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1. Introduction

In T2], T. tom Dieck defined the Burnside ring A(G) of a compact Lie group
G using a certain equivalence relation on the set of closed smooth G-manifolds
(see §2). In this paper, when G is a finite group, we prove the following :

Theorem. Let G be a finite group. For an arbitrary element a< A(G),
there exists a connected closed smooth G-manifold X such that

a=[X] in A(G).

Throughout this paper G will be a finite group.
The authors express their hearty thanks to Professor G. Nishida, Dr. A.
Kono and Mr. M. Nagata for their invaluable suggestions.

2. The Burnside ring

In this section we recall some basic facts about the Burnside ring which are
due to tom Dieck [2].

On the set of closed smooth G-manifolds consider the equivalence relation :
X~Y if and only if for all subgroups H of G the Euler-Characteristics X(X#)
and X(Y'H) are equal. Let A(G) be the set of equivalence classes and let [X]&
A(G) be the class of X. Disjoint union and cartesian product induce addition
and multiplication, respectively, on A(G). Then A(G) becomes a commutative
ring with identity. We call A(G) the Burnside ring of G.

Let C(G) be the set of conjugacy classes of subgroups of G. Denote by (H)
the conjugacy class of H in G.

Proposition 2.1. Additively, A(G) is a free abelian group generated by
{{G/H ]I (H)=C(G)}.

Let Y be a closed smooth H-manifold; then GX Y is a closed smooth G-
manifold. Then the assignment Y —GX ;Y induces an additive homomorphism
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Ind§: A(H) —> A(G).
We remark that IndG(CH/H))=[G/H].

3. Examples

In this section we introduce some closed smooth G-manifolds and see their
classes in A(G).

Example 3.1. If M is a closed smooth G-manifold with trivial G-action,
then

[M]=X(M)LG/G] in A(G).

Example 3.2. Let V be an orthogonal representation space of G. We put
SWy={weV | vl=1}, DIV)={eV | ||v|£1} and ZV=D(V)/S(V). If U is a
unitary representation space of G, then

[2V]1=2[G/G] in A(G).

Example 3.3. Let V be an n-dimensional orthogonal representation space
of G and let py: G—0O(n) be its associated representation. We define a G-action
on the (n—1)-dimensional real projective space RP"™! by

go[x]1=[pv(g) x] for geG, [x]JeRP" !,

where [x] is a point of RP™ ' represented by a non-zero vector x of R™.
This action is well-defined and smooth. We denote this smooth G-manifold by
RP(V).

Then we have

Proposition 3.4. If U is a unitary representation space of G, then
[RP(R'PU)I=[G/G]  in A(G),
where R' denoles the one-dimensional trivial representation space of G.
Proof. To prove Proposition 3.4, it suffices to show that

WRP(R'PU)H=1 for any subgroup H of G.
Let S! be the circle group consisting of complex numbers of absolute value 1.
Then we define an S'-action on RP(R'@PU) by
zo[t, ul=[t, z-u] for zeSY, [t, ule RP(R'PU),

where [¢, u] is a point of RP(R'@U) represented by a non-zero vector (¢, u)e
R'@U. Then RP(R*@PU) becomes an S'X G-manifold. Let H (= {1} X HCS'X G)
be an arbitrary subgroup of G. Then RP(R'@U)¥ is an S'-submanifold and
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(RP(R'@U)")S'=RP(R'GU)S 1
=(RP(R'QV)*)"
=RP(RHY®
=RP(R").
It follows from Bredon [1;III. 7.10] that we have
X RP(R'PU)")=XRP(R")=1.

This completes the proof.

4. A generalized equivariant connected sum

In this section we introduce the notion of a generalized equivariant con-
nected sum. (Compare Sebastiani [3].)

Let X be a smooth G-manifold with G-invariant Riemannian metric. We
denote the isotropy subgroup of G at x€X by G, and the orbit of x under G
by G(x), which is G-diffeomorphic to G/G,. We regard T, X, the tangent space
of X at x, as an orthogonal representation space of G,.

Definition 4.1. Let H be a subgroup of G and V an orthogonal representa-
tion space of H. Then we say that (M, m) satisfies Condition (G, H, V) if and
only if

(i) M is a closed smooth G-manifold with G-invariant Riemannian metric
and me M,

(ii) Gn=H,

(ili) T,M=V as orthogonal representation spaces of H.

Suppose that (M,, m,) and (M,, m,) satisfy Condition (G, H, V). Then we
give a definition of the generalized equivariant connected sum M,#,M,. By the
differentiable slice theorem (see Bredon [1; VI]), there are open G-embeddings

it GXygV —> M; for /=1, 2
such that ¢;([e, 0))=m;. Now we obtain M,#,M, from the disjoint union
(M1 —G(my)) W(M,—G(my))

by identifying ¢.([g, tv]) with ¢.([g, (1—t)]) for geG, veS(V), 0<t<l. It is
clear that M,%,M, is a closed smooth G-manifold. Obviously, M,;#,M, depends
on the choice of mi, m, ¢ and ¢, but the next proposition indicates that
[M.#,M,]€ A(G) is independent of the choice of them.

Proposition 4.2. [f (M,, m,) and (M,, m,) satisfy Condition (G, H, V), then

CMygy M 1=[ M J+[M:1—Ind(C27])  in A(G).
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Proof. We shall show that
LMy M) )=X(ME)FXME)—X(G X z EV)X)

for any subgroup K of G. We identify M;—G(m;) with its image in M;#,M,.
Since M;—¢:((GX yD(V)) is a G-deformation retract of M;—G(m;), we have

X(M;—Gm)))=AME)+X(C X 5 S(V)F)—X(G X g D(V))¥)
for /=1, 2. Clearly
X(GX g 2V)Y)=2X((G X x D(V)E)=X(G X xS(V))¥).
Since (M,—G(m))N(M,— G(m,)) is G-homotopy equivalent to G X ;S(V), we have
XM 3y M) )=X((M1— G(m))*)+X((Mo— G(m,)) ) — (G X 5y S(V)¥)
=X(ME)FAME)—=X(C X g ZV)5).
This completes the proof.

Suppose that (M, m) satisfies Condition (G, H, V) and (N, n) satisfies Condi-
tion (H, H, V). Then (G X yzN, [e, n]) satisfies Condition (G, H, V) and we can
construct M#,(GX zN).

Corollary 4.3.

[M#y(G Xy N)]=[M]I+IndG(CNI-[2V])  in A(G).

5. Proof of Theorem
For a non-zero integer k, we put
CP:$CP:4-- 4 CP; if 2>0
N(k)=
RP{§E RPi8---8 RP:, if k<0,

where CP?, RP: (1</<|k]) are copies of CP? the complex projective space,
and RP! and £ means the ordinary connected sum. It is easy to see that

Lemma 5.1. Z(N(k)=Fk+2.

Proof of Theorem. Let a< A(G) be an arbitrary element. Then, by Pro-
position 2.1, there exist a,€Z— {0} and (H,)eC(G) (1=/=k) such that

a'ziéai[G/Hi] in AG).

Let U be the complex regular representation space of G. Then there are x, €37
(1=i/<k) with isotropy group H; We put U;=T,.3XY. Then U, is a unitary
representation space of H,, given by restricting the G-action on U to the H;-
action. We put M=T'XX" and m,=(, x;,)eM for 1</<k, where the G-action
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on T* the 4-dimensional torus, is trivial and t€T* Then (M, m,) satisfies Con-
dition (G, H;, R*@PU,).

On the other hand, we consider an H;-manifold N;=N(a;)X RP(R'@U,)
and n;=(s;, [1, 0])€ N;, where the H;-action on N(a;) is trivial and s; N(a;).
Then (N;, n;) satisfies Condition (H;, H;, R‘@U;).

Now we can construct
X=M%riov,(G X g Ni)#riov, * $r10v,(GX g, Ni).

Using Proposition 3.4, Corollary 4.3 and Lemma 5.1, we have

[X]=[M]+ ié Ind§, ([N;]—[Z®'evi])

=[7'3-[3"]+ ¥ Ind§ ([N(@)]- [ RP(R*BU I —[ I#eV])

I

> Ind§ (@ LHy/ H)

Il

> alG/H]

a .

Moreover it is clear that X is connected. Hence X has our required properties.
This completes the proof of Theorem.
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