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Introduction

Let A be a commutative noetherian ring, I an ideal contained in the radical
of Aand G=G(A, I\= @ I*/I™*** the form ring of A relative to I. The problem

n20
of the descent of a property from the ring G to the ring A was first tackled
by Krull; he proved the following classical result: if G is a normal ring, so is
A. Later on Hochster and Ratliff proved a similar result with respect to the
Cohen-Macaulay (C.M.) property ([8], theorem 4.11). In the proof of the latter
theorem the Rees ring R=R(A, )= 621" plays a fundamental role because
ne

of its close links with G and A. Indeed G is a quotient of R by a non zero-
divisor, while R and A are connected by flat and local ring homomorphisms.

In this paper we prove that the following local properties of rings descend
from G to A: regularity, locally complete intersection (C.L), S,, Sn+: and R,
Sn+1 and T,. We show that the type of A is less than or equal to the type of
G ; in particular if G is a Gorenstein ring, so is A. Moreover we give an
example which shows that the properties R, and T, do not pass from G to A
without the further assumption that S,.; holds.

The first section deals with basic facts on graded ring. More precisely we
prove that if S is a graded ring such that for all homogeneous prime ideals p,
the property S,(resp. R,, T,, locally C.L) holds for S,, then the same holds for
S. This kind of problem was raised by Nagata in [14] with respect to the C. M.
property and investigated by several authors ([4], [8], [11], [12], [15], [22]).

In the second section we study the behaviour of the properties S,, R, T
in the passage from S/xS to S, where S is a graded ring and x a non zero-
divisor belonging to the homogeneous radical of S. Precisely we prove that if
Sn(resp. S,+: and R,, S,+; and T,) holds for S/xS, then the same holds for S.
As corollaries of the above results we get in an unified version some known
statements concerning the adjunction of an indeterminate (polynomial or power
series).

Finally in the third section we prove that G is a regular (resp. locally C.1,
Gorenstein) ring if and only if such is R and the type of G is equal to the type
of R; moreover, if S,(resp. S,+: and R,, S,+; and T,) holds for G, the same
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holds for R, but the converse is not necessarily true. On the other hand each
of the above-mentioned properties descends from R to A.

We wish to thank Prof. G. Valla for his kind encouragement and suggestions
during the preparation of the present paper.

1. Terminology and basic results on graded rings

All the rings considered in this paper are assumed to be commutative, with
1 and noetherian.

Let S= EIEBZS,, be a graded ring; since S is noetherian, S is a finitely gene-
n

rated S,-algebra (it is an easy consequence of [15], chapter II, proposition 3.2).

A homogeneous ideal m of S is called h-maximal if m is maximal among
homogeneous ideals of S, that is the subring of the elements of degree 0 of
S/m is a field k£ and either S/m=~Fk or S/m=Fk[T, T-'], where T is transcendental
over k. The intersection of all the h-maximal ideals of S is called homogeneous
radical of S. 1f S has a unique h-maximal ideal, then S is called h-local ring.
Clearly if S, is a local ring, then S is an h-local ring.

Let p be a prime ideal of S. We will denote by p’ the greatest homogeneous
ideal of S contained in p. Then p’ is again a prime ideal. Moreover, if S, is
the homogeneous localization of S at the multiplicative set of all the homoge-
neous elements of S not in p, then (S¢», »’Scp») is an h-local ring.

The results of this section show that several properties hold for S, if and
only if they hold for S,.

Recall a few definitions, most of which can be found for example in [5], [13].

A local ring A is called complete intersection (C.1) if its completion A is a
homomorphic image of a regular local ring modulo a regular sequence. A ring
A (not necessarily local) is called locally C. 1. if A, is C.1. for all prime ideals
p of A.

Let (A, m, k) be a local d-dimensional C. M. ring. The (C. M.) type of A is
the number »(A)=dim, Exté(k, A). If A is a C.M. ring (not necessarily local)
the global type of A, still denoted by »(A), is the supremum of the types of the
local rings A, as p ranges through the prime ideals of A. If r(4)=1, then A4
is said to be a Gorenstein ring.

For an ideal I of a ring A we denote by gr(/) the grade of I, that is the
common length of all maximal regular sequences in I. If (A4, m) is a local ring,
depth (A) means the grade of m.

A ring A is called S, ring if depth (4,)=min (n, ht (p)) for all prime ideals
p of A.

A ring A is called R, (resp. T,) ring if A, is a regular (resp. Gorenstein)
ring, for all prime ideals p of A such that ht(p)=n.

A ring which is both S, and T,-, is called n-Gorenstein ring.

Lemma 1.1. Let S be a graded ring and » a non homogeneous prime ideal
of S. Then:
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i) ht(p)=ht(p")+1 and depth(S,)=depth(S,)+1.
ii) The ring S, is regular (resp. C. M., v(S,)=n, Gorenstein) if and only if
such is Sy.

Proof. The first part of ii), stated in a different way, is in [11], theorem
2.1 and [15], chapter III, theorem 2.3. The remaining part of the lemma is in
[4], corollary 1.1.3.

Remark 1.2. From the lemma 1.1 (ii) and [7], Satz 6.16 it follows that the
type of a graded C.M. ring S is the supremum of the types of the local rings
Swn as m ranges through the h-maximal ideals of S.

Corollary 1.3. Let S be a graded ring. Then:

i) Sisan S, ring if and only if for every homogeneous prime ideal q of
S, depth (S;)=min( n, ht(q)).

i) S is an R,(resp. T,) ring if and only if for every homogeneous prime
ideal q of S such that ht (0)<n, the ring S, is regular (resp. Gorenstein).

Proof. 1) Let p be a non homogeneous prime ideal of S. Then, by lemma
1.1 (i), we have: depth (S,)=depth (S,)+1=min (n, ht (p'))+1=min (n, ht (p)).

ii) Let p be a non homogeneous prime ideal of S such that ht (p)<n. Then
ht (p")=ht (p)—1<n, hence S, is a regular (resp. Gorenstein) ring and, by lemma
1.1 (ii), S, is regular (resp. Gorenstein) too.

The converse of i) and ii) is trivial.

The following proposition has been inspired by the proof of the proposition
4,10 in [8].

Proposition 1.4. Let S be a graded ring and p a prime ideal of S. Then
S, s C. I. if and only if so is Sy.

Proof. The condition is clearly necessary. Conversely, let X be an in-
determinate of degree 0. For every prime ideal p of S, the ring homomorphism
Sy — S[XJystxy is flat and local and the fibre over pS, is a field. Hence S, is
C.L if and only if so is S[XJ,stx7 ([1], theorem 2).

Now we assume that p is non homogeneous. We can replace S by the
homogeneous localization S* of S[X] at pS[X]. In fact, since ht (p’S[X])=
ht (p")=ht (p)—1=ht (pSCX])—1, »’S* is the only h-maximal ideal of S*, thus
the hypothesis on p’ still holds for p’S*. From now on S, p, p’ will respectively
mean S*, p*, p’S*,

Let S, be the completion of S, and S the A-local ring S(%S‘o. Since S/p’

=k[T, T™*], we have S/p'S=S/p’ (SX)S,Ek[T, T-']. Thus p’S is the h-maximal
]

ideal of S and the canonical ring homomorphism S, — S, is flat and local and
its fibre over p’S, is a field. Then S,5 is C.L ([1], loc. cit.). The ring homo-
morphism S, — S;5 is flat and local too, hence if S,5 is C.1, so is S,. There-
fore replacing S by S we can assume that S, is a complete local ring with
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infinite residue field 2 and S is a homomorphic image of a regular ring. Then
the C.L-locus of S is an open set ([5], IV, 19.3.3). Let I be the defining radical
ideal of the non C.I-locus. If I is a proper ideal, then it suffices to show that
I is homogeneous to get a contradiction.

For every unit x in S, we have an Sj,-automorphism of S which takes each

i=-

form F of degree d to x?F. Let .Zq)pF,-EI (where each F; is a form of degree
7). We choose units x_,, ---, x, in S, with distinct images in & (% is infinite).
For-all j, —p=<j=<q, we have i_é_px}F,E[, because I is invariant under every
automorphism on S. Now det(x})zi(jf[px;")-(il;[j(xi—xj)) is a unit in S,.

Therefore each F,e1.

Remark. Since the considered properties are stable under localization, the
results of lemma 1.1 and proposition 1.4 can be expressed as follows :

A graded ring S is regular (resp. locally C.I., Gorenstein, C. M.) if and only
if so is Su for every h-maximal ideal m of S.

2. Relations among properties of a graded ring S and a quotient ring S/xS

Lemma 2.1. Let I be an ideal of a ring A and x an element of A such
that J=(I, x) is a proper ideal. If v is a minimal prime ideal over ], then
depth (A,)<gr {A,)+1.

Proof. Since JA, is pA,-primary, we have depth (A,)=gr (JA,). On the
other hand gr (JA,)<gr (IA,)+1 ([9], theorem 127).

Proposition 2.2. Let S be a graded ring, x a non zero-divisor (not neces-
sarily homogeneous) belonging to the homogeneous radical of S, T=S/xS. If T
is an S, ring, then S is too.

Proof. By corollary 1.3 (i) it is enough to show : depth (S;)=min (n, ht (q))
for every homogeneous prime ideal ¢ of S. If xeq, we have: depth(S,)=
depth (T';)+1=min (n, ht (d))+1=min (n, ht (3)—1)+1=min (n, ht(q)) where g=
q/xS. Now we suppose that xe&q. Then (q, x)#S. Let p be a minimal prime
over (q, x). From lemma 2.1 and our hypothesis on T it follows: depth (S,)=
gr (qS,)=depth (S,)—1=depth (T5)=min (n, ht (p))=min (n, ht (q)).

If S/xS is an R, ring, then S is not necessarily an R, ring ([5], 1V, 5.12.6).

Proposition 2.3. Let S be a graded ring, x a non zero-divisor (not neces-
sarily homogeneous) belonging to the homogeneous radical of S, T=S/xS. If T
is an S+, and R, (resp. S,+y and T,) ring, so is S.

Proof. By proposition 2.2, S is an S,4, ring. It suffices to prove that S,
is a regular (resp. Gorenstein) ring, for every homogeneous prime ideal q of S
such that ht (q)=<n (corollary 1.3 (ii)). If x=q (q not necessarily homogeneous)
and ht(q)=<n+1, we put g=q/xS, then ht(§)<n and T, is regular (resp. Gorens-
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tein). Since T=S,/xS,, from [5], Oy, 17.1.8 (resp. [3], corollary 2.6), we get
S, is regular (resp. Gorenstein). If xeq (¢ homogeneous) and ht (q)=n, let p
be a minimal prime ideal over (q, x) and p=p/xS. We have: depth(TH=
min (n-+1, ht (5)). If ht(p)=n-+1 using lemma 2.1 we get the following con-
tradiction :

n+1=depth (T5)=depth (S,)—1=gr (@S,)=gr (@Sy)=ht(=n.

Then ht (f)<n-+1 and ht (p)<n-+1. Since x=p, from the first part of the proof
if follows that S,, and hence S,, is regular (resp. Gorenstein).

Corollary 2.4. If T is a reduced (vesp. normal, C. M., Gorenstein, regular)
ring, so is S.

Proof. A ring is reduced (resp. normal, C.M., Gorenstein, regular) if and
only if it is S; and R, (resp. S, and R,, S, for all n, T, for all n, R, for all n).

Remark. Propositions 2.2 and 2.3 yield the result that polynomial adjunction
preserves the following properties: S,, Sp+1 and R,, n-Gorenstein, and hence
reducedness, normality, C. M., Gorenstein, regularity. Thus we get in an unified

version several known statements concerning the adjunction of an indeterminate
(polynomial or power series).

Remark. The propositions 2.2 and 2.3 hold in particular when S is a tri-
vially graded ring and x belongs to the radical of S. Hence the first of these
results is a slight improvement of [5], IV, 5.12.4 and [10], proposition 1.8, the
latter (with respect to the T, property) of [19], proposition 3.

3. Relations among properties of a ring A, the form ring and the Rees
ring of A with respect to an ideal 7

Let A be a ring and I=(a,, -+, a,) an ideal of A.
Denote by R=R(A, )= EE% I™ (where I"=A for n=0) the Rees ring and

by G=G(A, )= 6901"/1"“ the form ring of A with respect to /. Then R is
nz
the subring of A[T, T-'] consisting of all finite sums iqu ¢;T* with ¢;eIt. 1t
==p
results R=A[a,T, -, a,T, T™¥], thus R is a noetherian graded ring. If we

put u=T"*, the element u is a non zero-divisor in R.
If Jis an ideal of A, we denote by /* the homogeneous ideal JALT, uJN\R;

it is clear that J*:{i_i:pciTi/CiEIimj}°

Lemma 3.1. Let I, J be ideals of a ring A, p a prime ideal of A. Then:

a) R(A/J, I+]/])=R(A, )/J* ([18], lemma 1.1).

b) The ideal p* of R(A, I) is prime and ht(p*)=ht(p) ([18], theorm 1.5
and [16], remark 3.7).

c) If pDI, then (p*, u) is a prime ideal of R(A, I) and ht (p*, u)=ht (p*)+1
([17], remark 2.2.6 (ii)).
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d) Let B be a homogeneous prime ideal of R(A,I). If u&P, then P=
BNA)* ([17] remark 2.2.5 (i)).

e) The h-maximal ideals of R(A, I) are in one-to-one correspondence with
the maximal ideals of A: precisely they are (wm*, u) if mDI or m* if mDI.

f) G(A, D=R(A, I)/uR(A, I) ([18], theorem 2.1).

Proof of e). If mdI, then m and / are comaximal. Thus R(A, I)/m*=
R(A/m, I+m/m)=A/m[ T, T-'] hence m* is h-maximal. Otherwise if mDI, the
components of degree :#0 of (m*, u) are equal to I* so R(A, I)/(m*, u)=A/m
and (m*, u) is h-maximal. Conversely, let M be an h-maximal ideal of R(A, I).
Then MNA=m is maximal in A. If mD/, then mR(A, I)=m* (for m~\Ii=ml?),
so MDOm*. If mDJ, then MC(im*, u). Hence M=m* or M=(m*, u).

Lemma 3.2. Let I be an ideal of a ring A, » a prime ideal of A and R
=R(A, I). Then:

i) Rp':Al:u]M[uJ-

ii) The ring homomorphism A,— R, induced by the canonical ring homomor-
phism A—Alu], is flat and local, moreover the fibve over pA, is a field.

Proof. 1) We have A[u]JCR and p*NA[uJ=pA[u], hence ALulysuiC Ry
Now let f/g= R, and let d be the greatest degree of the homogeneous com-
ponents of f and g. Since uep* we have f/g=(uf)/(ug)e Alul,au

ii) It follows easily from (i).

Lemma 3.3. Let I be an ideal of a ring A and WM a proper homogeneous
ideal of R=R(A, I) such that ueM. Then u&M®. Moreover if M is maximal
and J=MRy, then uesJ—J%

Proof. 1f u=M?, then u= jzﬂa ;b; where a; and b; are homogeneous elements
of M with deg a;+deg b;=—1. We may assume deg a;<0 for all j, so a;EuR;
it follows that u(l—éla}bj)zo (a;eR). But u is a non zero-divisor in R,
hence 1= fi ajb;€M and we get a contradiction. Since, if M is maximal, M?
is the contraction of J?, the remaining part follows.

From now on let A denote a ring and I an ideal contained in the radical
of A unless otherwise specified.

Theorem 3.4. Let R=R(A,I) and G=G(A, I). Then:
i) G is a regular (resp. locally C.1.) ring if and only if so is R.
ii) If R is a regular (resp. locally C. L) ring, so is A.

Proof. 1) Since I is contained in the radical of A, each h-maximal ideal M of
R contains u (lemma 3.1 (e)), hence by lemma 1.1 (ii) (resp. proposition 1.4) it
suffices to prove that Ry is a regular (resp. C.L) ring if and only if so is Gq
for all h-maximal ideal M of R and N=M/uR. Our thesis follows from [5],
Oy, 17.1.8 and lemma 3.3 (resp. [6], theorem 3.5.1 and corollary 3.4.2).

ii) For every maximal ideal m of A, R.. is a regular (resp. C.L) local ring.
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Our thesis follows by applying [13], (21, D), theorem 51 (resp. [1], theorem 2)
to the flat and local ring homomorphism of lemma 3.2.

Remark 3.5. In order to prove (ii) of theorem 3.4, we do not need to assume
I to be contained in the radical of A. Even throughout the rest of this paper
we do not need such assumption to descend from R to A; nevertheless, as it
allows us to pass from G to R, we will keep it for the sake of simplicity. The
following example shows that if I is an ideal not contained in the radical of A,
it can happen that G is regular, while A is not even C.M.

Example 3.6. Let B=Fk[X, Y], J=(X?% XY), M=(X, 1-Y), A=B/J and I
=M/J. Using some results of [23] it is not difficult to show that G(A, I)=k[Y].

Theorem 3.7. Let R=R(A,I) and G=G(A, I). We assume that G is a
C.M. ring. Then:
r(G)=r(R)zr(A).

Proof. The rings R and A are C.M. too ([8], theorem 4.11). Since G=
R/uR and u is a non zero-divisor belonging to each h-maximal ideal I of R,
we get (Rp)=r(Gq) where N=M/uR ([7], (1.22)), hence by remark 1.2, »(R)
=r(G).

Now let m be a maximal ideal of A. We get r(An)=r(Ru) by applying
[7], Satz 1.24 to the flat and local ring homomorphism of lemma 3.2. As 7(Rqe)
=<r(R) our thesis follows.

Corollary 3.8. i) The ring G is Gorenstein if and only if so is R.
ii) If R is a Gorenstein ring, so is A.

Remark. In [2] it is proved, with different methods, that »(G)=»(A) if G
is a C. M. ring which is a flat A/I-module (theorem 1.1) or if (A4, m) is a local
ring and [ is an m-primary ideal of A (proposition 1.3).

Theorem 3.9. Let R=R(A, I) and G=G(A, I). Then:
i) If Gisan S, ring, so is R.
ii) If R isan S, ring, so is A.

Proof. 1) It follows trivially from proposition 2.2.

ii) Let p be a prime ideal of A. Then p* is a prime ideal of R and ht (p)
=ht (p*) (lemma 3.1 (b)). Since the fibre over pA, of the flat and local ring
homomorphism A, — R,. is a field (lemma 3.2 (ii)), we have depth (A,)=depth (R.)
([13], (21.C), corollary 1). Therefore A is an S, ring.

The converse of theorem 3.9 is not true. However we remark that if A is
an S, ring, so is R. This is an easy consequence of [187], theorem 1.5.

Example 3.10. ([20]) Let B=k[X, Y, Z, Wlix.v.z.w), J=(Z*—W?" Y?—X2Z),
A=B/]. Then A isa 2-dimensional C.M. ring. If p=(Y, Z, W)A then G(A, p)
=k[X]xlY, Z, W1/(Z%, XZ, Y?Z, Y*) is not an S, ring. Hence R(A4, p) is S,
but not S,.
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If G(A, I)is an R, (resp. T,) ring, in general it is not true that A and
R(A, I) are R, (resp. T,) ring.

Example 3.11. Let B=Fk[X, Y, Zlxv.2», N=(XY? XY Z, X*Z®)B, J=
(X—2Z)B, A=B/N, I=J+N/N. The ideal I is generated by a non zero-divisor
of A, thus G=G(A, D= A/ILT]=kLY, Z]o.»[T1/(ZY? Y Z?% Z*) and R=
RA, D=k[XY, Z)ixv.2o LT, U/(XY? XY Z, X2Z% X—Z—TU). Then G is
an R, ring, but A and R are not even T,.

In the theorem 3.13 we will give two sufficient condition in order that the
R, (resp. T,) property descends from G to R.

Lemma 3.12. Let R=R(A,I), p a prime ideal of A. If there exists a
maximal ideal m of A such that mDp and ht (m/p)=ht (m)—ht (p), then ht (p*, u)
=ht (p*)-+1.

Proof. Since R(A, I¢q-my=R(An, [Ay), we may assume A local. By [21],
proposition 15 and lemma 9, we get:

ht (p*)=ht (p)=ht ((p*, u)/uR)=ht (p*, u)—1.

Theorem 3.13. Let R=R(A, I) and G=G(A, I).

i) If R is R, (resp. Ty) ring, so is A.

ii) Assume G is an R, (resp. T,) ring and, moreover, either of the follow-
ing conditions holds:

a) G is an Spv1 Ting;

b) For every prime ideal p of A there exists a maximal ideal m of A such
that mDOp and ht (m/p)=ht (m)—ht (p).
Then R is an R, (vesp. T,) ring.

Proof. i) For every prime ideal p of A such that ht (p)=n, we have ht(p*)
=n, so R, is a regular (resp. Gorenstein) ring. Our thesis follows by applying
[13], (21.D), theorem 51 (resp. [24], part I, n. 2, theorem 1(2)) to the flat and
local ring homomorphism of lemma 3.2.

ii) If the condition (a) holds, our thesis follows from proposition 2.3. Now
we assume the condition (b). By corollary 1.3 (ii) it suffices to prove that for
every homogeneous prime ideal P of R with ht (B)=<n, the ring Ry is regular
(resp. Gorenstein). If ueP and ht(P)=<n-+1, as in proposition 2.3, we can
prove that Rg is regular (resp. Gorenstein). If u&P and ht (P)<n, by lemma
3.12, there exists a homogeneous prime ideal Q of R such that QD(B, u) and
ht (Q)<n-+1. From what already shown Rg, and hence Ry, is a regular (resp.
Gorenstein) ring.

Remark. The condition (b) of the theorem 3.13 is satisfied if A is a C. M.
ring. The example 3.10 shows that it is independent from the condition (a).

Corollary 3.14. If G is a reduced (resp. normal, n-Gorenstein) ring, so are
R and A.
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Remark 3.15. If A is an R, ring, so is K. This fact follows easily from
[18], theorem 1.5, [13], (21.D), theorem 51 and lemma 3.2. The following ex-
ample exhibit a regular ring A which has a Rees ring R not R,.

Let A=k[X, Y]ix.v», [=(X? Y®A. Then R(A, )= A[T,, T,, U]/(X?*—T,U,
Y?—T,U) localized at (x, y, u) is not regular. Moreover G(A, )= A/I[T,, T.}
is not even R,.

Remark 3.16. Let @ be one of the following properties : regularity, locally
C.L, type less than or equal to n, Gorenstein, S;, S,+: and R,, Sp4+; and T,.
Everything proved in this paper with regard to the descent of @ from G=
G(A, I) to A under the assumption “I contained in the radical of A” holds also
under the assumption “A is a graded ring and [ is contained in the homogeneous
radical of A” (I not necessarily homogeneous). In fact we assume that G has .

1) In order to prove that A has @ it suffices to prove that A. has @ for
every h-maximal ideal m of A (see section 1). For every such m let G-y the
localization of G with respect to the multiplicative set A—m. Since ICm and
Gu-m=G(An, IA,) has @, from what we have already proved in the case “I
contained in the radical of A”, it follows that A. has .

2) Let R=R(A,I). For every homogeneous prime ideal 8 of R containing
u, R, has @. On the other hand a homogeneous prime ideal of R not contain-
ing u is of the kind p* with p prime ideal of A. From 1) it follows that A,
has @. The existence of a flat and local ring homomorphism A,— R, having
as fibre over pA, a field, assures that R, has @ ([1], theorem 2, [7], Satz 1.24,
[13], (21.D), theorem 51). Hence R has & too.
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