A remark on the regularity of the solution of the Dirichlet problem in a semiinfinite domain in R^{2}

By
Fumioki Asakura
(Communicated by Prof. S. Mizohata, June 6, 1980)

§ 0. We consider the Dirichlet problem

$$
\left\{\begin{array}{c}
u_{x x}+u_{y y}=f \text { in } G \subset R^{2}, f \in L^{2}(G) \tag{0.1}\\
u \in H_{0}^{1}(G)
\end{array}\right.
$$

in an unbounded domain which is narrow at infinity. In this note we show, following the method of K. Ibuki [2], the solution is in fact in $H^{2}(G)$ under some assumptions on G. As a result, we can see self-adjoint extension of the Laplacian with the Dirichlet boundary condition in such a domain is unique and coincides with the closure of the operator.
§1. We consider the problem (0.1) in a domain $G \subset R^{2}$ which satisfies the following conditions.
I) $G=G_{0} \cup \bigcup_{j=1}^{N} G_{j}$ where G_{0} is bounded and each $G_{j}(j \geqq 1)$ has the following form under certain orthogonal transformation of the coordinates

$$
\begin{equation*}
G_{j}=\left\{(x, y) \in R^{2} \mid R<x<\infty, a_{1}(x)<y<a_{2}(x)\right\} . \tag{1.1}
\end{equation*}
$$

II) $a_{j}(x)(j=1,2)$ are smooth and satisfy
i) $b(x)=a_{2}(x)-a_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$
ii) $b^{\prime}(x) \leqq 0$
iii) $a_{j}^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$ and $\left|a_{j}^{\prime \prime}(x)\right| \leqq M$
iv) $\left|\frac{b^{\prime}(x)}{b(x)}\right| \leqq M$.

We observe the problem (0.1) is solved for arbitrary $f \in L^{2}(G)$ by the assumptions II-i) and ii) (see F. Rellich [4]), and the solution is uniquely determined. Our main theorem is

Main theorem Let $u \in H_{0}^{1}(G)$ be the solution of (0.1) in the domain G under the conditions I and II, then u is in $H^{2}(G)$. Here $H_{0}^{1}(G)$ and $H^{2}(G)$ are usual

Sobolev spaces.
As we can localize the problem, we may assume G itself has the form (1.1) and R is sufficiently large. Then we change the variables as the following

$$
\begin{align*}
& \xi=\int_{R_{0}}^{x} \frac{1}{b(t)} d t \quad\left(R_{0} \text { a fixed point }\right) \tag{1.3}\\
& \eta=\frac{1}{b(x)}\left(y-a_{1}(x)\right), \quad b(x)=a_{2}(x)-a_{1}(x) .
\end{align*}
$$

We find G is transformed to $C_{T}=(T, \infty) \times(0,1)\left(T=\int_{R_{0}}^{R} \frac{1}{b(t)} d t\right)$, and we have

$$
\left\{\begin{array}{l}
u_{x}=\frac{1}{b(x)}\left(u_{\xi}+A_{1}(x) u_{\eta}\right) \tag{1.4}\\
u_{y}=\frac{1}{b(x)} u_{\eta} \\
u_{x x}=\frac{1}{b(x)^{2}}-\left(u_{\xi \xi}+A_{2}(x) u_{\xi \eta}+A_{3}(x) u_{\eta \eta}\right)+\frac{1}{b(x)}\left(B_{2}(x) u_{\xi}+B_{2}(x) u_{\eta}\right) \\
u_{x y}=\frac{1}{b(x)^{2}}\left(u_{\xi \eta}+A_{4}(x) u_{\eta \eta}\right)+\frac{1}{b(x)} B_{4}(x) u_{\eta} \\
u_{y y}=\frac{1}{b(x)^{2}} u_{\eta \eta}, \quad d x d y=\frac{1}{b(x)^{2}} d \xi d \eta
\end{array}\right.
$$

where A_{j} and B_{j} are uniformly bounded and A_{j} can be made arbitrarily small if we take sufficiently large T (by virtue of (1.2)).

Using the computations above, we can see easily the followings. we find
i) $u \in L^{2}(G)$ if and only if $\rho^{-1} u \in L^{2}\left(C_{T}\right)$
ii) $u \in H^{1}(G)$ if and only if $\rho^{-1} u \in L^{2}\left(C_{T}\right)$ and $u_{\xi}, u_{\eta} \in L^{2}\left(C_{T}\right)$
iii) $u \in H^{2}(G)$ if and only if $u \in H^{1}\left(C_{T}\right)$ and $\rho u_{\xi \xi}, \rho u_{\xi \eta}, \rho u_{\eta \eta} \in L^{2}\left(C_{T}\right)$.

Proposition 1.2.

$$
\begin{equation*}
u_{x x}+u_{y y}=\rho^{2}(\xi)\left(u_{\xi \xi}+u_{\eta \eta}+A\left(\xi, \eta, D_{\xi}, D_{\eta}\right) u\right) \tag{1.5}
\end{equation*}
$$

where A is a second order differential operator whose coefficients can be made arbitrarily small if we take sufficiently large T.
§2. In this section we consider the following boundary-value problem

$$
\left\{\begin{array}{cl}
u_{\xi \xi}+u_{\eta \eta}=\rho^{-2}(\xi) f(\xi, \eta) & \text { in } C_{T}=(T, \infty) \times(0,1) \tag{2.1}\\
u=0 & \text { on } \partial C_{T} .
\end{array}\right.
$$

Firstly, we notice some properties of the function $\rho(\xi)=\frac{1}{b(x(\xi))}$. Since $\rho^{\prime}(\xi)=-\frac{b^{\prime}}{b^{2}} x^{\prime}(\xi)=-\frac{b^{\prime}}{b}$, we can see

$$
\begin{equation*}
0 \leqq \rho^{\prime}(\xi) \leqq M \quad \text { and } \quad \rho^{\prime} / \rho \rightarrow 0 \quad \text { as } \quad \xi \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

We set

$$
\begin{equation*}
\|u\|_{2}^{2}=\left\|\rho^{-1} u\right\|^{2}+\left\|u_{\xi}\right\|^{2}+\left\|u_{\eta}\right\|^{2}+\left\|\rho u_{\xi \xi}\right\|^{2}+\left\|\rho u_{\xi \eta}\right\|^{2}+\left\|\rho u_{\eta \eta}\right\|^{2} . \tag{2.3}
\end{equation*}
$$

Here $\left\|\|\right.$ denotes the L^{2}-norm on C_{T} and Proposition 1.1 says the norm $\| \|_{2}$ is equivalent to the original norm in $H^{2}(G)$. When we expand $u=\sum_{n=1}^{\infty} u_{n}(\xi) \sin n \pi \eta$, we have

$$
\begin{aligned}
\|u\|_{2}^{2} & =\sum_{n=1}^{\infty}\left\|\rho^{-1} u_{n}\right\|^{2}+\left\|u_{n}^{\prime}\right\|^{2}+n^{2}\left\|u_{n}\right\|^{2}+\left\|\rho u_{n}^{\prime \prime}\right\|^{2}+n^{2}\left\|\rho u_{n}^{\prime}\right\|^{2}+n^{4}\left\|\rho u_{n}\right\|^{2} \\
& \sim \sum_{n=1}^{\infty}\left\|\rho u_{n}^{\prime \prime}\right\|^{2}+n^{2}\left\|\rho u_{n}^{\prime}\right\|^{2}+n^{4}\left\|\rho u_{n}\right\|^{2} .
\end{aligned}
$$

Thus we have obtained

Proposition 2.1.

$$
\begin{equation*}
\|u\|_{2}^{2} \sim \sum_{n=1}^{\infty}\left\|\rho u_{n}^{\prime \prime}\right\|^{2}+n^{2}\left\|\rho u_{n}^{\prime}\right\|^{2}+n^{4}\left\|\rho u_{n}\right\|^{2} \tag{2.3}
\end{equation*}
$$

where \sim means the equivalence of the norms and $\|\|$ denotes the norm of $L^{2}(T, \infty)$.

We are going to construct the Green's function for the problem (2.1) by method of separation of the variables. When we expand $f(\xi, \eta)$ as $\sum_{n=1}^{\infty} f_{n}(\xi) \sin n \pi \eta$, we can see we have only to consider the problem

$$
\left\{\begin{array}{l}
u_{n}^{\prime \prime}-n^{2} \pi^{2} u_{n}=\rho^{-2}(\xi) f_{n}(\xi) \tag{2.4}\\
u_{n}(T)=u_{n}(\infty)=0 .
\end{array}\right.
$$

We set $G_{n}(t, s)=\frac{1}{2 n \pi}\left\{e^{-n \pi(t+s-2 T)}-e^{-n \pi|t-s|}\right\}$, which is the Green's function for the problem (2.4). Then we can show easily

Proposition 2.2.

$$
\begin{align*}
& \left|G_{n}(t, s)\right| \leqq \frac{1}{n \pi} e^{-n \pi|t-s|} \tag{2.5}\\
& \left|G_{n, t}(t, s)\right| \leqq e^{-n \pi|t-s|} \tag{2.6}
\end{align*}
$$

We define an operator G as the following.

$$
\begin{aligned}
& (G g)(\xi)=\sum_{n=1}^{\infty} G_{n}\left(\rho^{-1} g_{n}\right)(\xi) \sin n \pi \eta, \text { where } \\
& g(\xi, \eta)=\sum_{n=1}^{\infty} g_{n}(\xi) \sin n \pi \eta \text { and } \\
& G_{n}\left(\rho^{-1} g_{n}\right)(t)=\int_{T}^{\infty} G_{n}(t, s) \rho^{-1}(s) g_{n}(s) d s .
\end{aligned}
$$

Then we have

Lemma 2.3. If we choose sufficiently large T,

$$
\begin{equation*}
\|G g\|_{2}^{2} \leqq C\|g\|^{2} \quad \text { holds for all } g \in L^{2}\left(C_{T}\right) \text {. } \tag{2.7}
\end{equation*}
$$

Proof. By definition we shall prove

$$
\begin{aligned}
& \left\|\rho G_{n}^{\prime \prime}\left(\rho^{-1} g_{n}\right)\right\|^{2}+n^{2}\left\|\rho G_{n}^{\prime}\left(\rho^{-1} g_{n}\right)\right\|^{2}+n^{4}\left\|\rho G_{n}\left(\rho^{-1} g_{n}\right)\right\|^{2} \\
& \leqq C\left\|g_{n}\right\|^{2} \text { where } C \text { is independent of } n .
\end{aligned}
$$

Since $G_{n}^{\prime \prime}\left(\rho^{-1} g_{n}\right)=n^{2} \pi^{2} G_{n}\left(\rho^{-1} g_{n}\right)+\rho^{-1} g_{n}$, we have only to prove

$$
\begin{equation*}
n^{2}\left\|\rho G_{n}^{\prime}\left(\rho^{-1} g_{n}\right)\right\|^{2}+n^{4}\left\|\rho G_{n}\left(\rho^{-1} g_{n}\right)\right\|^{2} \leqq C\left\|g_{n}\right\|^{2} . \tag{2.8}
\end{equation*}
$$

As

$$
\left|G_{n}\left(\rho^{-1} g_{n}\right)(t)\right| \leqq \int_{T}^{\infty}\left|G_{n}(t, s)\right| \rho^{-1}(s)\left|g_{n}(s)\right| d s \leqq \frac{1}{n \pi} \int_{T}^{\infty} e^{-n \pi|t-s|} \rho^{-1}(s)\left|g_{n}(s)\right| d s
$$

we have

$$
\rho(t)\left|G_{n}\left(\rho^{-1} g_{n}\right)(t)\right| \leqq \frac{1}{n \pi} \int_{T}^{\infty} \frac{\rho(t)}{\rho(s)} e^{-n \pi|t-s|}\left|g_{n}(s)\right| d s .
$$

Estimating both sides in well known manner, we find

$$
\begin{align*}
& \left\|\rho G_{n}\left(\rho^{-1} g_{n}\right)\right\|^{2} \leqq \frac{1}{n^{2} \pi^{2}} I_{1} I_{2}\left\|g_{n}\right\|^{2}, \quad \text { where } \tag{2.9}\\
& I_{1}=\left(\sup _{t \geq T} \int_{T}^{\infty} \frac{\rho(t)}{\rho(s)} e^{-n \pi|t-s|} d s\right) \\
& I_{2}=\left(\sup _{s \geq T} \int_{T}^{\infty} \frac{\rho(t)}{\rho(s)} e^{-n \pi|t-s|} d t\right) \quad \text { (Holmgren bound). }
\end{align*}
$$

i) Estimate of I_{1}.

$$
\int_{T}^{\infty} \frac{\rho(t)}{\rho(s)} e^{-n \pi|t-s|} d s=\int_{T}^{t}+\int_{t}^{\infty}=I_{11}+I_{12} .
$$

Since $\rho^{\prime}(t) \geqq 0, \frac{\rho(t)}{\rho(s)} \leqq 1(s \geqq t)$. So we can see $I_{12} \leqq \int_{t}^{\infty} e^{-n \pi(s-t)} d s=\frac{1}{n \pi}$. For I_{11}, integrating by parts we find

$$
I_{11} \leqq \frac{1}{n \pi}\left[1-\frac{\rho(t)}{\rho(T)} e^{-n \pi(t-\tau)}\right]+\frac{1}{n \pi} \int_{T}^{t} \frac{\rho(t)}{\rho(s)} \frac{\rho^{\prime}(s)}{\rho(s)} e^{-n \pi(t-s)} d s .
$$

If we choose sufficiently large T, we can make $\left|\rho^{\prime} / \rho\right|$ arbitrarily small.
We have $I_{11} \leqq \frac{1}{n \pi}+\frac{1}{2 n \pi}$. Then $I_{1} \leqq \frac{C}{n}$.
ii) Estimate of I_{2}.

By (2.2), we can see easily the integral I_{2} is absolutely convergent.

$$
\int_{T}^{\infty} \frac{\rho(t)}{\rho(s)} e^{-n \pi|t-s|} d t=\int_{T}^{s}+\int_{s}^{\infty}=I_{21}+I_{22} .
$$

As before $I_{21} \leqq \frac{1}{n \pi}\left(1-e^{-n \pi(s-T)}\right)$, and by integration by parts we find

$$
\begin{aligned}
I_{22} & =\frac{1}{n \pi}-\frac{1}{n \pi} \int_{s}^{\infty} \frac{\rho^{\prime}(t)}{\rho(s)} e^{-n \pi(t-s)} d t \\
& =\frac{1}{n \pi}-\frac{1}{n \pi} \int_{s}^{\infty} \frac{\rho(t)}{\rho(s)} \frac{\rho^{\prime}(t)}{\rho(t)} e^{-n \pi(t-s)} d t .
\end{aligned}
$$

After the same arguments as in i), we have $I_{2} \leqq \frac{C}{n}$. Replacing I_{1} and I_{2} in (2.9) by the estimates obtained above, we find

$$
\begin{equation*}
n^{4}\left\|\rho G_{n}\left(\rho^{-1} g_{n}\right)\right\|^{2} \leqq C\left\|g_{n}\right\|^{2} \tag{2.10}
\end{equation*}
$$

where C is independent of n.
The estimate of $G_{n}^{\prime}\left(\rho^{-1} g_{n}\right)$ can be carried out just in the same way as that of $G_{n}\left(\rho^{-1} g_{n}\right)$ and we obtain

$$
\begin{equation*}
n^{2}\left\|\rho G_{n}^{\prime}\left(\rho^{-1} g_{n}\right)\right\|^{2} \leqq C\left\|g_{n}\right\|^{2} . \tag{2.11}
\end{equation*}
$$

Thus we have proved the lemma.
§ 3. In this section we prove the main theorem with the aid of the preceeding lemma. Considering Proposition 1.1 and 1.2, the theorem is equivalent to the next one.

Theorem 3.1. Let $f \in L_{\text {loc }}^{2}\left(C_{T}\right)$ such that $\rho^{-1} f \in L^{2}\left(C_{T}\right)$, and $u \in L_{\text {loc }}^{2}\left(C_{T}\right), u_{\hat{\xi}}$, $u_{\eta} \in L^{2}\left(C_{T}\right)$ be the solution of the problem

$$
\left\{\begin{array}{l}
u_{\xi \xi}+u_{\eta \eta}+A\left(\xi, \eta, D_{\xi}, D_{\eta}\right) u=\rho^{-2}(\xi) f(\xi, \eta) \tag{3.1}\\
\left.\left.u\right|_{\partial C_{T}} \text { (the trace of } u \text { on } \partial C_{T}\right)=0,
\end{array}\right.
$$

then $\|u\|_{2}<\infty$.
Proof. Since the solution of (3.1) is uniquely determined, we can expect to have the solution in the form

$$
\begin{equation*}
u=G\left(\rho^{-1} g\right)=\sum_{n=1}^{\infty} G_{n}\left(\rho^{-2} g_{n}\right) \sin n \pi \eta . \tag{3.2}
\end{equation*}
$$

Applying $\Delta_{\hat{\xi} \eta}+A$ to the both sides of (3.2), we find

$$
u_{\xi \xi}+u_{\eta \eta}+A u=\rho^{-2} g+(A G)\left(\rho^{-1} g\right)=\rho^{-2} f .
$$

Therefore g must satisfies

$$
\begin{equation*}
\rho^{-1} g+(\rho A G)\left(\rho^{-1} g\right)=\rho^{-1} f . \tag{3.3}
\end{equation*}
$$

We set $K=\rho A G$. Since A is a second order differential operator whose coefficients can be made as small as we desire when we take sufficiently large T,
we can see the operator K is a bounded operator from $L^{2}\left(C_{T}\right)$ to $L^{2}\left(C_{T}\right)$ and that the operator norm of K can be made smaller than 1 . So $(I+K)$ is invertible, and for any $f \in L_{\text {loc }}^{2}\left(C_{T}\right)$ such that $\rho^{-1} f \in L^{2}\left(C_{T}\right), g=\rho(I+K)^{-1}\left(\rho^{-1} f\right)$ is the solution of (3.3). We set $u=G\left(\rho^{-1} g\right)$, then u is the solution of (3.1) and we find

$$
\|u\|_{2} \leqq C\|g\| \leqq C(1-\|K\|)^{-1}\left\|\rho^{-1} f\right\|
$$

which proves the theorem.
Last of all, we should mention the uniqueness of self-adjoint extension of the Laplacian with the Dirichlet boundary condition (see H. Tamura [5] and F. Asakura [1]) follows from the preceeding theorem. Proof of the theorem is carried out in the same way as in S. Mizohata [3], Chap. III, § 16.

Theorem 3.2. We consider the Laplacian as a symmetric operator from $C^{2}(G) \cap C_{0}^{0}(G)$ to $L^{2}(G)$, then the closure of the operator is a strictly self-adjoint operator with the domain $H^{2}(G) \cap H_{0}^{1}(G)$. So self-adjoint extension is unique in this case.

> School of Economics, Otemon-Gakuin Univ.

References

[1] F. Asakura, J. Math. Kyoto Univ., 19 (1979), 583-599.
[2] K. Ibuki, J. Math. Kyoto Univ., 14 (1974), 55-71.
[3] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, 1973.
[4] F. Rellich, Studies and Essays Presented to R. Courant, 1948, 329-344.
[5] H. Tamura, Nagoya Math. J., 60 (1976), 7-33.

