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A remark on the regularity of the solution
of the Dirichlet problem in a semi-
infinite domain in R?

By
Fumioki ASAKURA

(Communicated by Prof. S. Mizohata, June 6, 1980)

§0. We consider the Dirichlet problem
Uzztuy,,=f in GCR? felLl¥G)
(0’1) { vy
us H{(G)

in an unbounded domain which is narrow at infinity. In this note we show,
following the method of K. Ibuki [2], the solution is in fact in H*G) under
some assumptions on G. As a result, we can see self-adjoint extension of the
Laplacian with the Dirichlet boundary condition in such a domain is unique and
coincides with the closure of the operator.

§1. We consider the problem (0.1) in a domain GCR*® which satisfies the
following conditions.
1) G=G,\J QlGj where G, is bounded and each G; (j=1) has the follow-
ing form under certain orthogonal transformation of the coordinates
(1.1) G;={(x, y)ER?*|R<x <0, ai(x)<y<a,x)}.
) ajx) (j=1, 2) are smooth and satisfy
) b(x)=as(x)—ai(x)—0 as x—oo

ii) b (x)=<0

(1.2)
iii) aj(x)—0 as x—oo and |a(x)|=M
. b'(x)
v) ‘ b(x) ’éM‘

We observe the problem (0.1) is solved for arbitrary fe L*G) by the
assumptions II-i) and ii) (see F. Rellich [4]), and the solution is uniquely deter-
mined. Our main theorem is

Main theorem Let us HYG) be the solution of (0.1) in the domain G under
the conditions 1 and 11, then u is in H¥G). Here HYG) and H*G) are usual
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Sobolev spaces.
As we can localize the problem, we may assume G itself has the form
(L.1) and R is sufficiently large. Then we change the variables as the following

5=S1 L 41 (R a fixed point)

(1.3) ”"lb(t)
nzm(yﬂlx(x)), b(x)=ay(x)—aix).
We find G i formed to Cp=(T 01 (T={" -1
e fin is transformed to Cy=(T, o0)X (0, 1) ( —SRO——det), and we
have
u,=—5(—1;)—(u5+Al<x>u”)
1
uy——#b(x) u
(1.4) Uzz= b( 3 (uee+Az(x)ue,,+Aq(x)u,7,,)+ e )(Bz(X)ue+Bz(x)u,,)
Uzy= b( )2 (u€ﬂ+A4(x)u1;1])+ ( ) d(x)urj
1
uwzwuw, dxdy= b( 32 dédy

where A; and B; are uniformly bounded and A; can be made arbitrarily small
if we take sufficiently large T (by virtue of (1.2)).
Using the computations above, we can see easily the followings.

ops ' 1
Proposition 1.1. When we put p(&)=m
we find
i) ueL¥G) if and only if p~'ue L¥Cr)
ii) ueHYG) if and only if p~'ue L¥Cr) and ug, u,< L¥Cr)
iii) ueHYG) if and only if ucH Cr) and pueg, pue,, PU,,€ L*Cr).

and LZ(CT)—': LZ((T’ OO) X (07 1));

Proposition 1.2,
(1.5) Uzztuyy=p*ENuegetuy,+AE, 5, De, Dyu)

where A is a second order differential operator whose coefficients can be made
arbitrarily small if we take sufficiently large T.

§2. In this section we consider the following boundary-value problem

o { Uit 1yy=p O f(& 1) in Cr=(T, 00)x(0, 1)
' u=0 on oCr.
Firstly, we noticel some properties of the function p(g)zj(x—l(g)T' Since

pO=— "t x=—""

p Ve can see
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2.2) 0=p'(©)<M and p'/p—0 as §—oo.
We set
23) 3=l o™ e+ gl P+l 12+ | prsgell P+l e |12+ o1
Here | | denotes the L%*norm on Cr and Proposition 1.1 says the norm | ||; is

equivalent to the original norm in H*G). When we expand u= i:)lu,,(é')sin nwy,
we have
Ilul§=§)lllp"unllz-l-lluiAl“i-ﬂ”llunllz-l-llpuz’llz-l-nzllpu;||2+n‘*llpunll2
~ 3 loutl*+n*l pusl*+n'l oual*.
Thus we have obtained

Proposition 2.1.

2.3) IIuIl%fv’g)lllpu’éllz+nzllpué.|12+n“llpunllz,
where ~ means the equivalence of the norms and ||| denotes the norm of
L¥T, o).

We are going to construct the Green’s function for the problem (2.1) by
method of separation of the variables. When we expand f(&, %) as 2} fx(E)sinnmy,
we can see we have only to consider the problem
{ ur—n’mu,=p (&) fn(§)

(24)
un(T)= un(oo):() .

27171 {enmt+s-2Ty__p-nxit-s} “which is the Green’s function
for the problem (2.4). Then we can show easily

We set G,(t, s)=

Proposition 2.2.

1
< _ = p-nmit-s)
(2.5) |Ga(t, s)|= n e

(2:6) |G, ot, S)|Semmitmst,

We define an operator G as the following.

(GR)&=ZGn(p g)E)sin nrn, where
g(§, 77)=§1gn(5)sin nzy and

Gulp gnO=|" Gualt, Dp(5)gals)ds
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Then we have

Lemma 2.3. If we choose sufficiently large T,
2.7) 1Ggli=Cligl® holds for all g& L*Cr).
Proof. By definition we shall prove
loGr(p ™ gnl?+n®l pGrl(p g1+l pGr(p ' gn)ll?
=Cl|/g.ll* where C is independent of n.
Since Gy(p 'gr)=n’r*G.(p 'gs)+p 'gn, we have only to prove
2.8) ntpGulp g+ n'llpGalo ' g I*<Cli gzl
As
1Galp g =] 1Gut, 91979 gn(o)lds= om0 49| gu(s) ds

we have

p1Ga(p™ g1 5 B e g9l ds

Estimating both sides in well known manner, we find

1
(2.9) loGalp™ gnll*s — 5z Iilallgal®,  where

() —nﬁ!t—xl
=(sun [ e as)

—(supg pEt)) e nrIt- “dt) (Holmgren bound).
§2T

i) Estimate of I,.

S::%e‘""’”“'dszg;+S:°=Iu+112.

Since p’(#)=0, &él (s=t). So we can see [12§Swe—nr(s_l)dS:—1’_. For
p(s) ¢ nm

I,,, integrating by parts we find

]11<L[1— p®) ‘""‘(“T)] Lst _P(t) p(s) e nEU=O ¢

nmw o(T) nw Jr p(s) p(s)
If we choose sufficiently large T, we can make |p’/p| arbitrarily small.
We have Iu§—1—+ 1 Then Ilgg.

nw 2nrw n

ii) Estimate of I,.
By (2.2), we can see easily the integral I, is absolutely convergent.
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1 . .
As before [,=< F(l—e'""“"’), and by integration by parts we find

_ L1 =0 ®  araes
Te= nw  nw Sa o(s) ¢ dt
_ L L= @) aras
T onm nrw Sx o(s) p(t) ¢ dt.

After the same arguments as in i), we have Izz%. Replacing I, and I, in (2.9)
by the estimates obtained above, we find
(2.10) nd”PGn(P_lgn)"zécngn"2

where C is independent of n.

The estimate of G,(p~'g.) can be carried out just in the same way as that
of G.(p™'g») and we obtain

(2.11) n*llpGu(p ' gn)IP=Cligal®.

Thus we have proved the lemma.

§3. In this section we prove the main theorem with the aid of the preceeding
lemma. Considering Proposition 1.1 and 1.2, the theorem is equivalent to the
next one.

Theorem 3.1. Let f& L}, (Cr) such that p~'f€ L¥Cr), and ue L},(Cr), ue,
u, € L*(Cr) be the solution of the problem

{ ugtuy,+AE 9, Dey, Dyu=p & fE, 1)

ulacp (the trace of u on 0Cr)=0,

(CRY)

then ||ul,<oo.

Proof. Since the solution of (3.1) is uniquely determined, we can expect to
have the solution in the form

(3.2) u::G(p‘lg):g}lGn(p‘zg,,)sin nwy.

Applying 4;,+A to the both sides of (3.2), we find
Ugtuy,+Au=p"g+(AG) p 'g)=p7*f .

Therefore g must satisfies

33 pg+H(pAG)p T g)=p"'f .

We set K=pAG. Since A is a second order differential operator whose coeffi-
cients can be made as small as we desire when we take sufficiently large T,
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we can see the operator K is a bounded operator from L*C;) to L*Cy) and
that the operator norm of K can be made smaller than 1. So (/+K) is inverti-
ble, and for any fe& L},(Cr) such that p~'fe L¥Cy), g=pI+K)'(p~'f) is the
solution of (3.3). We set u=G(p~'g), then u is the solution of (3.1) and we find

lull.=Cllgl=CA—KI) "l p~*fI

which proves the theorem.

Last of all, we should mention the uniqueness of self-adjoint extension of
the Laplacian with the Dirichlet boundary condition (see H. Tamura [5] and F.
Asakura [1]) follows from the preceeding theorem. Proof of the theorem is
carried out in the same way as in S. Mizohata [3], Chap. III, § 16.

Theorem 3.2. We consider the Laplacian as a symmetric operator from
CHGINCYG) to L¥G), then the closure of the operator is a strictly self-adjoint
operator with the domain H*G)NHYG). So self-adjoint extension is unique in
this case.
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