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1. Introduction.
The purpose of this paper is to prove the following

Theorem 1.1. Let A be a Noetherian local ring and let 0<r<dim A be an
integer. Then the following conditions are equivalent.
(1) A is a Cohen-Macaulay ring.

(2) The Rees algebra R(q)= Elzaoq" is a Cohen-Macaulay ring for every ideal q of
A generated by a subsystem of parameters for A of length r.

In case A is a Cohen-Macaulay local ring J. Barshay [1] showed that the
Rees algebras of ideals generated by subsystems of parameters for A are always
Cohen-Macaulay (cf. p. 93, Corollary), and it seems to be natural to ask whether
the converse of his result is true. But unfortunately this does not hold in the
case of the parameter ideals. In fact, recently S. Goto and the author [2] (cf.
Theorem 1.1), heve proved that the Rees algebras of parameter ideals of certain
Buchsbaum local rings are always Cohen-Macaulay. Neverthless the above
theorem guarantees that the converse of Barshay’s result is true if the length of
subsystems of parameters considered is less than dim A.

The idea of the proof of Theorem 1.1 is essentially same as that of the
proof of the main theorem of [2]. We will prove Theorem 1.1 in Section 3.
Section 2 will be devoted to some preliminary results which we shall need for
this purpose. Finally we will show with an example that the condition that
every ideal ¢ of A generated by a subsystem of parameters for A is not super-
fluous.

In this paper we denote by A a Noetherian local ring of dimension d with
maximal ideal m.
2. Preliminary.

Let ¢ be an ideal of A generated by a subsystem of parameters for A4 of
length . We put ¢=(a,, a,, -, a,) and R=R(q). Notice that the ring R is
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canonically identified with the A-subalgebra
A[(I,X, aZXy R aTX]

of ALX], where X is an indeterminate over A. By M we denote the unique
graded maximal ideal of R, i.e.,

M=(m, a,X, a,X, ---, a.X).
Recall that
dim R=dim RM:d‘*‘l

(cf. [6]). Let a4y, -, aq be a system of elements of m such that a,, a,, -,
ay, Qr4y, -+, g forms a system of parameters for A and put

N=(a,, a,+a,X, -, a:+a,-,X, a,X, a4y, -+, ag).
We begin with
Lemma 2.1. M=+/N. In particular,
a,, a,+a, X, -, a,+a,.. X, a.X, ar4y, >, Qg
is a system of parameters for R,.
Proof. Suppose that a;.Xe+/N for some ;. Then a;,.,Xe+/N, as
(@i, X)*=(a;+a;. . X)a;. X—a;_,-a;X.
Thus we have a;Xe+/N for 1<i<r by induction on 7, and soqC+/'N, as
a;+a;_,.XeN by definition. Hence we have MC+/N, which implies M=+/N.
Corollary 2.2. R is a Cohen-Macaulay ring if and only if
ay, a;+a, X, -, ar+a,1 X, a;X, @rs1, *+, Qq

1s an Ry-sequence.

Proof. 1f a,, ay+a.X, -, ar+a,. X, a;X, aryy, -+, ag forms an Ry-sequence,
R, is a Cohen-Macaulay local ring by Lemma 2.1. Therefore R is a globally
Cohen-Macaulay ring by [3], Theorem. The converse is obvious.

Lemma 2.3. Let x be an element of
(ay, @y, ) Qroy, Qay, o+, k)i a}

and suppose that R is a Cohen-Macaulay ring. Then

xate(a,, as -, Qro)g 4 (ak, o0, ad)g!
for t=r—1.

-1
Proof. Let us express xa?=y+ 1—21 yia; (ye(ats,, -, a%), y;€A) and put

I=(a,X, {a;—a;:: X} 15jsr-2 QP41 =+, ay).
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Then
xatr Xt=yat X'+ rii ya;atX?
£

and a;=a;+,Xmod [ for every 1<j<r—2. Observe the equations

a;atX'=a;,atXt = - =00t XM =0,Xal X /=0mod T
(1£j<r—1), and we have xai*?X‘el. On the other hand, a,, a,.,—a,X, -,
a,—a,X, a, X, a%,,, -+, a% is an Ry-sequence by Corollary 2.2. Thus xatX'€IRy,

i.e., fxatXtel for some f= R\M. Now let us express
7= ) 4 )

(*) fra;X'=ga, X+ Z)jg(”(aj—ajﬂX)—i-,Elh“’a%,
7= i=r+

where g, g and h'”R. Let g, gf° and h{> denote the coefficient of the
term X* in g, g and h?, respectively. Then, comparing the term X* in the
equation (%), we see

frxai=a.gert 3 gP— 3 gzt 33 hioal.
As f, is a unit of A, this equation gives the desired result.
The following result is well known.
Lemma 2.4. Let C be a Noetherian local ring and suppose that
0—L—M-—N—0
s an exact sequence of finilely genervated C-modules. Then either
a) depth L=depth M=depth N
b) depth M=depth L=depth N+1
c) depth N>depth L=depth M.
In particular if depth L=depth N, then
depth L=depth M=depth N.
Definition 2.5. (cf. [5]) For an ideal ¢ of A we put
Assh (g)={psAss(q); dim A/p=dim A/q} .

We denote by U(g) the intersection of all primary ideals of g, of which belonging
prime ideals are contained in Assh (g).

Remark 2.6. Let a be an element of m such that dim A/(q, a)=dim A/q—1,
and we see that ae< EAUh( )p by definition and that a is an A/U(g)-regular
p ssh(q
element.

Definition 2.7. (cf. [5]) A system of elements x,, x,, --, x, of m is called
a weak regular sequence if
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(%1, xa, =, X3) Xy =(X1, Xg, o+, Xg) 200

holds for every 0<i<k. A ring A is called a Buchsbaum ring if any system of
parameters for A forms a weak regular sequence.

In the rest of this section we assume that A is a Buchsbaum ring. Now
we put ¢;=(a,, a,, -+, a;). We state the following results without proof.

" Lemma 2.8. ([2] Lemma 4.2) U(g:)N\g*=q:q™* for every integer n>0 and
every 1<i<r.

Corollary 2.9. ([2] Corollary 4.3) U(a,A)N\q"=aq"* for every integer n>0.

Lemma 2.10. ([2] Proposition 4.4) There is an exact sequence
0 — yU(a;A) — R/(a,X) —> R(g+U(a,A)/U(a,A)) —>0

of graded R-modules. Here we denote U(a,A) by yU(a,A) when we consider it
via h an R-module, where h is the canonical projection R— A.

Lemma 2.11. Suppose that depth A>0. Then a,X is a nonzero divisor of R.

3. Proof of Theorem 1.1.

First, we state the following

Proposition 3.1. Suppose that A is a Buchsbaum ring and that depth A=2.
Let q be an ideal of A generated by a subsystem of parameters a,, a,, -+, a. for
A. Then depth R(q)y=depth A+1.

Proof. We put R=R(q). At first, notice that U(a,A)=a,A: m=a,A=A as
depth A=2. Then by Lemma 2.10 we see that there is an exact sequence

() 0 — »A —> R/(a,X) — R(q/a;A) —0

of graded R-modules. We put depth A=s. We will prove the assertion by
induction on s.

The assertion is trivial in case »r=1. Thus we may assume that r=2.
Suppose that s=2. Notice that a,, a, forms an A-sequence because depth A=2
and A is a Buchsbaum ring.

(r=2) As R(g/a,A)=A/a,A[X] we see that depth R(q/a,A)y=depth A/a,A
+1=2. Thus depth (R/(a;X))»=2 by Lemma 2.4 and so we have depth Ry=3
by Lemma 2.11.

(r=3) We put A=A/a,A and §=q/a,A. For an element a of A let us
denote by @ an element of A. Notice that &,X is a nonzero divisor of R(7) by
Lemma 2.11 as depth A>0. We show that @,X, @ forms an R(7)-sequence. In
fact, let f be an element of (7,X): d@. As we may assume that f is homogene-
ous, we can express f=bX"(beq®™. Observe the equation
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bX™ ay=a,X-cX"?

for some c=q¢™'. Then we have ba;—ca.€a,A and so bas;€U(g,). As a; is
A/U(g,)-regular by Remark 2.6, we see belU(gy). Thus b€U(g.)N\g"=q-¢""* by
Lemma 2.8. Now we can express b=a,y,+a,y. for some y,, y,€q"*. Hence

bX"=a,X 5, X"

and the above claim is proved. Therefore we see that depth R(7),=2 and
depth (R/(a,X));=2 by Lemma 2.4. Hence we have depth R;;=3 by Lemma 2.11.

Suppose that s=3. By induction hypothesis we see that depth R(§)x
=depth A+1=(s—1)+1=s. Hence depth(R/(a,X))y=s by Lemma 2.4 and so
depth Ry;=s+1 by Lemma 2.11.

Corollary 3.2. Suppose that A is a Buchsbaum ring and that depth A=2.
Let 0<r=dim A be an integer. Then A is a Cohen-Macaulay ring if and only
if the Rees algebra R(q) is a Cohen-Macaulay ring for an ideal q of A generated
by a subsystem of parameters for A of length r.

Remark 3.3. Corollary 3.2 is known in case *¥=d=dim A (cf. [2] Theorem
4.1).

Proof of Theorem 1.1. (2)=>(1). By virtue of Corollary (3.2) this follows
from the following proposition.

Proposition 3.4. Suppose that the Rees algebra R(q) is a Cohen-Macaulay
ring for every ideal q of A gemerated by a subsystem of parameters for A of
length 7, then A is a Buchsbaum ring and depth A=2 if dim A=2.

Proof. We put g=(a,, a,, -, a,)and R=R(g). Let a,+;, -, aq be a system
of elements of m such that ay, a,, -, @+, -+, a4 forms a system of parameters
for A. Then ay, as+a,X, -+, a,+a,1X, a,X, ars1, -+, aq forms an R,-sequence
by Corollary 2.2. In particular, a,, a,+, is an Ry-sequence. We show that a;, a,+,
is also an A-sequence. In deed, let x be an element of A such that xa,=0. As
a, is Ry-regular, we see x=0 in Ry, i.e,

fx=0

for some fe R\M. Comparing the constant term in the above equation, we have
(unit)-x=0 and so x=0 in A. Now let y be an element of A such that ya,
=za,. Since a,, a,+ 1S an Rjy-sequence, we see ye(a, )Ry, i.e.,
fy=sa;

for some fe R\M and s R. Then, comparing the constant term in the above
equation, we have y=a,;A. Hence the above claim follows. Therefore we have
depth A=2.

Now let a,, a,, -**, @r, Gr+y, =+, a4 be a system of parameters for A and fix
Arsq, 5 Qg. Since R’=R((a,, a,, -, a,)) is a Cohen-Macaulay ring by the
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assumption, @,+;, -, @4 forms an Rj,-sequence by Corollary 2.2. Then a,.,, =+, aqg
is an A-sequence, using the same proof as the above. We put B=A/(a2;,, -+, a?).
In order to show that A is a Buchsbaum ring it suffices to show that B is a
Buchsbaum ring by [7], Theorem. Notice that dim B=r as a2, -+, a% is a

subsystem of parameters for A. For any element b of A let us denote by b
the image of b in B.
Assume that the equality

(*) (51, 527 ) 57'-1) : 532(51! 521 ) 51‘—]) : ET

holds for every system of parameters by, b,, -, b, for B. Let by, by, -, 5,1, b
and b, by, -+, b,_,, & be two system of parameters for B. In order to prove that
B is a Buchsbaum ring it suffices to show that

(b):b=(b): ¢
where (0)=(,, b,, -+, b,-1) (cf. [5] Satz 5). Of course by the symmetry between
b and ¢, we have only to prove (b):bC(d):¢. Let n>0 be an integer such that
&re(b)+bB and express &"= gEiii—l-Ei with %, ¥ B.
Now let 7 be an element of B such that j6(b). Then we see () : ¢" as
i5”=§375¢ii+3753?. Hence we have ye(b): & by the assumption (x). Thus,

b):bc(d): ¢, as desired.
Therefore in order to conclude the proof of Proposition 3.4 we have to prove
the assumption (x). This follows the next lemma.

Lemma 3.5. Under the same situation as in the Proposition 3.4. Let
B=A/(a%,, -, a%) and let b, by, ---, b, be a system of parameters for B. Then,

(51, 52; Tt 51-—1) . 512':(51’ 52; tty 51’—1) : 5,—.

Proof. Let % be an element of (by, by, -, b._;): b2 As R=R((b,, by, ---, b))
is a Cohen-Macaulay ring by the assumption, we see xbie(by, by, =+, bro1)gi™?
+(ay, -+, ad)qt for t=r—1 by Lemma 2.3, where q,=(b,, b,, -+, b,). Hence we
can express

-1
Xb,t»—: E ijj"'Z
j=1
for some z;=q!™* and ze(aiy, -+, a%)gi. We put

j:(blr bz—be, tty br—l_br—2Xy brX, (l?.“, Tty a?i)-

At first, notice that

xbylbr— by X) = b, 3 (10 (b1 X'

= b1 b, 3 (1) (9-bE (b, X
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Exbf.'HE TEi b,-ijj mod ].
=

On the other hand, as b.b;z;=b;-,Xb,z;= -- =0, Xb,z; X ?mod ] (1=<j<r—1), we
see xbi*'=0mod /. Thus we have xb,(b,—0b,,X)'e], and so xb.€JR, because
b,—b,1X is Ry/JRy-regular by Corollary 2.2. Hence f-xbeJ for some f R\M.
Comparing the constant term similary as in the proof of Lemma 2.3, we see that

-Xbre(bb b2: T br-l) (13.{.1, Tty alzi);

which implies 2 ®,, by, -+, b,-1) : b,

Example 3.6. Even if R(g) is a Cohen-Macaulay ring for and ideal ¢ of A
generated by a subsystem of parameters for A of length » with 1<r<d, A is
not necessarily a Cohen-Macaulay ring. For example, let 2 be a field and let
U, V and W be indeterminates over k. We put

A=k[[U UV, UV, V4, W]].
Let a,=U"* a,=V* a,=W and ¢=(a,, a;)A. Then we have the equality
(as) R=(as;)ALXINR

where R=R(q). In fact, let f be an element of (a;)ALX]N\R and we will show
that fe(as;)R. Of course we may assume that f is homogeneous. Let us express
f=cX" (ceq™), and we see ceq™N\(as;)A. Thus we have c€ay,q™ as a; is
obviously a nonzero divisor of A/q™ for every integer n>0. Hence f€(a,)R,
which implies (as)ALXINRC(as;)R. The oppesite inclusion is trivial. Recall
that R/(as) ALXINR is a Cohen-Macaulay ring by virtue of Theorem 1.1 in [2]
because R/(a)ALXINR=R(g+asA/a;A) and A/a;A is a two dimensional
Buchsbaum ring. Thus R/(as)R is a Cohen-Macaulay ring by the above claim
and we have that R is Cohen-Macaulay.

Of course A is not a Cohen-Macaulay ring. (A is not even a Buchsbaum
ring (cf. [4] Bemerkung 4.6)).
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