Hence Iik[X,Y, Z, x4}

is a prime ideal of height r*+s—1. Thus v,,4 is not a zerodivisor on
I,k[X, Y, Z, xi4]. Let I; denote the inverse image of I,k[X,Y, Z, x7/] in
R[X, Y, Z]. Then I; isalso a prime ideal with ht I;=r?4+s—1 and I;: y,;+n
=I;. Since x%4I; S I, for some large n, I S (I, Yicsep): x%. But (Zs, Vicsen)
=TI, NI, and it is not hard to see from the induction hypotheses on I,
I; | that x, is not a zerodivisor on Iy, Iy ;. Hence, (I5, yiien): x2=Us, Yicstn)-
So we get IS, Yi+n) OF Li=Ii+yi1640Us: Vicen)=IFYisenls. Now, apply-
ing Nakayama’s lemma we have I;=I,, which shows that I, is a prime ideal
with ht I;=#®+s—1. Thus the proof of Lemma 9 is completed.

Proof of Proposition 3. Note that [=I, is a perfect prime ideal by Lemma
9. Then, by [5, § 0, Proposition], it suffices to show that grp(k[ X)=k[ X, Y, Z]/1,.
To see this, sending y;; and z;; to the images of p;; and ¢;; in P/P?* we have
a natural homomorphism from k[X, Y, Z] to grp(k[X]). Let I’ be the
kernel of this homomorphism. Then, since E[X]p[Y, Z1/(I’) is isomorphic to
grpy (k[ X1p), which is a regular domain of the same dimension as k[ X]p, I’
must have a primary component of height 7% (=dim E[X]pLY, Z]—dim k[ X]p).
But it can be easily checked that I,&I’. Hence I, is just the primary component
of I’ mentioned above, because [, is prime and ht I,=#% Consequently, we have
I,=1I’, which shows that grp(k[X)=k[X, Y, Z]/1,.
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