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Introduction

L et A  be a commutative noetherian ring, I  a n  ideal contained in the radical
of A  and G = G (A , I)=  e p ip -  the form ring  o f A  relative to I. T h e  problem

nao

o f  th e  descent o f  a  property from th e  r in g  G  to th e  r in g  A  was first tackled
by Krull ; he proved th e  following classical result :  i f  G  is  a  norm al ring , so is
A .  L ater o n  H o c h s te r  a n d  Ratliff proved a  sim ilar result with respect to the
Cohen-Macaulay (C. M.) property ([8 ], theorem 4 .11). In  th e  proof of the  la tte r
theorem th e  Rees r in g  R = R (A , I )=  e I n  p la y s  a  fundamental role because

neZ

o f i t s  close links w ith G  and  A .  Indeed G  is  a quotient of R  b y  a  n o n  zero-
divisor, while R  and  A  a re  connected by flat and local ring homomorphisms.

In  this paper we prove that th e  following local properties of rings descend
from G  to  A :  regularity, locally complete intersection (C. I.), Sn , S n + , and  Rn,
S i i + i  a n d  T n . We show  that the  type  o f A  is less than or equal to the type of
G ; in  particular i f  G  is  a  G o re n s te in  r in g , s o  is  A .  M oreover w e give an
example which shows that th e  properties R n  a n d  T n  d o  not pass from G to A
without th e  further assumption that Sn + ,  holds.

T h e  first section deals with basic facts on graded r in g . M o re  precisely we
prove that if  S  is  a  graded r in g  such that fo r all homogeneous prim e ideals p,
the  property S n (resp. R n , T n , locally C. I.) holds fo r  Si,, then  th e  same holds for
S .  T h is  kind o f problem was raised by Nagata in [14] with respect to the C. M.
property and investigated by several authors ([4], [8], [11], [12], [15], [22]).

In the second section w e study th e  behaviour o f th e  properties Sn , Rn, Tn
in the passage from S/xS to S, where S  is  a  graded r in g  a n d  x  a  n o n  zero-
divisor belonging to th e  homogeneous radical of S .  Precisely we prove that if
S n (resp. 5 n+1 and Rn, Sn+, an d  T n )  holds for S i x  S, then  th e  same holds fo r S.
A s  corollaries o f  t h e  above results we get in  a n  unified version some known
statements concerning th e  adjunction o f an  indeterminate (polynomial or power
series).

Finally in  the  third section we prove that G  is a  regular (resp. locally C. I.,
Gorenstein) ring if and only if  such is R  and the type of G  is equal to the type
o f  R ; moreover, if S i i (resp. S n + i  a n d  R n , S n + ,  and  T n )  holds f o r  G , t h e  same
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holds fo r  R , but the converse is not necessarily t r u e . O n  th e  other hand each
o f th e  above-mentioned properties descends from R  to A.

We wish to thank Prof. G. Valla for his kind encouragement and suggestions
during th e  preparation o f th e  present paper.

1. Terminology and basic results on graded rings

A ll the  rings considered in this paper a re  assumed to be commutative, with
1 and noetherian.

Let S Sn be a  graded ring ; since S  is  noetherian, S  is  a  finitely gene-
nE Z

rated S o-algebra (it is a n  easy consequence o f  [15], chapter II, proposition 3.2).
A  homogeneous ideal m o f S  is called h-m ax im al i f  m  i s  m axim al among

homogeneous ideals o f  S ,  th a t  is  th e  subring o f th e  elements o f degree 0 of
S/m is  a field k and either S/m-=k or S/m= k[T, T - 1 ], where T is transcendental
over k .  The intersection of all the h-maximal ideals o f  S  is called homogeneous
radical o f  S .  If  S  has a unique h-m axim al ideal, then S  is called h-local ring.
Clearly if  S o i s  a  local ring , then S  is  an h-local ring.

L et p be a  prim e ideal o f S .  We will denote by p' the greatest homogeneous
ideal o f S  contained in  p. Then p' is again a  prim e ideal. Moreover, i f  S ( o ) is
th e  homogeneous localization o f S  a t the  m ultip licative  set of a l l  t h e  homoge-
neous elements o f  S  not in  p, then (S ( , ) , p'S(o ) is  an h-local ring.

T h e  results o f this section show  that several properties hold fo r S o if  a n d
only if  they hold fo r  S o,.

Recall a  few definitions, most of which can be found for example in [5], [13].
A  loca l ring  A  is called complete intersection (C. I.) i f  its completion Â  is  a

homomorphic im age  o f a  regular local ring modulo a regular sequence. A  ring
A  (not necessarily local) is called locally  C. I .  i f  Ao is  C A . f o r  a l l  prim e ideals
p o f  A.

L et (A , nt, k) be a local d-dimensional C . M . rin g . T h e  (C. M .) type o f  A  is
th e  number r(A)=dim k Extl(k , A ) .  I f  A  is  a C . M . ring (not necessarily local)
the  global type o f A , still denoted by r(A), is the suprem um  of the types of the
local rings A , a s  p ranges through the prim e ideals o f  A .  I f  r(A )=1, then  A
is said to be a  G orenstein  ring.

F o r an  ideal I  o f  a  r in g  A  we denote by g r(I)  th e  g ra d e  o f  I ,  that is the
common length o f a ll maximal regular sequences in  I. If  (A , nt) is a local ring,
depth (A ) means the  g rade  o f in.

A  r in g  A  is called S .  rin g  i f  depth (A,)>_.min (n , ht (p)) fo r  a ll prim e ideals
p o f A.

A  r in g  A  is called R n  (resp. T O  rin g  if  A , is a  regu lar (resp. Gorenstein)
ring, for a ll prim e ideals p o f  A  such that ht

A  ring  which is both S n  a n d  T n _i is called  n-G orenstein  ring.

Lemma 1.1. L et S  be a graded ring and p a n o n  homogeneous prim e ideal
o f  S .  Thell, :
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i) ht(p)=ht(p')+1 and depth(S„)=depth(S)+1
ii) T he ring S , is regular (rasp. C. M., r(S 0)=n, Gorenstein) if  and only  if

such is S r .

P ro o f .  T h e  first p a r t o f  ii), stated in  a  different w ay, is  in  111], theorem
2.1 and  [15], chapter III, theorem 2.3. T h e  rem aining p a rt o f  th e  lem m a is in
[4], corollary 1.1.3.

Remark 1 . 2 .  From  th e  lemma 1.1 (ii) and  [7], Satz 6.16 it follow s that the
type  o f a  graded C. M . ring S  is  the suprem um  of the types of the local rings
Sm as nt ranges through th e  h-maximal ideals o f  S.

Corollary 1 .3 .  L et S  be a graded rin g .  Then:
i) S  is  an S n  rin g  if  an d  only  if  f o r every homogeneous prim e ideal q of

S , depth (S„)_ min( n, ht(q)).
ii) S  is  an R ,(resp. T n ) ring  if  and  only  i f  f o r  every  hom ogeneous prime

ideal q o f  S  such that ht (q) n , the ring S o is regular (rasp.  Gorenstein).

P ro o f .  i) L et p be a  n o n  homogeneous prim e ideal o f  S .  Then, by lemma
1.1 (i), we have : depth (S )= depth (Sp,)± 1 min (n, ht (p '))+ 1  min (n, ht (p)).

ii) L et p be  a  n o n  homogeneous prime ideal of S  such that ht (p) n .  Then
ht (p ')=ht (n)-1<n, hence Sp, is a regular (resp. Gorenstein) ring  and , by lemma
1.1 (ii), S , is regular (resp. Gorenstein) too.

The converse of i) an d  ii) is  trivial.

T he  following proposition has been inspired by th e  proof of the proposition
4.10 in  [8].

Proposition 1 .4 .  L et S  be a g rad ed  ring and p a prim e ideal o f  S .  Then
S p is C. I. if  and  only  i f  s o  is  S .

P ro o f .  The condition is  c lea rly  necessa ry . C onverse ly , l e t  X  b e  a n  in-
determinate o f degree 0 . F o r every prim e ideal p o f  S, the ring homomorphism
S, S[X ]p ]  i s  f l a t  and local and the fibre over pS„ is  a  f ie ld . Hence S , is
C. I. if  and  only if  so  is  S[X]ps[x]

N ow  w e assume th a t p i s  n o n  h o m o g en eo u s. W e  can  rep lace  S  b y  the
homogeneous localization S *  o f  S [X ] a t  p S [ X ] .  In  fact, since ht (p'S[X ]) --
ht (p')=ht (p)-1=ht (pS [X ])-1 , p'S* is  th e  o n ly  h-m axim al id ea l o f  S * , thus
the  hypothesis on p' still holds fo r p 'S * •  From  now  o n  S , p, p' will respectively
mean S*, p*, p'S*.

Let b e  th e  completion o f  S o a n d  S  the h-local ring S Ø  g o . Since Shp'

=127 , 7 ' 1  w e have ,S/p' S/p' T ' ] .  T h u s  p'S is the h-maximal

ideal of S an d  th e  canonical r in g  homomorphism Sp, —' is  flat and local and
its  fibre over is  a  f ie ld . T hen  S„,3 is CA. ([1], loc. cit.). T h e  r in g  homo-
morphism S ,,S  0,3 i s  fla t and local too, hence if  S- p3 is C. I., SO is S. There-
fore replacing S  b y  S  w e can  assum e t h a t  S o i s  a  com plete lo c a l r in g  with

theorem 2).
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infinite residue field k  and  S  is a  homomorphic im age of a regular r in g .  Then
th e  C. I.-locus o f S  is an open set ([5], IV, 19.3.3). Let / be th e  defining radical
ideal of the  non  C. I.-locus. If  I  is a  proper ideal, then it suffices to show  that
/ is homogeneous to get a contradiction.

For every u n it x  in  S o w e  have an  S o-automorphism of S  which takes each
form F  of degree d  to x  dF. L e t  E  F,• I  (where each F i  is  a  form o f degree

i). We choose units x_ p , ••• , x , in  S , with distinct im ages in  k  (k  is infinite).

For all j, we h a v e  E  x;T i E /, because /  i s  invarian t under every

automorphism o n  S. Now det (x:D= +( H xyP)•(11(x i —x ; )) is  a  u n it  in  S .

Therefore each Fi G I.

R em ark. Since th e  considered properties are  stab le  under localization, the
results o f lemma 1.1 and proposition 1.4 can be expressed a s  follows :

A  graded r in g  S  is regular (resp. locally C. I., Gorenstein, C. M.) if and only
i f  so is Sin for every h-maximal ideal m o f S.

2. Relations among properties o f a  graded ring S  and a quotient ring S /xS

Lemma 2 .1 .  L et I  b e  an  ideal o f  a  rin g  A  an d  x  a n  elem ent o f  A  such
th at  J = ( j ,  x )  i s  a  p ro p e r id e al.  I f  i s  a m inim al prim e ideal ov er J, then
depth (A,) gr (IA 0)±1.

P ro o f .  Since JA ,  is pAp-primary, w e h av e  depth (./10) -=gr(JA 0). On the
other hand gr ( /AO gr (1A0)+ 1 ([9 ], theorem 127).

Proposition 2 .2 .  L et S  be a graded rin g , x  a  n o n  zero-divisor (not neces-
sarily  hom ogeneous) belonging to the homogeneous radical of  S , T =S ix S . I f  T
is  an  S n rin g ,  then S  is too.

P ro o f .  By corollary 1.3 (i) it is enough to show :  depth (S ,)_ min (n, ht (q))
f o r  every homogeneous p rim e  ideal q  o f  S. If x q ,  we have : depth (SO=
depth (T ,)+ 1  min (n, ht (0))+1=min (n, ht (q) —1)+1 min (n, ht (q)) where 0=
q lx S .  Now we suppose that x EE q. Then (q, x )* S .  L et I) be a minimal prime
over (q , x ) . From lemma 2.1 a n d  our hypothesis o n  T  it follows :  depth (.30)
gr (q S ,)  depth (S 0)-1=depth  (7'ï,) min (n, ht (Iv> min (n, ht (q)).

I f  S /x S  is a n  R „ ring , then S  is not necessarily an R n  ring  ([5], IV, 5.12.6).

Proposition 2 .3 .  L et S  be a graded ring , x  a n o n  zero-div isor (not neces-
sarily  hom ogeneous) belonging to the homogeneous radical o f  S , T =S Ix S . I f  T
is  an  S n + ,  and R n  (resp. S n + ,  and T n )  ring, so  is S.

P ro o f .  By proposition 2.2, S  is a n  S n + i  r i n g .  It suffices to prove that S o

is a  regular (resp. Gorenstein) ring , for every homogeneous prime ideal q o f  S
such that ht (q ). n  (corollary 1.3 (ii)). I f  x G q (q not necessarily homogeneous)
and ht n  + 1 ,  we p u t 0=q1xS , then ht (0). n and 'f q is regular (resp. Gorens-
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te in ). Since T o =S o l xSq , from [5 ], Ow , 17.1.8 (resp. [3], corollary 2.6), we get
S ,  is regu lar (resp. Gorenstein). If x ( q  homogeneous) and ht (q )_ n , let
be a m inim al prim e ideal over (q, x )  and  p-=-1)/xs. We have :  depth (T )
min (n +1, ht ( ) ). If ht (p)_>_n +1 using lemma 2.1 we get the following con-
tradiction:

n  + 1  depth (T )= depth (S)— 1 g r  (qS,,) g r  (QS ht n

Then ht (15) <n +1 and ht (p) . n + 1 .  Since x G p, from the first part of the proof
if  follows that S,„ and hence S o,  is regular (resp. Gorenstein).

Corollary 2 .4 .  I f  T  is  a reduced (resp . norm al, C . M ., G oren stein , regular)
ring, so is S.

P ro o f . A  ring is reduced (resp. normal, C. M., Gorenstein, regular) if and
only if it is S, and R o (resp. S , and R,, S„ for all n , T f l fo r all n , R „ for all n).

R em ark . Propositions 2.2 and 2.3 yield the result that polynomial adjunction
preserves th e  following properties :  S ,  S n +1 and  R„, n-Gorenstein, and hence
reducedness, normality, C. M., Gorenstein, regularity. Thus we get in an unified
version several known statements concerning the adjunction of an indeterminate
(polynomial or power series).

R em ark . The propositions 2.2 and 2.3 hold in  particular when S  is  a  tri-
vially graded ring and x belongs to the radical of S .  Hence the first of these
results is a  slight improvement of [5], IV, 5.12.4 and [10], proposition 1.8, the
latter (with respect to the T „ property) of [19], proposition 3.

3. Relations among properties o f  a  r in g  A , th e  form  r in g  a n d  th e  Rees
ring  o f A  with respect to an  ideal /

Let A  be a ring and I= (a i , , a.,) an ideal of A.
Denote by R-=R(A, I)= In. (where I n =A  fo r  n  0 )  th e  Rees ring and

n E Z

b y  G=G(A, I)= e r i p -  th e  form ring of A  with respect to I. Then R  is

the subring of A[T, T - 1 ] consisting of all finite sums E  c i r  with ci  P .  I t

results R =A [a i T, ••• , a r T ,  7 ' ], th u s  R  is  a noetherian graded r in g . I f  we
put u= 7 — ' ,  the element u  is a non zero-divisor in  R.

If J is an ideal of A , we denote by J*  the homogeneous ideal JA [T , u ]nR  ;
e .

it is clear that J*={ ci P/c i E Pn.n .

Lemma 3 .1 .  L et I, J  be ideals of a ring A, p a prime ideal o f  A .  Then:
a) R(A IJ, IH-J1J) R(A , J* ([18], lemma 1.1).
b) The ideal p* o f R(A, I )  i s  prime and ht (p*)=ht (p) ([18], theorm 1.5

and [16], remark 3.7).
c )  I f  pD/, then (p*, u ) is  a prime ideal o f R(A, I) and ht (p*, u)=ht (p*)+1

([17], remark 2.2.6 (ii)).
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d) L et 13 be a  homogeneous p rim e  id e al o f  R(A , I). I f  7,1E03, th e n  13.=
(1 3 nA )*  ([17] rem ark 2.2.5 (i)).

e) T he h-maximal ideals o f  R(A , I )  a re  i n  one-to-one correspondence with
the m axim al ideals o f  A : precisely  they  are  (m*, u) i f  rn I  o r  in* i f  tn1)./..

f) G(A, I)luR (A , I )  ([18], theorem 2.1).

Proof  o f  e). If m 1/, th e n  n t  a n d  I  a r e  comaximal. T h u s  R(A , I)Im*=
R(A lm, /-Fm/m)=A/m[T, 7- 1 ]  hence m* is  h-m axim al. O therw ise i f  mD/, the
components o f  degree of (nt*, u) a re  e q u a l to  I  s o  R(A , I)I(m*, u)=A /m
and (nt*, u) is  h -m axim al. Conversely, le t 932 be  an  h-maximal ideal o f  R(A , I).
Then ' I A=m  is  m axim al in A .  If m1:1, then  mR(A , /) , m* (for mnP=m/i),
so If  n p i,  then  9i1c(m*, u ). Hence 9J1=m* o r  9i1=(m*, u).

Lemma 3.2 . L et I  b e  an  ideal o f  a rin g  A , p a  p rim e  ideal o f  A  a n d  R
=R (A , I ) .  Then:

Rp.= A r ill pA[u]•

ii) T he ring homomorphism A„—q?,., induced by the canonical ring homomor-
phism  A — A [u], is f lat and local, m oreover the f ibre ov er p.A,, is a f ield.

P ro o f .  i) W e have A [u ]E R  and  p *n A [u ]= M [u ], hence A[u]pA:u3CR„..
Now let f lg E R ,. an d  le t d  be the  g rea test deg ree  o f  t h e  homogeneous com-
ponents of f  a n d  g .  Since it ,E p* w e have f I g = (u d f)Au d  g) A C u lA [u ].

ii) It follows easily from  (i).

Lemma 3 .3 . L et I  be an  ideal o f  a rin g  A  an d  T I  a  proper homogeneous
ideal o f  R =R (A , I )  such that u E n .  T hen  uEET12 . M oreover i f  T1 is  maximal
and J=9J2R n ,  then uEJ— J 2 .

P ro o f .  If u ET1 2 , then u =  a,b , where a, and b, are homogeneous elements

of FDI with deg a,±deg b , = - 1 .  We may assume deg a,<0  fo r a ll j ,  so  a, uR ;

it fo llow s tha t u(1— a b , ) = 0  ( a E R ) .  B u t  u  i s  a  n o n  zero-divisor i n  R,

hence 1= abmTJJ a n d  w e  g e t  a  contradiction. Since, if  9JI is  maximal, 9J22

2 =1
is  the contraction of J 2 , th e  remaining p a rt follows.

From  now  on  le t A  denote a  r in g  an d  I  a n  ideal contained in  the  rad ica l
o f  A  unless otherwise specified.

Theorem 3.4 . L et R =R (A , I)  an d  G=G(A , I). Then:
i) G  is  a reg u lar (resp. locally  C. I.) rin g  if  an d  only  i f  so is R .

ii) I f  R  is a  regular (resp. locally  C. I.) ring, so  is A.

P ro o f . i) Since I  is contained in the radical of A , each h-maximal ideal 931 of
R  conta ins u  (lemma 3.1 (e)), hence by lemma 1.1 (ii) (resp. proposition 1.4) it
suffices to prove that R n  i s  a  regular (resp. C. I.) r in g  if  an d  on ly  i f  s o  i s  Ggi

f o r  a l l  h-m axim al idea l 9)1 o f  R  and T=FINJuR. Our thesis follows from [5],
Ow ,  17.1.8 and lemma 3.3 (resp. [6], theorem 3.5.1 and corollary 3.4.2).

ii) F or every maximal ideal in o f  A, R .  is  a  regular (resp. C. I.) local ring.
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Our thesis follows by applying [13], (21, D), theorem 51 (resp. [1], theorem  2)
to  the flat and local ring homomorphism o f lemma 3.2.

Remark 3.5. In  order to  prove (ii) of theorem 3.4, we do not need to assume
I  to be contained in  the  rad ica l o f A .  Even throughout th e  re s t o f  this paper
w e do not need such assum ption to descend f ro m  R  t o  A ; nevertheless, a s  it
allows u s  to  pass from  G  to  R, w e w ill keep it for the sake of sim plic ity . The
following example shows th a t if  I  is an  ideal not contained in  the radical of A,
it can  happen that G is regular, w hile A  is not even C. M.

Example 3.6. L et B =k[X , Y ], J= (X 2 , XY), 911=(X, 1—Y), A = BIJ a n d  I
=M I J. Using som e results of [23] it is not difficult to show tha t G(A,

Theorem 3.7. L et R=R(A , I )  an d  G=G(A, I). W e assum e th at G  is  a
C . M . ring. Then:

r (G )= r (R )r (A ).

Pro o f . T h e  ring s R  and  A  a re  C . M . too ([8 ], theorem  4.11). Since G=
R luR  a n d  u i s  a  n o n  zero-divisor belonging to each h-maximal ideal 3:11 o f  R,
w e g e t r(R,TA)=r(G gz) w here 91=- 911/uR ([7], (1.22)), h e n c e  b y  re m a rk  1.2, r(R)
=r(G).

Now le t m be a m axim al idea l o f  A .  W e  g e t  r(A,„) , r (R ..) by applying
[7], Satz 1.24 to the flat and local ring homomorphism o f lemma 3.2. A s  r(R,„.)
_ r(R ) our thesis follows.

Corollary 3 .8 . i )  T he ring G  is Gorenstein if  and only i f  so is R .
ii) I f  R  is  a Gorenstein ring, so is A.

Rem ark. In  [2 ] it is proved, w ith different m ethods, that r(G) r(A ) i f  G
is  a  C. M. ring  w h ich  is  a  f la t  A//-module (theorem 1.1) o r  if  (A , m) is  a local
ring and I  is  a n  m-primary ideal o f  A  (proposition 1.3).

Theorem 3 .9 .  L et R=R(A , I) and G=G(A, I). Then:
i) I f  G  is an  S„ ring, so is R .

ii) I f  R  is an  S„ ring, so is A.

Pro o f . i) It follows trivially from  proposition 2.2.
ii) Let be  a  prim e ideal o f  A .  T hen p* is  a  prim e ideal o f  R and ht (p)

=ht (p*) (lemma 3.1 (b)). Since the fibre o v e r  pA, o f  th e  f la t  a n d  lo c a l r in g
homomorphism R,. is a field (lemma 3.2 (ii)), we have depth (A 1,)--.=depth (R,.)
([13], (21.C), corollary 1 ). Therefore A  is  a n  S i ,  ring.

The converse of theorem 3.9 is  no t t r u e .  H ow ever w e rem ark that if  A  is
a n  S i  r in g , so  is  R .  T h is  is  a n  easy consequence o f  [18], theorem  1.5.

Example 3.10. ([20]) L e t  B-=k[X, Y , Z, W](x,y,z,w), I--=(Z 2 — W6 , 37 2 — XZ),
A=B/J. T h e n  A  is a 2-dimensional C . M . ring . If  p=(Y, Z , W )A  th en  G(A,
•-• k[X ](x)[1 7 , Z, W ]I(Z 2 , X Z ,Y 2 Z ,Y 4 )  is  no t a n  S i  r i n g .  Hence R(A, I)) is S i

but no t S2.
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I f  G(A , I )  is  a n  R n (resp. T n )  ring , in  gen era l it is  n o t tru e  th a t A  and
R(A , I )  a re  R „ (resp. T n )  ring.

Example 3.11. L e t  B = k [X , Y, Z ](x ,y ,z ), N =(X Y 2 , X Y  Z, X 2 Z 2)B ,  J=
(X — Z )B , A =B /N , I=J+N IN . T he  ideal I  is generated by a  non  zero-divisor
o f  A ,  th u s G=G(A , k [Y , Z ](y ,z )711(Z Y 2 , Y  Z 2 , Z 4) a n d  R =
R(A, Y , Z](x,y,z)[T, (1]1(X Y 2 , X Y  Z, X 2 Z 2 , X — Z — T U). T hen G  is
a n  R o r in g , b u t A  and  R  a re  not even To.

In  th e  theorem 3.13 we will give two sufficient condition in order that the
(resp. T n )  property descends from G  to R.

Lemma 3 .1 2 . Let R =R (A , I), p  a prim e ideal o f  A .  I f  there ex ists a
maximal ideal nt o f A  such that Itt'Dp and ht (m/p)-=ht (m)—ht (p), then ht (p*, u)
=ht (p*)+1.

Pro o f . Since R(A , 1 )(A-m)=R(A„„ we m ay assume A  lo c a l. By [211
proposition 15 and  lemma 9, we get :

ht (p*)—ht (p)=ht ((p*, u)/uR)=ht (p*, u)-1.

Theorem 3 .1 3 . Let R =R (A , I) and G=-G(A , I).
i) I f  R  is R n  (resp. T n )  ring, so is A.

ii) Assume G is an R n  (rasp. T n )  ring and, moreover, either of the follow-
ing conditions holds:

a) G  is an S n + i  rin g ;
b) For every prime ideal p o f A  there exists a maximal ideal In o f A  such

th at m p  and ht (m/p)=ht (m)—ht (p).
T hen R  is an R n  (rasp. T n ) ring.

P ro o f .  i )  F or every prime ideal p o f A  such that ht (p)_- _n, we have ht (p*)
so R o  i s  a  regular (resp. Gorenstein) r in g . O u r  thesis follows by applying

[13], (21.D), theorem 51 (resp. [24], p a r t  I , n. 2, theorem 1(2)) to th e  f la t an d
local ring homomorphism o f lemma 3.2.

ii) If the condition (a) holds, our thesis follows from proposition 2.3. Now
w e  assum e the condition (b). By corollary 1.3 (ii) it suffices to prove that for
every homogeneous prim e ideal l3 o f  R  with ht (q3) - n ,  th e  r in g  R % is regular
(resp. Gorenstein). I f  u 0 3  a n d  ht (43) n ± 1 , a s  in  p ro p o sitio n  2.3, we can
prove that 1 4  is regular (resp. Gorenstein). I f  u EE1J3 a n d  ht (q3) . n, by lemma
3.12, there exists a  homogeneous prime ideal 5:1 o f  R  such that oD(43, u) and
ht (0.) n + 1 . From what already shown R o , and hence R m, is  a  regular (resp.
Gorenstein) ring.

Remark. The condition (b) o f th e  theorem 3.13 is satisfied if  A  is  a C. M.
r in g . T h e  example 3.10 shows that it is independent from the condition (a).

Corollary 3 .1 4 . I f  G  is  a reduced (rasp. normal, n-Gorenstein) ring, so are
R  and A.
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Remark 3 .1 5 .  I f  A  is  a n  R o r in g , so  is  R .  T h is  fact follows easily from
[18], theorem 1.5, [13], (21.D), theorem 51 a n d  lemma 3.2. T h e  following ex-
ample exhibit a  regular r in g  A  w hich has a  Rees r in g  R n o t R1.

L et A =k [X , Y](x,y), Y2)A. Then R(A, A[T1, T y , II]1(X 2 -7 ' 1U,
37 2 -7 ',U ) localized at (x, y , u) is  no t regu la r. M oreover G(A,
is not even 120.

Remark 3 .1 6 . L et 2  be one of the  following properties : regularity, locally
C. I., type less than  o r equal to  n, Gorenstein, S„, S n + i  a n d  R n , S n + 1  a n d  T7,.
E very th ing  proved  i n  th is  p a p e r  w ith  reg a rd  to  th e  descent o f  2  from  G=
G(A, I )  to  A  under th e  assumption " I  contained in  the radical of A " holds also
under th e  assumption "A  is  a  graded ring and I  is contained in the homogeneous
radical of A" (I not necessarily homogeneous). In  fact w e assume th a t  G has 2.

1) In  order to  prove that A  h a s  2  it su ffices to  p rove  tha t A . has 2  for
every h-maximal ideal m o f  A (see section 1). F o r every such m let G ( A m )  the
localization o f  G  w ith  respect to  the multiplicative set A—m. S in ce  /cm  and
G ( A _. ) =G(Am, IA„,) has 2 ,  from  w hat w e have already proved in  th e  c a s e  " I
contained in  the  rad ica l o f A", it follow s that A . has 2.

2) L e t R= R(A, I). F o r every homogeneous prim e ideal 43 of R containing
u , R  has 2 .  O n the  o ther hand a  homogeneous prime ideal o f  R  not contain-
ing  u  is  o f  th e  kind I)* with prim e ideal o f  A .  F ro m  1 ) it  fo llo w s th a t A ,
h a s  2 .  T he existence  of a  fla t and  local ring  homomorphism having
as fibre over pA l, a field, assures th a t  Ro.  has 2  ([1 ], theorem 2, [7], Satz 1.24,
[13], (21.D), theorem 5 1 ) . Hence R has P  too.
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