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Introduction

Let G be a connected real semisimple Lie group with Lie algebra g. For a
Cartan subalgebra § of g, we denote by HY the corresponding Cartan subgroup
of G. Let b be a Cartan subalgebra of g such that its toroidal part has the
possible maximal dimension, and put B=H®. Denote by 0} the space of linear
forms A of b into C such that Boexp X—exp A(X)eC (X<b) defines a unitary
character of B, and by 0% its subset consisting of regular elements. When
every root of (g., b.) (or simply of b) is imaginary, we call b compact. In that
case, Harish-Chandra proved the existence and the uniqueness of a certain kind
of invariant eigendistribution on G for A€b%’. When B is compact, it is char-
acterized as a unique tempered invariant eigendistribution which coincides on
BANG’ with a certain function, where G’ denotes the set of all regular elements
in G. We define the same kind of invariant eigendistribution 7, for Aeb}’
evenwhen some roots of b are not imaginary (4=, in the above case, and
for the exact definition, see below).

The purpose of this paper is to give a global explicit formula of the
invariant analytic function 7% on G’ corresponding canonically to =, We
assume that G is acceptable in the sense of Harish-Chandra [2(b), § 18] for
convenience. But this is not an essential restriction, and the essential assump-
tion we made here is the connectedness of G. Our main results are Theorems 1
and 2 in §5 which give the explicit formulas of the functions z(h) on H'N\G’
for every .

When B is compact, G has the discrete series representations, and their
characters are equal to @ ,’s except the known multiplicative sign +1. Thus
we get the explicit character formula for these representations. Many researches
have been made in this direction, for instance, Hecht [3], Martens [6], Midori-
kawa [7(a), (b)], Schmid [8(a), (b)] and Hirai [5(a), (b), (e)] (cf. also Arthur [10]).
The first two authors treat essentially the holomorphic discrete series, and the
next two authors treat some type (or types) of linear groups.

The method of the present paper goes along the same line as in the previous
paper [5(e)]. Thus we apply the necessary and sufficient condition in [5(c)] for
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that a given invariant analytic function on G’ defines canonically an invariant
eigendistribution on G.

Let us define exactly the invariant eigendistribution =, for A€b6¥. Let P(f)
be the set of positive roots of ) with respect to a lexicographic order, and p
half the sum of all roots in P(§). We put for he HY,

ACh 5 POO)=¢ (I Liepiy(1—,(R)7),

where £, and &, denote the character of H® canonically corresponding to o and
7 (cf. [2(b), §18]). We denote by W(h.) the Weyl group of g. acting on ¥, and
by We(h) (resp. Wg(H"Y) the group of transformations on 1) (resp. on H?) obtained
as the restrictions of the inner automorphisms of g (resp. of G) leaving 1§ (resp.
HY) invariant. Then W4(h) is a subgroup of W(§.), and W4(b) can be canonically
identified with W4(B) because B is connected. We fix P(b) and put

L= 3 sen(eu®) (B,

where sgn(s) denotes the usual sign of seW(b)CW(b,).
We define =, as a unique invariant eigendistribution on G with the follow-
ing properties :

1) zub)=4%0b; P(6)L4b) (be BNG),
2) A%h; POY)xy(h) is bounded on H'~NG’ for every .

Note that the existence and the uniqueness of such a distribution are guaranteed
by the discussions in [5(d), §§8-9]. In the case where the center Z; of G is
finite, Harish-Chandra defined the temperedeness of a distribution on G and also
gave a criterion for an invariant eigendistribution on G to be tempered. When
its infinitesimal character is regular, this condition reduces to the same thing as
2) above (for all these, see [2(d)]). In analogy of this fact, we call in this paper
the distribution 7, “ tempered ” evenwhen Z; is no longer finite, for the sake
of simplicity. Thus the result of this paper is, in short, the presentation of
global formulas of all “tempered” invariant eigendistributions on G of the
possible highest height (cf. [5(d)]) with regular infinitesimal characters. In
such distributions, the characters of the discrete series representations are the
most important ones.

Now let us add one word about the background of the present work.
Midorikawa’s formula in [7(c)] of discrete series characters for some types of
simple groups (of class I in the classification of the present paper) was very
impressive and encouraging for the author of the present paper when he first
knew it on the occasion of a meeting on harmonic analysis in Japan, 1975,
Summer. Even though his formula gives only a sum of sgn(w)®,, over
weW(b,) (in his case, w/ belongs to 0% for any A€} and weW(b,)), it makes
the author possible to imagine how the general formulas must be. In fact he
draws up the present formulas in Theorems 1 and 2 from the above Midorikawa’s
one and the formulas for Sp(n, R) in [5(e)] and for SO(p, ¢) (not published)
explicitly calculated.
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We call a simple root system of class | if it is of type A;, Dy,, E; Es or
Gy, of class 11 if it is of type B, (n=2), C, (n=3) or F,, and of class 1II
otherwise. A root system is called of class I-IIl if any of its simple component
is of class I or II. Let A be a connected component of H% We denote by
2r(H) (resp. Xr(A)) the root system consisting of real roots of § (resp. those
such that §,(h)>0 for heA). Then every simple component of Xz(A) is of
class I or Il if g has a compact Cartan subalgebra and especially if G has a
compact Cartan subgroup. The formula of the function #'=4%/% on A is given
by means of Xr(A), and hence varies on HY according to its connected com-
ponent A. It is simple when Xz(A) is of class I-III, but becomes complicated
when such is not the case.

Put Y=34(A), P=Yr(A)NP(), and let W(X) be the Weyl group of X, and
M(P) the set of all maximal orthogonal systems in P. Assume that g has a
compact Cartan subalgebra and that Y is of class I. Then the formula is given
as follows (§5, Theorem 1). Take the unique standard element F in M(P)
(§1.7), and let v be the Cayley transformation of g, corresponding to F (§ 2.2).
Then the Cartan subalgebra 5 =yvu(§.) g is compact (§2.3). Put Ay=
{he A; &(h)=1(as2)} and )= esRH,. Then he A is decomposed uniquely
as h=hyexp X with hye Ay, XEh,.

Theorem. Put =4 and PO)=vpPN). If a tempered invariant eigen-
distribution wm is given on B as A°n'={, for A€V, then it is given on ACH"
as follows:

(e din ) h)=(—1)#" 3 > sgn(s)Y'(h; F, u, sd),

SEW G (L) ueW (X1

where

ek(h)=sgn { Hh(l_éa(h)_l)}r I(F)={ueW(); uFCF\J—F},
)

aeXp(

Y'(h; F, u, /1)=sgn{rle'IF(/1, vFr)}EA(hy)rgexp{—I(ur)(X)I [(A, ver)I /1717,

and the second sum runs over any fixed complete system of representatives of

W(2)/I(F).

We can understand that this formula is given essentially by means of M(P)
because W(X)/I(F) corresponds bijectively onto M(P) in such a way that
ul(F)y—»(uF\Y—uF)NP.

When 2 is no longer of class I, the formula of 4%z’ on A is given essentially
in the same but much more complicated manner (§5, Theorem 2). Note that in
this case M(P) contains different types of orthogonal systems and even more we
are obliged to use the set M°(P) of certain ordered orthogonal systems in P
(§1.6).

The contents of this paper are arranged as follows. In §1, some properties
of root systems are studied, especially those of orthogonal systems and strongly
orthogonal systems of roots. In §2, we study the relations between Cartan
subgroups and also between their connected components. In §3, we define
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certain fundamental functions Y, Z, Y’ and Z’ on ACH® by means of Jx(A),
and study their properties using results in §§ 1-2. Section 4 is devoted to recall
the fundamental results in [2(d)] and [5(c)] and prepare some notations. In §5,
the explicit formulas for #=4%’ are given on every ACH® by Theorem 1
when 2'z(A) is of class [-1l, and by Theorem 2 in general. The definitions and
the notations necessary to understand these formulas are given in §§1.2, 1.5,
1.7, 2.1, 2.2, 25, 3.1, 4.1 and 4.3.

Our proof of these theorems is reduced to prove that the given system of
functions &% satisfies the conditions (a), (b), (¢) and (d) in §4. In §6, we outline
this proof, and show that the conditions (a), (b) and (d) are satisfied. The
condition (c) connects the function #%] A with a neighbouring one #%*|A* with
a€3g(A), where A¢ denotes the connected component of H' containing
{heA; &.,(h)=1}. The proof of this condition is given in §§7-9. We treat in
§ 8 the case where Xz(A) is of class I-IIl and in §9 the general case.

The formula of #% on ACH" in §5 are valid for all regular 4 at the same
time, and is the most reduced ones when we consider z/(h) as a function of
two variable 4€0% and he ANG’ in the sense that there exists no cancellation
between the summands in the formula. However fix a A<€¥b} and consider
ny(h) as a function of a one variable h. When JXz(A) is of class I-III, the
formula for it in Theorem 1 remains also to be reduced, but when Xz(A)
contains simple components of class II, the formula in Theorem 2 can contain
the terms cancelling out each other. In fact, as is known, the reduced
expression of m/(h) in this sense depends on the Weyl chamber of 6}’ containing
A, or more exactly the Wg(b)-orbit © of the Weyl chambers. Therefore in
this point of view, we may have #(W(b,)/W (b)) different reduced expressions
of z/i(h) according to the orbit ®=> /4. However the differences are very minor
when X p(A) is of class I-IIL

In §6 of [5(e)], all these reduced but complicated expressions are given for
Sp@3, R), and in § 9 of that paper, it is shown for Sp(n, R) how the overwhelm-
ing complexities come out when we tried to give the reduced expression for every
orbit © separately (8(W(0,)/Ws(8)=2" in this case). Thus the author realized
that it is really difficult to write down the reduced expression for each @ in a
reasonably simple form. In this way, he was lead to study a formula valid for
all /1 expressed essentially by the terminologies of root systems and various
Weyl groups, even if it contains some cancellation when /A is fixed. (Recall the
multiplicity formula of weight of Kostant or that of K-multiplicity of Blattner.
They contain always negative terms.) In other point of view, such a formula
has some adventages, for exemple, when we consider the important sum
> sgn(w)w, 4 over {weW(®,); wAdsb}'}.

We know the simple character formula for the holomorphic discrete series
(this corresponds to a special ©). When G is simple and has such series, Yr(A)
contains simple components of class Il for some A if and only if G is locally
isomorphic to Sp(n, R). For G=Sp(n, R), we have shown in [5(e), § 9] that
this simple formula can be deduced easily from the general formula valid for
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all 4, which is essentially the same thing for G as that in Theorem 2 in the
present paper.

Afterwords we added Appendix on this point.
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§1.

Elementary facts about root systems

For the later uses, we collect in this section some elementary facts about
root systems, especially on the orthogonal systems of roots.

1.1. Let X be a root system. We put for ac X,

(LD Ye={re2;rla}.

If X is simple, the type of XY depends only on whether « is a short root or
a long root. The correspondence between the type of X and that of 3¢ is

given in [5(d), Remark 4.1]. Since we will quote it frequently, let us transcribe
it here.

s |4 | B o D. | E|E|E|F G,
1 (n=2) (nz2) | (n=3) |
Buak A® | Ca, Co AP
2| An, D,_.,+ A, As| Dg| E;
Bui | Coyb A® B AP
Table 1.1.

(In this table, the notations A_;, A, etc. stand for 0; A, A denote the root
systems of type A, consisting of long roots or short roots respectively ; B;=A®,
C,=A{", D,=0, D,=A,+A,. For B,, C,, F, and G,, the upper column for X*
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is the case where « is long and the lower one is the case where «a is short.)

1.2, Orthogonal systems. We denote by W(X) the Weyl group of a root
system X, by P the set of positive roots in X with respect to an order P in Y
and by II the set of simple roots. Here we understand that Y is a subset of a
Euclidean space V, and P in % is induced from an order in V which makes V
an ordered vector space. Note that if & and g in 2 satisfy a=B+7,+7.+  +7»
with 7,€ P, then we have a>f with respect to P. However the order P in %
is not uniquely determined by the set P in general. The reflexion corresponding
to a root « is denoted by s,. The operation of weW(X) on a2l is denoted
by wa. For a set F and weW(2), we define wF by

wF={wa; acF}.

A set of roots F={a,, as, -, a,} is called an orthogonal system if a;la;

(orthogonal) for 7#;. It is called a strongly orthogonal system if any two roots

in F are strongly orthogonal to each other. Here, by definition, a root « is

strongly orthogonal to another root f# +a if axB& 2. In that case we get

al B. Denote by M(2) and M(P) the sets of all maximal orthogonal systems

in Y and P respectively. We study here the properties of M(2) and M(P).
We devide the simple root systems into the following three classes:

Class 1 : Ay, Dy (n22), E,, Eg, Gy
Class I: B, n=2), C, (n=3), Fy;
Class I: A, (n=2), Doy (n=1), E,.

A root system X is called of class I-III if all the simple components of it are of
class I or IIL

Let us first list up X, P, II and M(P) for every simple root system as
explicitly as is necessary in the following. Here we denote by ey, e, -,
e;, 2541, -+ an orthonormal system of vectors in a Euclidean space and use the
lexicographic order with respect to this system.

TYPE A,. P={e;—e; (1Si<j=n+1)}.
Put k=[(n+1)/2], then every Fin M(2)is conjugate under W(2X) to the following :
(1.2) F'={e;—ens1, es—en, =+, €—Cn_p4a}.

TYPE B,p. P={e;te; (1=i<j<n), e; (1=iZn)}.
(1.3) II={e;—e, e,—ey, -, €1-1—€n, €n}.

Every F in M(X) is conjugate under W(2) to one of the following: for
0=r=[n/2],

(1.4) Fr={esi-1tey (1Zi<r), e; Cr+1=7=n)}.
TYPE C,. P={2e¢; (1=i=<n), e;+e; (1=i<j<n)}.

(1.5) = {er—e,, ey—eq, =+, en-1—ey, 2e,).
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Every F in M(J) is conjugate under W(2) to one of the following:

0=r=[n/2],
(1.6) Fr={2¢; (1Z7Sn—2r), €p-srssi-1Fln_grss; 1=iSP)}.
TYPE Dy. P={e;*e; (1=i<j=N)}.
1.7 II={e,—e,, ey—es, -, exy-1—ey, ex-1t+en}.
Then every F in M(JX) is conjugate under W(2X) to the following :
(1.8) F={ey_1te,; (1SiZn)}, (n=[N/2]).
TyPE E,.
Y={%e,+e; (1Si<j=D),

*+27 Y egte;—es+ 2 (—1)ie;) with X v, odd},
1516 15156
= {2_1(61_2ﬂ2549ii(35+es+e7_es>)x e;—ey (2501<4), e tes}.

Every FeM(ZY) is conjugate under W(Z2) to the following :
F'={e;*e,, estey}.
TYPE E..
S={te,+e; (1Si<j=6), *(e;—es),

iZ“(e7—e8+1§6(—l)”iei) with y; odd},

15756
II=1{2"Ye,—e,— -+ —es+es), e;—eiy1 (2<i<5), es+ee, e;—eg).
Every FeM(2Y) is conjugate under W(2X) to the following :
(1.9) F'={e,+e,, este,, e;+e;, e;—es}.
TYPE E,.

Y={te;+e; (1Si<j<8), 27 X (—1)1e;) with 3 v; even},
1s1s8 1s1s8

II={27"%e;—e,— -+ —e;+e), es—eiy Q=IZT), e, teg).

Every FeM(2Y) is conjugate under W(2X) to the following :

(1.10) F'={e,+e,, este,, e;teg, e, e},
TYPE F..
(1.11) P= {ei_-te,- (1=i<j=9), e; (1=j=4), 27 (e ey tes+e,)}.

We denote the four simple roots as follows:
(1.12) a=2"Ye,—e,—es—e,), f=e,—e; T=e;—e,, 0=¢,.

Every Fe M(Y) is conjugate under W(ZX) to one of the following :

423

for
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(1.13) F'={ey, e;, €5, e}, F'={e;*e,, e, e}, F*={e;ke,, e;+e,}.
TYPE G,. Let II={a, B}, where B is longer than a. Then
P={a, B, a+8, 2a+B, 3a+5, 3a+25}.

The set M(P) consists of the following three elements

(1.14) F'={a, 3a+28}, F'={2a+8, f}, F’'={a+B, 3a+p}.
3a +28
!
B a +ﬁ 2a +18 3a +ﬂ
a

Figure 1.1. Type G,

The above assertions on the conjugacy of orthogonal systems can be proved
by applying the result in Table 1.1.

1.3. Now let us prove an elementary lemma on the orthogonal systems.
For a subset F of X, denote by X the subset of ¥ consisting of all elements
which can be expressed as linear combinations of the elements in F, that is,

(1.15) 2r=2N(ZserRa).

Lemma 1.1. Let Y be a simple root system. If 3 is of class 1 or 1l, then
Y=23p for any maximal orthogonal system F in Y. In particular, the number
of elements in F is equal to the rank of 2. If X is of class 1 or 1ll, any ortho-
gonal system is strongly orthogonal. If X is of class 1l, for any orthogonal
system F in X, take a strongly orthogonal system F' in Xp with maximal number
of elements, then Yp,=23p and F' is also strongly orthogonal in 3. Let X be of
class 1ll, then X+ X5 for any orthogonal system F in X, and the simple compo-
nents of Xp are of class L.

Proof. The assertions can be easily proved by using Table 1.1 and the
above list of maximal orthogonal systems. Note that, for X of class II, a
maximal strongly orthogonal system is not necessarily a maximal orthogonal
system, and so is it if and only if its number of elements is maximal, that is,
equal to the rank of 2. Q.E.D.

Corollary. Let X be a root system and F an orthogonal system in 2. Then
Xp does not contain simple components of class 111
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1.4. Root system of class I or 1L
For weW(2), we denote by sgn(w) the usual sign of w. Here we wish to
prove the following lemma.

Lemma 1.2. Let X be a root system of class I-1ll. For any two elements
F, F'e M(P), there exists we W(2) such that wF=F'. If an element weW(2)
satisfies wF=F for some F& M(P), then sgn(w)=1.

Proof. It is sufficient to prove the lemma when X is simple. The first
assertion is proved in § 1.2 and therefore it rests only to prove the second one.
When J is of type A, or G,, we see easily that wF=F means w=1. Therefore
the assertion is true. When 2 is of type A,, we may take as F the special
one F° in §1.2, and in this case we see sgn(w)=1 by an explicit calculation.

For the case of types D, and E,, we prove the assertion by induction on
the rank of Y. (Note that D,—A,) We reduce the proof for X to that for X¢
with some a=X. This is possible because of the result on the type of X% in
Table 1.1. First consider the case of type D,., Then X is given in §1.2 and
we take as F the following system:

(1.16) F'={e,*+e,, estey}.

For this case, we can prove easily that if weW(2) satisfies wF=F, then
sgn(w)=1, and that for any two elements «a;, a, in F, there exists a weW(2)
such that wa,=a,, wF=F.

Now consider the general case. We apply the following lemma.

Lemma 1.3. Let X be of type Dy (N=4), Es, E, or Eg and let FeM(d).
Then for any two elements a,, a,€F, there exists a subsets F' of F containing
@y, a, such that Yg is of type D,.

For a moment, we take Lemma 1.3 for granted. Assume that there exists
an a€F such that wa=a. Then by Proposition 1 in [1, Chap. V, §3, p. 75]
we see that weW(XY®). Therefore the situation is reduced to the case of X<
and F—{a} € M(3?). Because the signs of w in W(ZX) and in W(2'*) coincide.
Thus the assertion is proved by the induction hypothesis. (Note that if X is of
type E; X% is of type As;.)

Now assume that a#wa for any acF. Then X is of type Dy or E,, and
by Lemma 1.3, for a fixed a€F, there exists a subset F’ of F containing «,
wa such that Xr is of type D,. Then as is proved for D,, there exists a
w eW(Xp) such that w'F’'=F’ and a=w’wa. Since w’y=y for any y=2 such
that yla, v 1l wa, we get w’'F=F. Put w”=w’w, then w’a=«, w’F=F, and
sgn(w”)=sgn(w) because sgn(w’)=1. Therefore the situation is reduced to the
above case already discussed. Thus the lemma is now proved modulo Lemma
1.3. Q.E.D.

Proof of Lemma 1.3. Let 3 be of class I or IIl, then as is seen in §1.2,
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every FeM(Y) is conjugate to the fixed F°eM(X) under W(ZX). If X is of
type Dy, E;, E; or E;, the assertion in the lemma can be easily seen from the
explicit forms of F° given in (1.8), (1.9) or (1.10) respectively. Q.E.D.

1.5. Root systems of class 1l

Let X be a simple root system of class I[I. Every X contains long roots and
short roots. Along with the maximal orthogonal systems in P, we consider
ordered system E of roots with the following properties (Bl), (B2) and (B3).
Consider an order P in X corresponding to the set P.

(Bl) For E=(ai, a,, -, ay), the underlying set {a,, as, ---, an}, which is
denoted by E*, is a maximal orthogonal system in P, i.e.,, E*e M(P).

(B2) In E, long roots are placed before short roots. Let «i, a,, -+, a;, be
long roots and a;4+1, @40, =+, @, short roots, and put m=[[/2], then

Qi1 >y (1S0Em), an>as> - >dom-y;
1.17)

41> Apyp> 0 > Qo1 >y

(B3) For 1=i=m, 27 (ay:-1+as;) are (short) roots in P. (If 2" (as;-1—ass) is
a root, then so is 27 ay;-1+as;), because agi—; 1 as;.)

The set of all such ordered systems E in P is denoted by M°(P). Note
that the correspondence E— F=FE* from M°(P) to M(P) is surjective but not
1-1 when 2 is of type C, (n=3) or F, (cf. §1.2).

Definition 1.1. An element E< M°"(P) is called standard if it satisfies the
following. Let E be given as in (1.17) and put 2;={yed; rla, IZr=j—1)
for j=1, 3y=2. For 1=i<m, a,;_, (or a,; resp.) is the highest long root in
2y (or Yy such that 2 %ay;-1+as;) are roots in P resp.), and when [ is odd,
«, is the highest long root in Y, and for [+1=<j=<n, «; is the highest short
root in Y; An element Fe M(P) is called standard with respect to P if F=E*
for some standard element EeM(P). We define the type of FeM(P) or
Ee M°(P) as the number [ of long roots in it.

To exclude useless complications, we choose as P the canonical order in %
corresponding to P defined below, and in that case M°"(P) is denoted simply as
M°T(P).

Let X be of type B,. Then all positive short roots are mutually orthogonal.
The arrangement of them such that

(1'18) (le r2v R rn)r 7’1>72>"'>Tn (fOI‘ P)

does not depend on the choice of the order P corresponding to P because for
any two such roots 7, 7/, we have y—yr'e¥=PU—P and hence 7y>7’ or 7<7’
is determined by the set P only. Let X be of type C,. Then all positive long
roots are mutually orthogonal, and the arrangement of them such that

(1.189) (a1, @z, =+, ), a1>a> - >a, (for P)
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does not depent on the choice of P because for any two of such roots «, o,
we have 2" (a—a’)el. Let X be of type F,. The highest long root «; in P
is uniquely determined by P only as is seen from the theory of highest weights
of the finite-dimensional representations. Then 24! is of type C,;, and as is
said above the long roots in P2t is uniquely arranged as a,>a;>a; by P
only. Thus the ordered set

(1.18") (a1, as, as, ay)

is uniquely determined by P.

Let us call an order P corresponding to P canonical when it is defined as
follows: for 3 of type B, or C,, P is the lexicographic order with respect to
71, Ter =+, 7 in (1.18) or to ay, @y, -, @, in (1.18’) respectively, and for X of
type F,, P is the lexicographic order with respect to 7,=2"%a,+a.),
7.=2 Yo, —ay), 7s=2"as+ay), 74=2"as;—a,), where a;’s are given in (1.18").
When we realize 2 as in § 1.2, the canonical order P is nothing but the special
lexicographic order given there.

Let P be canonical. For Fe M(P), let a,, a,, -+, a; be its long roots and
®rs1, Ay, =+, Ay its short roots numbered as
(1.19) A1> > DA A > 0g> o > Ay .
We put
(1.20) F=(a,, as, -+, ai, aia1, Quss, 5 ),

then it always belongs to M°(P) (cf. §1.2). The set of all F is denoted by
1\7I(P): 1’\71(P)= {ﬁ; Fe M(P)} Cc M°"(P). Note that every standard element Ee
M(P) is given as E=F with F€M(P). Moreover, for every simple X, all the
standard elements in M(P) are given by the elements F° and F"s in the list
in §1.2.

Here we must remark the following. Assume that % is not of type F,. Let
ac Y and P be canonical. Then its restriction on the simple component of
class II of X« (if exists) is again canonical for the set of positive roots P*=
Y2~ P (see §§1.1-1.2). When X is of type F,, we are not sure about this fact,
but we have for 2 with rank Y <3 the following.

Lemma 1.5. Let Y be of type By, By or Cs. Let P and P’ be two orders
in 2 both corresponding to P. Then M°(P) and M (P’) coincide with cach
other. More exactly, if E€ M"(P), E'e M"(P’) satisfy E*=(E’)*, then E=E’,
and if E is standard in M°(P), then so is it in M°"(P’) and vice versa.

Proof. It is sufficient to remark the following. Firstly, let a, B8 be two
roots in Y such that a—p or 27%(a—p) is in &, then a>p or a<pf is deter-
mined by P only. Secondly, the highest root in P is long and uniquely deter-
mined by P. Q.E.D.

By this lemma, we may restrict ourselves to use only the canonical order in
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2 corresponding to P. This is always done in the sequel unless the contrary is
explicitly noted. Thus M°(P) is denoted simply by M°(P).
For E=(a;, as, -+, ay)e M (P) given by (1.17), we put
(L2 PE)={ay, az, -, an, 27 (azi-1t ;) (I=i<m)},
' FUE)={ay, as, =, a1, @iaimiFarsn 1=Si<[(n—10)/2]),
and «a, if n—[ is odd}.

Then Fy(E) belongs to M(P) since the order is canonical, moreover is a strongly

orthogonal system of roots which is called associated to E. We make ueW(2)
operate on E by

(1.22) uE=(ua,, ua,, -, ua,).

Note that uE doss not necessarily belong to M°"(P). Put
W(E; P)={ueW(2); uEe M"(P)},
V(E)Y={veW(E; P); WE)*=E*},

(1.23)

and for Fe M(P),
(1.24) UF={uew(); uFeMP)}.
Let us study M°(P) according to the type of 2. We realize 3 as in §1.2.

TYPE B,. Let FTe M(P) be given in (1.4), then the corresponding element
F’EJVI(P) are standard and the sets of roots P(ﬁ’) and Fo(ﬁr) are given as
follows :

(1.25) Fr=(e,+e,, e1—es, e5te,, es—e,, -,
Car_ 17 Cory Caro1—@ory Corit, Coray t, €n),
(1.26) P(FN=FrUF°, F(Fn=F* with k=[n/2].

Moreover V(F’ = {1}, and therefore M"’(P)=A7I(P) in this case, and the corre-
spondence E— E* of M°(P) onto M(P) is bijective. Every element w in W(2)
can be expressed as

(1.27) wer=c¢ie,n (1=i=n),

where ¢;==+1 and o=(o(1), o(2), ---, o(n)) is an element of the n-th symmetric
group &,. Put e=(e;, €, -+, €x) and express w by (e, 0). Let &=(1, 1, -+, 1),
then

(1.28) U(F"={w=(¢", 0); o satisfies (1.28")},

where

0(2i—1)<a(2) 1=i=r), o(1)<o@B)< -+ <a(2r—1);
(1.28") {

a2r+1)<o2r42)< - <a(n).
TYPE C,. The element 13"61\7[(P) corresponding to FTeM(P) in (1.6) is
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standard and given by
(1.29) Fr=(2e,, 225, -+, 2en-3r, €n-srs1tCn-srss, Enosrir—Cnosren,
Cn-srasTCnosris, Cn-srts—Cn-gres, *, Cn-1F€n, Cno1—E€n).
Put k=[n/2], then
(1.30) P(F")=F"UF*, F(Fr=F".

Every element weW(Y) can be expressed as in (1.27) and so it is denoted by
(e, o) as above. Then

(L.31) V(E")={(w=(¢", ¢); o satisfies (1.31")},

where ¢°=(1, 1, ---, 1) and

131 { 6(2i—1)<o(2) (1Zi£k—r), o()<o3)< <02k —2r—1);
c(j)=j (n—2r+1=j=n).

The group U(ﬁ") can be given similarly.

TypeE F,. For F° F!', F*eM(P) in (1.13), the corresponding elements
F°, ﬁ‘, Fee M(P) are standard and can be written down easily, and further

(1.32) P(F=F"UF°, F(F)=F* (r=0,1,2).
Moreover, denoting the simple roots as in (1.12), we get
(1.33) V(FY=V(FY={1}, V(F»=1L, sa, ssSa}.
Furthermore

UF)= {1, s, sssa}, UFEH={L, sp, s,;55}-
(1.34)

U(ﬁ‘) contains 18 elements.

The elements in M(P) conjugate under W(2) to F™ (»=0, 1 or 2) are listed up
below. The corresponding elements in M(P) can be written down easily.

For F': F° F%,=s5,F° F%,=5;5.F",
where Fi={27Y(e,+c,e,teseste,e)); ere06,—~¢} for e==+1.
For F': {e;*e,, e, e},
where i1<j, k<l and {, j, k&, [} ={1, 2, 3, 4}, and
{e,tee;, ej+c’er, 27 (e;—ce;+(e;—c’er))},
where ¢, ¢’'==*1, j<k, {7, j, K} =1{2, 3, 4}.
For F*: {e,*ey,, e;%e,},

where j<k, {i, j, R} =12, 3, 4}.
Note that for any type of 2, the strongly orthogonal system F,(E) associated
to a standard element E< M°(P) is always equal to the unique standard element
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in M(P) which is strongly orthogonal.
1.6. Let X be a simple root system of class II.

Lemma 1.6. Let {a, B} and {a’, B’} be two pairs of long roots (short roots
resp.) in X such that 2~ a=+f) and 27 (a’£B’) (a%p and a’+f’ resp.) are roots
in 3. Then al B and there exists a we W(2) such that wa=a’, wh=p'.

Proof. We see from the explicit form of X in §1.2 that «1 . On the
other hand, there exists a w’€W(X) such that w'a=a’. Then w’p and §’ are
two roots in X' with the same length. The root system X« is simple except
when Y is of type B, and «’ is long, or Y is of type C, and «’ is short (cf.
Table 1.1). If X« is simple, there exists w”€W(X*) such that w”(w’a)=a’.
Put w=w"w’, then wa=«a’, wp=p". If ¥* is not simple, the roots 5 and g’
are characterized in X up to their signs by the condition that 2-'(a=8) and
2 a’+p) (a*xpB and a’+p’ resp.) are again roots in X. Therefore we get
w’f=¢p’ with e=1 or —1 in this case. Since a’1 f’, it is enough to put w=w’
or sgw’ according as e=1 or —1. Q.E.D.

Lemma 1.7. (a) For any two elements E, E' in M°(P) of the same type,
there exists uniquely a weW(E; P) such that wE=E’. (b) For any Fe M(P),
W(ﬁ; P) is a direct product of U(ﬁ) and V(FN) in the following sense: for every
weW(ﬁ; P), there exist uniquely ueU(ﬁ‘), ve V(ﬁ) such that w=uv, and con-
versely any element of this form belongs to W(F‘; P).

Proof. Let {a, B} be as in Lemma 1.6, then Y'={re2’; r La, f} is again
a simple root system of class Il or of type A;. Therefore the assertion (a)
follows from Lemma 1.6. For the assertion (b), note that u=W(X) belongs to
U(F) if and only if u does not change the order relations between the long
roots in F and also between the short roots in £. Then it is not difficult to
see that the assertion (b) holds. Q.E.D.

Let /[ be the type of an Ee M’ (P) and M°(P,[) be the subset of M°(P)
consisting of elements of type [. Then it follows from Lemma 1.7(a) that there
exists a natural bijective correspondence :

(1.35) W(E; P)su—uEeM(P, ).
On the other hand, consider a collection D of m ordered pairs (a;, B:) (1=i<m)
of long roots in P, and at most one long root y P, and some number of short
roots in P such that

(B’1) the underlying set F of D belongs to M(P), and

(B’2) 2 %a;=*B;) are reots in P for 1</<m.

Let M/(P) be the set of all such D’s. We define the type of D as the number
of long roots in it. Note that under the condition (B’2), we get always a;> (.
There exists a natural 1-1 correspondence between M°(P) and M’(P) as
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follows: for an E€ M°(P) given in (1.17), we make correspond D& M’(P) con-
sisting of long root pairs (@,:-;, az) (1=</<m), and a long root «, if / is odd, and
short roots a;41, &ias, =+, Ay

Now we make operate W(ZX) naturally on De M’(P). Then for any D, D’
€ M’(P) of the same type, there exists a u€W(2) such that uD=D’ by Lemma
1.6. For a De M’(P), we define I(D) as a subgroup of W(2) consisting of u
such that (1) let FeM(P) be the underlying set of D, then uFCF\JU—F, and
2) for 1=i<m, {ua;, uB:i} C{*a;, =B} for some /. Let [ be the type of D
and M’(P, [) be the subset of M’(P) consisting of elements of type [. Then
we get a natural bijective correspondence :

(1.36) M'(P, )2D'=uD—ul(D)eW(2)/I(D).

Through the natural correspondence between M°(P, [) and M’(P, [), the bijec-
tions (1.35) and (1.36) give us W(E ; P) as a complete system of representatives
of the coset space W(2)/I(D), where E< M°(P) correspnds to D.

1.7. Let 2 be a simple root system of class [ or Ill. Since it has no
importance to introduce an order in Y corresponding to P in this case, we

introduce the following formal convention in accordance with the case of class II

CONVENTION 1.1. We put simply as M‘"(P):M(P):M(P), P(E)=Fy(E)=
E*=F, where E denotes FeM(P) itself viewed formally as an element of
M°"(P). The type [ of any element in M°(P) is by definition /=0. An element
FeM(P) is called standard if it can be obtained as follows: (1) pick up the
highest positive root a; of 2 (determined by P only), (2) for every simple com-
ponent of type A, of X1, pick up the unique positive root in it, and (3) for
another simple component of Y91, repeat the picking up in (1) and (2), and so
on. The set W(F:; P) denotes an arbitrary complete system of representatives
of W(2)/I(F) consisting of u’s such that uFeM(P), where

(1.37) I(F)={ueW(); uFCFJ—F}.

Remark 1.3. Taking into account Lemma 1.2, we see that there exists a
natural bijection: W(F; P)2u—uFeM(P). In the case of class I or III, we do
not fix a special choice of a system of representatives of W(X)/I(F) contrary
to the case of class II (cf. (1.35), (1.36)).

In the sequel, we apply frequently Convention 1.1 when the discussions are
parallel for all classes of root systems. In this sense, we shall use the notations
Me7(P), ﬁ(P), F, P(E), F(E) etc. for any root system 3 under the following
definition.

Definition 1.2. Let ¥,, ¥,, ---, X, be all the simple components of ¥, and
put P;=PN2%;. Then M’ (P) is defined as the set of all ordered sets E=
(Ey, E,, -+, Ep) with E;e M7(P;) for 1=<i<p. We define
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P(E)y=P(E)JP(EH .- UP(E),
FyEY=F(EDVEF(E) - UF(E}).

We call Fo(E) the strongly orthogonal system associated to E. Let /; be the
type of E; then we call (l;, [, -, [p) the type of E. When every E; is
standard, E is called standard. The set W(E ; P) is defined as the product of
W(E;; P;) over 1=i<p, where W(E;; P)={uesW(,); uE;eM(P;,)} if X, is
of class II, and W(E;; P;) is a complete system of representatives of W(2';)/I(Fy)
with F;=FE¥ such that uF;e M(P;) otherwise.

Note that for all standard elements E of M°(P) the associated strongly
orthogonal systems Fy(E) coincide with each other. This has an important
significance in the sequel (see §5.2).

For the later use, we also introduce the following definition.

Definition 1.3. For EeM°(P), a sign e(E)=+1 is defined as follows.
When 2 is simple, let E=(a,, as, -, a;, a;41, -+, ay) be as in (1.17). By Con-
vention 1.1, we put [=0 if 2 is of class I or IIl. Put m=[l/2] and

(1.39) e(E)=(—D*(—1)m=(—1)"(—1)"=,
When & is not simple, express E as in Definition 1.2 and put

(1.39") e(E)=c(E)-e(Ey) - e(Ep).
1.8. Let X be a simple root system.

Lemma 1.8. Assume that 7, 1’€2 are orthogonal but not strongly orthogonal
to each other. Then X is one of the types B,, C, and F,, and 7, v’ are short
roots in Y. Moreover put F'={r, v}, then Yp.={%xy, £71', 277’} and is of
type Bg.

More explicitly we can list up the possible pairs F'={y, 7’} of positive roots
as follows. (1) In the case of B,, {r, 7’} is any orthogonal pair of positive
short roots: {7, 7’} ={ei, ¢;} for some 7<j, and is conjugate under W(2X) to
{e1, es}. (2) In the case of C,, {7, 7'} ={eite,} for some 7<j, and is conjugate
to {e;*xes}. (3) In the case of F,, {r, 7} is any orthogonal pair of positive
short roots and is conjugate to {e,, e.}.

§2. Structure of Cartan subgroups

Let G be a connected real semisimple Lie group, g its Lie algebra, § a
Cartan subalgebra of g and HY the Cartan subgroup of G corresponding to .
In this section we study the structure of every H" and the relations between
them.

2.1. For geG, we denote by 7, the inner automorphism of G correspond-
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ing to g:r,x=gxg™! (x&G). Let H be a subgroup of G and C a subset of G
(resp. of g). Then we denote by Ny(C) and Z4(C) the subgroups of H consist-
ing of elements & such that 7,(C)CC and z,(x)=x (x€C) (resp. Ad(h)CcC and
Ad(h) X=X (X)) respectively. Then by definition, H'=Z;(%). Put

@D Wo(C)=Ne(C)/ Z6(C).

Let 6 be a Cartan involution of g, and g=f+p be the corresponding Cartan
decomposition of g. Let K be the analytic subgroup of G corresponding to f
and denote by exp the exponential map of g into G. Then the map (k, X)—
kexp X of KXp into G is an analytic diffeomorphism onto G. Moreover ¢ can
be lifted up to an automorphism of G given by & exp X+—k exp(—X) (REK, Xeyp).
Assume that 69=Y. Put h,=H"% §,=H"p, then

(2.2) h=%h.+9, (direct).

Moreover put H¥=H'NK, H?zexp(f)f\p), then

(2.3 H'=HYHY  (direct).

In this case Wg(h) and Ws(HY) are canonically isomorphic to Wg(h) and W x(HY)
respectively (see [2(b), § 16]).

2.2. Denote by X(§) the set of roots of (g, §.) or simply of §. Let P(h) be
the set of positive roots in 3(§) with respect to an order in 2(§). A root a of
b is called real or imaginary if a())CR or a(h)C+/—1 R. We denote by 'x(h)
the set of real roots of § and put

(2.4) Pr§)=2BH)NPO).

For a root a, we choose root vectors X.., from the complexification g, of g
in such a way that H,=[X,, X_.] holds, where H,Y. is the element corre-
sponding to « under the Killing form of g.. We put

(2.5) Hy=2|a|*H,, Xlo=v2|a|X.q,

where |a| denotes the length of a with respect to the Killing form. An
imaginary root « is called compact or singular if gN(CH,+CX,+CX_,) is
isomorphic to su(2) or 8I(2, R). If a is real, we can choose X., from g. So
done, put

(2.6) ua:exp{—«/: 1'%1‘—ad(X;+X'_a)}

and H*=y,(h:)Ng. Then H* is another Cartan subalgebra of g not conjugate to
H under any automorphism of g. Let o, be the hyperplane of § defined by
a(X)=0. Then

@7 b=oo+RH,, ) '=o.t+R(X,—X",).

The root f=v,a=a-(vz'|}?) is a singular imaginary root of §)* and Hj=
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V—T1(X,—X.,). We know the following fact [5(d), Lem. 4.5].

Lemma 2.1. The set Yr(h*) of real roots of H* is given by
(2.8) Sr(h)={var; r€2(), 7 La}.

Put Y=Xg0), then 3p(h%)=v,2% where 3¢ is defined in (1.1). Let y=3=,
then

vall0a=710a, (Wal)Hp)=7(Ho)=0,
and H,,=v.H,=H,;. Moreover we get the following.

Lemma 2.2. Let 7 La. If « and 7y are strongly orthogonal to each other, then
VoX.y=X.p Otherwise,

V=T

(2.9) veX. ==

ad(X o+ X)X,y

Proof. 1f a and 7 are strongly orthogonal to each other, we get [ X.,, X.,]
=0 and therefore v, X.,=X.,. Assume it is not the case, then by Lemma 1.8
we know that X'=3\(Ra+Ry) is of type B, and «, 7 are short roots in 3’.
By an explicit calculation on the Lie algebra &p(2, R), we get without difficulty
that

(2.10) ad(X,)ad(X’ ) X.,=ad(X . )ad(X ) X.;=2X.,,

and therefore ad(X,+X’,)*X.,=4X.,. From this we get the above equality
(2.9). Q.E.D.

We know the following [2(a), Lem. 46, p. 255]: Assume that 09=%. Then
for any ac (D), the root vectors X.. in ¢ can be normalized in such a way
that GX,=—X_,, where @ denotes the conjugation of g. with respect to the com-
pact real form ¥++/— 1p. In that case, 05“=H% But in the sequel, we do

not demand the normalization §X,=—X_, unless the contrary is explicitly noted.
Let F={a,, as, -+, a5} be a strongly orthogonal system of real roots of .
Then ve,, Va,, *, Vo, commute with each other. The transformation vr is

defined by the product of them as

(2.11) Vp=VaVa, " Vag
and the Cartan subalgebra {7 is defined as H¥=vg(h.)N\g. Then putting o=
QFU,,, we get

(2.12) bh=or+ X RH,, §=0p+ 3 R(X—XL.).
aEF a€EF

2.3. Connected components of a Cartan subgroup. For a root a of §, we
define a character &, of HY by

(2.13) Ad(h)X.=E(h) X, (hEHY).

Then we know that if « is real, &, takes only real values 1 or —1 on HY%.
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Let A be a connected component of HY Assuming 69=H, we get the
following direct product decomposition of A:

(2.14) A=Ak exp(h,), where Ax=ANK.
Define a subset Yz(A) of Xr(h) by
(2.15) (A= {ac Zp(); E.(h)>0 for he A},
and put Pr(A)=PH)N2x(A). Note that the condition £,(A4)>0 is equivalent to
EL(Ag)=1{1}.
Let D be a subset of H" and b a subset of 2(§). Then we put
(2.16) D®)=1{heD; £, (h)=1 (aEbd)}.

Lemma 2.3. Let acXr(A) and put f=vea, a=8*. Then A({a})TH'({B}).
Movreover let C be the connected component of H® containing A({a}). Then

SrO)={var; r€XR(A), v La}.

Proof. Let he A({a}), then Ad(h)X.,=&.a(W)X.a=X.,. Since )*=a is given
by (2.7), we get Ad(h) X=X for any X<a. Hence heH*. On the other hand, a
root vector for B is given by Xp=v,X,=2"(v/—1H,+X,+X",). Since
Ad(h)X;=£5(h)X by definition, we see that £g(h)=1. This proves that A({a})

cCH({8}). .
The second assertion can be proved by using Lemma 2.1 and (2.7) (cf. [5(d),
Lem. 4.57). Q.E.D.

Corollary. Let F be a strongly orthogonal system of roots in Xr(A) and put
a=08". Then A(F)CHYvgF).

Proof. Note that if «, a’€2Xi(A) are strongly orthogonal to each other,
then so are also in X(§). Then the corollary follows immediately from the
lemma. Q.E.D.

Now let M(Zx(A)) be as in §1.2. We wish to prove the following fact.

Proposition 2.4. Let FE M(2r(A)) be strongly orthogonal. Then the dimen-
sion of the wvector part of §¥ takes the minimum possible value, or equivalently,

2 R(H7)=0.
To prove the proposition, we need a lemma.

Lemma 2.5. Assume that 2p(h) is isomorphic to a muliiple of the root
system of type A,. Then for any connected component A of HY Xgp(A)=2r(h).

Proof. Take a Cartan involution € of g such that 69)=Y. Put D=Zs(y),
then DDH?Y, and by [2(b), Cor. 3 of Lem. 26, p. 4817 we see that
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D=Zg(h)exp3,(hy)  (direct),

where 3,(5.) denotes the centralizer of §, in p. Note that T=exp(fy) is a total
subgroup in the sense of [4, p.247] and that Zx(h)=Zx(T). On the other hand,
we see that Zg(T) is connected by [Cor. 2.8, loc. cit.]. Hence D is connected.
Let b be the subalgebra of g corresponding to D, then bd=3(h). Let g.=
b°+ae§<mg“ be the root space decomposition of g.. Then we get

p=h+ E(h)gl.‘mc;:h”r > g,

aelp a€PRB)
where

y={X<€h; a(X)=0 (a€2p(h)}, ¢ =RH,+RX,+RX_,=8(2, R).
Note that H=%"+ > RH,. Since D is connected, we see that Ady(D) is

a€EPRH)
canonically isomorphic to a multiple of SL(2, R)/{+1}. Then from the result

on SL(2, R), we see that for every a€Xr(}), £,(h)>0 (he HY%. This proves
our assertion. Q.E.D.

Proof of Proposition 2.4. By Corollary of Lemma 2.3, we see that A(F)CH®
with a=%F. Let C be the connected component of H® containing A(F). Let us
prove that Xz(C)=0. In fact, let y€23x(C), then by Corollary of Lemma 2.3,
there exists 7€ XY r(A) such that y=vgy’, 7’ La for all a in F. This contradicts
the maximality of F as an orthogonal system. Now, since 2 (C)=0, for any
two roots a, a’ in Xg(a), a+a’ are no longer roots. This means that Xg(a) is
isomorphic to a multiple of the root system of type A;. On the other hand, in

this case, Yr(a)=23(C) by Lemma 2.5. Hence Xz(a)=0. Thus the proposition
is now proved. Q.E.D.

As a corollary of this proposition, we give the following significant result.
We call a Cartan subalgebra of g compact if its vector part is trivial.

Corollary 1. Assume that g has a compact Cartan subalgebra. Let % be a
Cartan subalgebra of ¢ and A a connected component of HY. Then the root
system Xg(h) and X p(A) contain no simple component of class Il

Proof. Let %) be the vector part of §). We take an Fe M(Xr(A)) strongly
orthogonal. Then the vector part of ) is equal to )= {X<€l’; a(X)=0 (a€F)}
(cf. (2.12)). By Proposition 2.4, it follows from the assumption on g that §”={0}.
This means that §’ is spanned over R by H, (a€F), and therefore that Y=23p
for Y=3p(A). Then by Corollary of Lemma 1.1, we get the assertion of the
corollary. Q.E.D.

Corollary 2. Let A be a connected component of HY. Then M(Zr(A))C
M(Zx(H)).

Proof. The number of elements in every Fe M(Zg(A)) is constant. By
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Proposition 2.4, this must be equal to that for M(ZX'x(h)), because the Cartan
subalgebra with minimal vector parts are mutually conjugate under G and
hence the dimensions of these parts are equal to each other.

Thus we have
M(Z R(ANTM(Z ().

Q.E.D.

2.4. Let Fe M(Xr(A)) be strongly orthogonal, then by Corollary of Lemma
2.3, we see that A(F)CH(vpF)CH", where a=%". Here we wish to prove the
following more exact fact.

Proposition 2.6. Let Fe M(Xr(Y)) be strongly orthogonal, and assume that
09=% and 6X.=—X_, (@a€F). Then

We(HYWHY(vpF)=HY%, where b=5".

Proof. Put B=H" Bx=HY% and J=vpF. By Proposition 2.4, we know
that the dimension of the toroidal part of B takes the maximal possible value.

Therefore B is connected and so is Bx too. Let us first prove that Bx(/)CHY%.
For aeF, put f=vpa and X,s=vrX., then

@I7) X3+ X s=XitX'u, Xp—Xlg=+—TH,, Hj=+v=T(X\—X..).

Let b Bg(J). Then for any Se&], Ad(D)X.3=E.5(b)X.p=X.5. Therefore by
(2.12), we see that Ad(b)|h is the identity. This means that b H" and hence
By(J) CH%.

Now let us prove Wg(H")Bg(J)=H%. As is remarked in §1.2, every
element w in Wg(H") has a representative in Ng(h). Therefore we get
We(H»Bx(J)THY%. To prove the converse inclusion, take an arbitrary connected
component A of HY then as is remarked above, Ax CA(F")CH%(vp F’) with
'=%" for any strongly orthogonal F’& M(ZXr(A)). On the other hand, by
Corollary 2 of Proposition 2.4, we have M(Xr(A)CM(Zr(})). Therefore F’ is
conjugate to F under W(Xg(h)) (see §1.2).

Let us study the relation between H%(vm F’) and Bg(J). Note that the

reflexion s, corresponding to acXx(h) is realized by an element g,=G as
Ad(ga)|h., where

(2.18) ga=exp27'n(Xo—X1a).

Therefore we can find a product g of g.’s such that wF’'=F with w=Ad(g)|¥..
We see that Ad(g)h=1N, because Ad(g.)|h.=s. and H,€Y. Since g€ Ng(h)= N4z(HY),
g induces an element  in We(H® as the inner automorphism by g. Moreover
@=w under the canonical homomorphism w—a of Ws(H" onto Ws(h).

Let {X,} be the root vectors used to define vy and vp.
a non-zero constant ¢, for every a€F’ such that

Then there exists

Ad(@)Xe=caXwa, Ad@X-a=ci'X_ wa (a€F).

Put Ca=¢ta exp(ts| a]?) with e,==+1, t,€R, and go=g [lacr €xp(t.H,). Then w is
also realized by g, and w=Ad(g,)|).. Moreover Ad(go)X.:e=¢€aX:ina (@EF’), and
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hence by (2.12), we get Ad(gy)b’'=b, g,H" gi'=H’=B. Note that for f=vpa
with a€F’, Hp=+/—1(X,—X_,). Then putting t=Ad(g,)|b;, we get tHj=
eaV—1(X}a—Xwa)=H!, 4, where f'=vpwa. Hence rf=¢,p" and

Ep(h)=&.p(gohgs")=6. 5. (gohgs")  (heH").

This means that goH® (vp F)gy'=HvpF)=B(J). Since AxCHY(vpF’) and o
leaves HY% invariant, we get AxCB(J)NK=Bg(J), and therefore AxCW z(H")-
Bg(J). Hence HYCW(H)Bg(]).

The proof of the proposition is now complete. Q.E.D.

2.5. Here we give a proposition (cf. [5(d), §7.4, Lem. 7.9]) which will be
applied latter. Let A be a connected component of H® as before. Then A is a
direct product of Ax and exp(h,). We will utilize another decomposition of A
in the sequel. Let %, be the subspace of §), spanned over R by H, (a€ 2r(A)),
and put h)y=0,+0p, where ) denotes the orthogonal complement of §, in B,
with respect to the Killing form of g.. We put

(2.19) Ay=exply, Ay=Agexplhy=Agexphp.
Then we have the direct product decomposition
(2.20) A=ApAy.

The subsets Ay and A, have intrinsic meanings independent of € such that
09=%. In fact, Ay=A 2 r(A)={h€A; £,(h)=1 (=X r(A))}. We see that for
any a< Yr(A), Ay commutes with g, in (2.18), that is,

(2.21) w.h=gahgz'=h (heAy).

Remark 2.1. The subspaces Y, and Yy of ) may depend on the connected
component A in question. However this is not the case when g has a compact
Cartan subalgebra. In fact, in this case, §, and Yy coincide with the vector
part and the toroidal part of §) respectively because of Corollary 1 of Proposition
2.4. Moreover Ay=expl,, Ay=Ax.

Proposition 2.7. Let F be a strongly orthogonal system of roots in X p(A).
For weWg(A), let w=& be the element in Ws(h) induced canonically from .
Assume wFCF\U—F. Then there exists an element g€G with the following
properties: (i) g leaves A invariant and commutes with vy on g.. (ii) There
exist na=0 or 1 for a=F such that

ghg'=w(Ilwi=)h (heA),
aEF

in particular, ghg'=wh (h€ Ay), where w,h=g.hgz' with g, in (2.18), and
that if a, a’€F satisfy that both 27'(a’+a) are again roots in 2p(A), then
(—Dra(—1)ra =1,

Movreover g leaves also ) and Y invariant. Put w’=Ad(g)|b., v=Ad(g)|¥Hf,
then w' eW(h), veWs(h¥) and
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(222) v X)=0(urX) (X€b),  w'=w(Ilsle).

The element w’ can be written also as w'=Ilaersd«)w, where m,=0 or 1 and
mq's have the same property as n,'s.

Proof. Take an element g, G such that g ,hga'=wh (h€ A). For acYx(4),
we get
Ad(gw)Xa:Cana ’ Ad(gw)X—azcle—wa »

where ¢, is a non-zero real constant. Put c.,=cq.exp(t.|al?) with e,==*1,
t.R, and

(2.23) g8=8gu {algpgif' exp(—eataHa)}.

where n,=(1—e.)/2. It follows from (2.21) that g leaves A invariant and we
get the expression of ghg™! in (ii). Since F is strongly orthogonal, we see that
for any two different @, @’ in F, Ad(ga)X.a=X.o and g., g, commute with
each other. Note that Ad(g.)X..=—X:., then we get for acF, Ad(g)X..=
X.cywa (e==+1). Therefore we get from (2.6) that

Ad(g)evasAd(g) =exp{— v = T Lad(Ad(@)X i+ Ad(@X )}

zexp{—\/j%ad()({oa-l—X’_wa)}:vwa.

Thus using (2.11), we get Ad(g)evr-Ad(g) '=vr on g..

For the equality in (ii), put r=2"%a’—a), r'=2""a’4+a). Then c,=c, /c;,
cew=cprc; and hence (—1)*«(—1)"« =sgn(c.c..)=sgn(c;.)*=1. For another ex-
pression of w’, note that w'=w(Ileersde)=TlaecrsSwd*)w. Then it is sufficient
to put me=n,; with y=w™'a or —w™'a such that yeF, because wFCF\U—F.

The rest of the lemma is easy to prove. Q.E.D.

§3. Fundamental functions on a Cartan subgroup

Let § be a Cartan subalgebra of ¢ and A a connected component of HY In
this section, we define some fundamental functions on every A. Here we need
the direct product decomposition of A given in §2.5. Let %, and Yy=0,+b% be
as in §2.5, and put Ay=exply, Apy={h€A; &, (h)=1 (a€ Z(A)}. Then
Ay=Ag exp b and

3.1) A=Ay Ay (direct).

By definition, the root system Xp(A) consists of real roots « of § for which
E,(h)>0 for he A. We imbed W(2r(A)) into Ws(A) in such a way that the
reflexion s, with respect to a< X z(A) corresponds to w.|A, that is,

3.2) Sah=w h=g.hga' (he A),
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where g, is given by (2.18). Then the subgroup W(Xz(A)) of Ws(A) acts on
Ay trivially because £,(h)=1 for ac Yr(A) and he Ay and hence g.hgz'=h.
Therefore expressing he A as h=hyexp X with hye Ay, XEh,, we get

(3.3) uh=hyexpuX (ueW(X(A)).

We fix the set P(§) of positive roots in Xx(}), and put Pr(A)=2r(A)NP(Y).
Let F be an orthogonal system of roots in Xx(5), we define a map pr of §

into itself by
prX=X— %‘,Flal “a(X)H, (Xeh).

Then it is the projection onto the subspace )(F)={Xe}; a(X)=0 (a=F)} along
SecrRH,. For any ueW(2 (b)), we have pp(uX)=u"'p,x(X). In particular,
if ueW(Xp) with Z=23(0), then po(u*X)=psX). When FCIp(A), we get
pr(By)Chy, and hence Yhy=pr(hy)+2scrRH,, because by definition b, is spanned
by H, (a3 p(A)).

3.1. Let Ee M°"(Pg(A)) and F=E*e M(Pg(A)), and F,=F,(E) be the strongly
orthogonal system in M(Pg(A)) associated to E given by (1.21), (1.38). Then
pr,=Pr, and by Corollary of Lemma 2.4, A(FO)CH"(VFOFO)CH" with 6=%F°, The
space h)N\b=op, in (2.12) is given as op,=hy+pr,bv. Therefore we get A(F,)=
Ay exp(prpiv), vr, X=X for X€by+prhy and

(3.9 b=by+ prly+ v —Lvp( & RH,).

aEFy
Put B=H® By=HY}, then they are connected because b has no real root. Denote
by b¥ the dual space of b, over C, and by b} its additive subgroup consisting of
Aeb¥ such that

(3.5) Esexp X)=e1"  (Xeb)

defines a unitary character of B. (This can be expressed as bi=log B*, where
B* is the group of all unitary characters of B.) We denote by b} the subset
of b% consisting of regular elements. Let A<b¥ then A(B)C+/— IR and
therefore A(hy+pr )T~ — LR, A(vp,Ho)=(A, vr,@)ER for any a€Xr (DF),
where (-, -) denotes the inner product induced from the Killing form of g..
Therefore we can define for A€b},

(3.6) sgnpey(A)=sgn{ II (4, v},
YEP(E)
where P(E) is given by (1.21), (1.38), and F,=Fy(E).
For every A<b¥’, we define certain fundamental functions Y and Z on

A as follows. Express h€A as h=hyexp X with hyeAy, Xeb,. For
Ee M (Px(A)) and ueW(Xr(A)), put

3.7 Y(h; E, u, A)=sgnpa(DEs(hy)
xexpA(pr,(uX))- IEIFeXp{—a(u“X)I(/l, vre)| /||,
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where F=E*, Fo=F(E). From (3.3), we see that
(3.8) Y(h; E, u, H)=Yw 'h; E, 1, 4),
where 1 denotes the unit element in W(2z(A)). Moreover put

3.9 Z(h; E, A, PR(A)):ZSJ sgn(s) ; Y(h; E, u, sA),

where the sum runs over all s and u such that
3.9) seWs(hFo), ueW(E; Px(A)).

Here W(E ; Px(A)) is given by Definition 1.2 as follows. Let Xy, 3, ---, 2, be
all the simple components of 3=2%x(A), and P;=2X,NP with P=Pz(A), and let
E; (1<i<p) be the part of E in%,;. Then W(E ; P) is the product of W(E;; P;),
where W(E;; P)={ueW(,); uE;e M°"(P;)} if 2; is of class II, otherwise
W(X;; P;) is an arbitrary complete system of representatives of W(ZX,)/I(F;)
with F;=FE¥ consisting of elements u such that uF,= M(P;).

We will prove in § 3.3 that the definition of the function Z does not depend
on the choice of W(E;; P;)’s for X;’s of class I or III. Note that since §F° has
no real root, Ws(hfo) is generated by the reflexions corresponding to compact
roots of §Fo [2(d), § 16, p. 277].

Remark 3.1. When g has a compact Cartan subalgebra, we have pr = {0}.
Hence b=Uy++/— v by in (3.4), and the factor exp A(pp,(x"'X)) in (3.7) dis-
appears.

3.2. Let us prove here an important property of the function Y. Let
E= M°"(Pgr(A)). Assume that weW(3r(A)) satisfies that wF=F, wF,=F,J—F,
for F=FE*, Fy=Fy(E). Then by Proposition 2.7 there exist veWH), geG
such that

ghg”'=h (heAy), Ad(g)|tfr=0,
v(r X)=vpy(w' X) (XEb,) with w'=( II sfaw,

aEF,

(3.10)

where m,=0 or 1 for aeF,, and (—1)™e(—1)™e'=]1 for any two roots a, a’ in
F, such that 2 ¥ axa’)e X r(A).

Lemma 3.1. Assume that E€ M°(Pg(A)) and weW(Zx(A)) satisfy wF=F,
wF,CF\J—F, for F=E* Fy=F(E). Take veW ") satisfying (3.10). Then
for any ueW(Zx(A)),

31D sgnpp(MY(h; E, uw, A)=sgn(w)sgn()sgnw-1pey(A)Y(h; E, u, v4),
whevre

(3.12) sgny-1pp(A)=sgn{ II (4, vpw™7)}.
TEP(E)

Proof. Note that
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sgn(w)=( IT (—=1)™«)-sgn(w’)=( I (—1)™e)-sgn(v).

aEF, aEFy

It follows from wF,CF,J—F, that

3.13) sgnpes (vA)=sgn(w)sgn(v)sgnu -1pm(4) .
In fact, the left hand side is equal to

sgn{ TI (v4, ))FOT} =sgn{ II (A’ VFow/-lT)}
(*) TEP(E) rEP(E)
=sgn{ II (4’, (II sg=)n},

7EP(E) aEF,

where A’=wvzid. Therefore it is sufficient to prove that the last term is
equal to

(**) (ayo( Lyre)- Sgn{ )(/1’, .

To do so, we must take into account of the difference between Fy=F,(E) and
P(E). Put Y=2Xg(A), and let 3=3,0U3,U - U, and E=E,UE,U - UE, be
the decompositions as above. If X; is of class I or Ill, then Fy(E))=P(E;)=E¥
and the product of s« over Fy(E;) in (*) comes out of sgn{:} as the product
of (—1)me over Fy(E;. Assume %, be of class II and express E; as E;=
(ay, @, =+, @y, a4y, -+, &) with the properties (B1), (B2) and (B3) in §1.5.
Then P(E;) and F,(E;) are given by (1.21). Therefore the difference between
them consists of two kinds: (1) P(E;) contains as;_1, @i, 2 Yasi-1+a,;), and
Fy(E;) contains ay;-1, az; (1=50=<m); (2) P(E;) contains ayizi-1, Quyes, and Fo(E;)
contains yeio1tree; 1=ZiZ[(n—10/2]). Put (a/, @)=(csi-1, as;) in (1), and
(o, )=(Qp49i-1F Arasi, Queaici—Queeg) in (2). Moreover put P'={a’, a, 7'=
2°Ya'+a), 7=2"(a’—a)}, then X'=P\U—P’ is a root system of type B,.
Corresponding to the case (1) or (2), we get the following respectively :

sgn {5&(/1', s;"asa’f‘a'é)}=(—1)’"a(—l)m“'sgn(ag'(/l’, o)}, or

sgn{ﬁ_l'[r (A7, sras e o) =sgn{ H (A, o).

Thus we have seen that the product of si*« over a=F\(E;) in (*) comes out of
sgn{-} as the product of (—1)™« over a€ F(E,)NE¥.

On the other hand, Fy(E;—E¥ is a union of pairs {a, a’} such that
2" a'+a)e X p(A). Since (—1)™e(—1)"«'=1 for every such pair, we get
Haepocgij}"(—1)““=Haepo<Ej>(—1)”“- Thus we see that the terms in (*) and
(**) are equal to each other, and get the equality (3.13).

Now it follows from (3.10), |wa|=|a| and wF=F that
B14) T aluw)'X)|(4, vn,a)l/lalz—E(wa)(u“X)I(v/I vrowa)|/lwa|?

aEF

= :Zpa(u“X)l(v/l, vr,)|/lal®.
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Finally consider the factor &4(hy). Since AyCHY with b=}, we can
take from b an element Xy such that hy=exp Xy. Recall that W (2 z(A)) acts
on Ay trivially, then we get by (3.10),

(3.15) §Ahy)=E4(g  hug)=exp(4, Ad(g™")Xy)

=exp(4, viXp)=expwd, Xp)=E,a(hy) .
For the factor exp A(pr,(u~*X)), we have
(3.15") pr((uw) ' X)=vp prw u' X)=vp,w ™" por,(u=X)

=vp,w " pr (U X)=v" v pr(u Tt X)=v " pr(u X))
Then the equality in the lemma follows from (3.13)-(3.15"). Q.E.D.
Corollary. Let E, w be as in Lemma 3.1. Then for any ueW (I x(A)) and

he A,
(3.16) %‘, sgn(s)sgnpcm(sA)sgny-1ppy (s )Y (h ; E, uw, sA)

=sgn(w) - X sgn()Y(h; E, u, sA),
where s runs over Wg(§70) with Fy=Fy(E).
This is an immediate consequence of the lemma.

Remark 3.2. Let V(E) be the subset in W(E; Pr(A)) defined in (1.23).
Then every element w in V(FE) satisfies the assumption in Lemma 3.1 because
of the condition (B2) and Lemma 1.8.

3.3. Let E€M°(Pg(A)). Let Y; be a simple component of Yz(A) of class I
or Ill, and P;, E; and F;=E¥ be as in §3.1. We prove here that the definition
of the function Z(h; E, A, Pr(A)) does not depend on the choice of W(E;; P,).
We define a subgroup K(F;) of I(F;) by

3.17) KF)={weW,); wF;=F;}.
Then applying Lemma 3.1 and its corollary to we K(F;), we get the following.
Lemma 3.2. Let E€ M (Pr(A)). Let X; be a simple component of class |

or NIl of 3Xgp(A) and P;, K(F;) be as above. For weK(F;), take veEW s(§70) for
which (3.10) holds. Then for any ueW(Xr(A)) and he A,

Y(h; E, uw, N=sgn@)Y(h: E, u, vA).

Moreover

(3.18) ; sgn(s)Y(h; E, uw, sA)=Z‘) sgn(s)Y(h: E, u, sA),

where s runs over We(h0). Thus the definition of the function Z(h; E, A, Pa(A))
does not depend on the choice of W(E;; P;).
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Proof. We know by Lemma 1.2 that sgn(w)=1 for we K(F;). Moreover
w™'P(E)=P(E) and hence sgnp(s4)=sgny-i1pm(sA) for E. Therefore the
equality (3.11) turns out to be the first one in the lemma. The rest of the
lemma follows from it immediately. Q.E.D.

3.4. Here we assume that X;(A) is of class I or III. We define two new
functions Y’ and Z’ on ACH® which do not differ essentially from Y and Z
respectively.

Express he A as h=hyexp X with hye Ay, X€bh,. For Fe M(P(A)) we
put sgnp(A)=sgn{ITer(4, vra)}, and

(3.19) Y'(h; F, u, A)=sgnp(A)E&s(hy)
xexp A(pp(u=1X))- EIFexp{— la(u=X)|- (4, vra)|/|a|¥,

(3.20) Z'(h; F, 4, PR(A))=§‘_, sgn(s) %} Y'(h; F, u, sd),

where the sum runs over all s in Ws(h%) and u in a complete system of repre-
sentatives of W(2 g(A))/I(F) with I(F) in (1.37).

We must first prove that Z’ is well-defined, or the sum does not depend
on the choice of a system of representatives of W(Xr(A))/I(F). Let J(F) be
the subgroup of I(F) generated by the commuting family {s,; aF}, then I(F)
is a semidirect product of J(F) and K(F). We see easily that for any we J(F),

3.21) Y'(h; F, uw, D)=Y"(h, F, u, 4).

Now let we K(F). Then repeating the proofs of Lemmas 3.1 and 3.2 word
for word, we get the following.

Lemma 3.3. Assume that 2p(A) is of class 1-1Il and let Fe M(Pr(A)). For
we K(F), take vEWs(hF) for which (3.10) holds. Then for ueW(Xr(A4)),

Y'(h: F, uw, A)=sgn)Y’(h; F, u, vA).
From this lemma and (3.21), we see that for any ueW(Xr(A4)) and weI(F),
(3.22) X sgn(s)Y'(h, F, uw, s/l)=§) sgn(s)Y'(h, F, u, s4) (seWs(").
This proves that the definition (3.20) of Z’ does not depend on the choice of a
complete system of representatives of W(2r(A4))/I(F). Hence Z’ is well-defined.

Now let us study the relations between the functions Y, Z and those Y7,
Z’. Denote by A*(P) with P=Pg(A) the open subset of A given by

(3.23) A*(P)y={h€A; £«(h)>1 (a€ Pr(A))}.

Then ANH'WR)={h€A; £,.(h)+#]1 (a€Xx(A))} is the disjoint union of uA*(P)
over ucW(2g(A)). Put

(3.24) hF={Xeby; a(X)>0 (a€ Pr(A))}.
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Then every element & in A*(P) is uniquely expressed as
(3.25) h=hyexp X with hyeAy, XEb.
Lemma 3.4. Assume that Yx(A) is of class I-1Il. Let Pg(A) be the set of
positive roots. Then for Fe M(Pg(A)),
Z'(h; F, A, PR(A)=Z(h; F, A, P(A))  (he A*(P)),
and if ueW(Xr(A)) satisfies uF e M(Pg(A)), then
Yh; F, u, )=Y(h; F, u, A) (he A*(P)).
Proof. Let us first prove the second equality. Assume uFe&M(Pr(A)).
Then ua>0 for acF and therefore (ua)(X)=a(u 'X)>0 for Xeb}. Hence by
the expression (3.25) for he A*(P), we get the second equality. The first one

follows from this immediately by taking a sum over a complete system of represen-
tatives of W(X r(A))/I(F) consisting of elements u such that u Fe M(Pr(A)). Q.E.D.

3.5. Let us now study the boundedness of the functions Y, Z, Y’ and Z’.
This property relates directly with the temperedness of the invariant eigen-
distributions which will be given later by means of these functions. These
distributions cover the discrete series characters.

Lemma 3.5. Let E€ M (Pr(A)) and ueW(E ; Pi(A)). Then for he A*(P),
|Y(h; E, u, )| =1,
| Z(h; E, A, Pe(A)| =$W(§70)-$W(E ; Pr(A)),

where Fy=Fy(E), and for a set C, $C denotes the number of elements in C.
Assume that Y(A) is of class I-1ll. Let FEM(Pi(A)) and ueW(Zr(A)),
then for any he A,

|Y'(h; F, u, D=1,
| Z'(h; F, A, P(A))| <8We(5")-$W (X r(A)/$I(F).

Note that A(pr5y)C+/— L' R, then the above inequalities are easy to prove.

3.6. Consider W(Zr(A)) and Wg(A*(P)) as subgroups of Ws(A) canonically.
Then every element w in Wg(A) is expressed uniquely as
(3.26) o=uw’ with ueW(g(4)), o' eW(A*P)),
and it operates on h=hyexp X€ A with hye Ay, X€h as
(3.27) wh=(w"hy) exp(uaw’X),

where @’ denotes the element in Wg(h) induced canonically from w’. (In our
convention, @=ua’.)
Let us study how the fundamental functions behave under W;(A*(P)). Let
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weW(A*(P)), then @Pr(A)=Pr(A). From this, we see that w=a satisfies for
any standard element E of M (Pr(A)) that wF=F, wF,=F, for F=E%*,
F,=Fy(E). In fact, let 2 be a simple component of X (A4) and put P=23NPgr(A).
Then the standard element of the given type of M°(P) is uniquely determined
by P. Since wPr(A)=Pgr(A) for w=o, we have wE=EF (recall that M°(P)=
M(P) by definition if 2 is of class I or III). Hence wF=F, wF,=F,.

Note 3.2. For the simple root system X of type A, (n=2), E; or Dy
(N=4), there exists at least one outer automorphism w; of 3 such that w,P=P,
which gives an automorphism of the Dynkin diagram of 2. In particular, for
Dy (N=5) realized as in (1.7), we have

(3.28) wilei—e)=e;—e (1SISN—-2), wilev-iteny)=en-1Fen.

For D, realized as in (1.7), w, is an element of the group generated by the
reflexions corresponding to the vectors

(3.29) ey, e1—ey—ey—e,, ey—e,—ezte;.

Note that for Dy (N=4), w,F=F for any Fe M(P).

Applying Proposition 2.7 to w, w=& and F,=F(FE), we see that there exist
g€ G, vEW(h) satisfying (3.10). Then we have the following.

Lemma 3.6. Let weW(A*(P)) and put w=d. Let E be a standard element
in M°"(Pg(A)). Then for any usW(Xr(A)),

Y(wh; E, u, AH)y=sgn(w)sgn()Y(h; E, wuw?, v4),
where veEWg(§70) is given by (3.10), and moreover
Z(wh; E, A, Pe(A)=sgn(w)Z(h ; E, A, Pa(A)).

Let Y x(A) be of class 1-11l and F a standard element in M(Pr(A)). Then
Y(wh; F, u, MH)=sgn(w)sgn)Y’(h; F, wuw™?, vA) (ueW(X(A))),
Z'(wh; F, A, Pe(A)=sgn(w)Z'(h; F, A, Pp(A)).

Proof. Let weW4(A*(P)), then by (3.27), o 'h=w'hyexpa'X for h=

hyexp X€ A, where w 'hy€Ay, @ *'X=w"'Xeh,. First consider the factor
sgnp(A) in Y. Then since wF=F, wF,=F, we get as in (3.13),

sgnpce(WA)=sgn(w)sgn(v)sgnu,-1pce(A)
Moreover since wE=E, we get w 'P(E)=P(E) and
(3.30) sgnpc(vA)=sgn(w)sgn(v)sgnp (1) .

Next consider &,(w 'hy). Let Xy be an element in )™ such that exp Xy=hy,
then
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(33D Efw " hy)=E4(g  hug)=exp A(Ad(g™)Xv)
=exp A Xy)=exp AN Xp)=Evahy) .
For the factor exp A(pr,(u '@ X)), we have as for (3.15),

(3.32) A(ppo(u“a"X))=/I(ppo(w"-wu“’w"X):vA(ppo(wu‘lw“X)).
For the rest part of Y, note that for acF,

a(u o X)=(wua)X), [(4, vp)|=|wd, vpwa)l.
Therefore noting that wF=F, we get

(3.33) Epa(u“é"X)l(A, vr,) |/ |a]*= %F(wua)(x)l(/l, vpowe |/ |wa|®
= %‘,F(wuw“’a)(X)l(v/l, vr,a)|/e|®

Thus we get the first equality in the lemma from (3.30)-(3.33).
Now let us deduce the second equality from the first. We get from the
first equality that

Z(w'h; E, 4, PR(A))=§ ; sgn(s)Y(w 'h; E, u, sA)
=sgn(w) X ‘T—‘ sgn(s)Y(h; E, wuw™?, sd),

where u and s runs over W(E ; Pr(A)) and Ws(h™0) respectively. Let X' (resp.
3'?) be the root system consisting of all simple components of X z(A) of class I
or III (resp. of class II), then wX*=2" for i=1, 2. Put Pi=JXN\Pg(A), and let
Eie M°"(P*) be the standard elements canonically corresponding to E. Then
wF'=F! with F'=(E")* and wE?=E?, because wP*=P* (1=1, 2). Every element
ueW(E ; Pr(A)) is expressed uniquely as u=u,u, with u;€W(E?; P%). Noting
that ui=wu,weW () for /=1, 2, it is sufficient for us to see that when u;
runs over W(E®; P%) (=1, 2), u; runs over a complete system of representatives
of W(XY)/I(FY) such that uiF'e M(P?), and u; runs over W(E?; P?).

First consider u,. Since wP!'=P!' and wu,w*F'=wu,F*', we see that
wuw 'F* belongs to M(P!) and runs over M(P!) exactly once when u; runs
over W(E*'; PY). This gives us the desired fact for u;. Now consider u,. Let
2 be a simple component of 2? and put 2’=wJX. Then the transformation
w|2 of X onto 2’ preserves the order relations because wP=P’ with P=P*NJ2,
P'=P*N3’'. Let L and L’ be the standard elements of M°(P) and M°(P’)
corresponding to E? respectively. Then wL=L’. Let v be W(X)-component of
us, then W(2’)-component of wu,=wu,w™' is v"=wvw~'. On the other hand,
2’-component of u;E? is equal to v'L’=w(vL). Since w|2 preserves the order
relations and v L € M°"(P), we get w(vL)e M°"(P’). This proves that u;E*e M°"(P?)
and hence u;eW(E?; P?). Moreover, as is easily seen, u; runs over W(E?; P?)
exactly once. Thus we get the second equality in the lemma from the first.

The assertion on Y’ and Z’ can be proved similarly. Q.E.D.
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3.7. Assume that XYr(A) is of class I-IIl. Let us study the symmetries of
Y’, Z' under W(Z z(A)CTW(A).

Lemma 3.7. Assume that Zr(A) is of class I-1ll. Then the functions Y’
and Z' satisfy the following: for FE M(Py(A)) and w, ueW(Zr(A)),

Y'(wh: F, u, H)=Y'(h; F, wu, A),
Z'(wh; F, A, Pp(A)=Z'(h; F, A, Pr(A)).

Proof. Express h as h=hyexpX with hy€ Ay, X<€b,. Then by (3.3),
wh=hyexp wX. Since a(u'wX)=a((w'u)*X), we get the first equality. To
deduce the second equality from the first, note that when u runs over a com-
plete system of representatives of W(Xx(A))/I(F), so does w™'u. We know by
(3.22) that the definition (3.20) of Z’ does not depend on a complete system of
representatives of W(Xr(A))/I(F). Therefore we get the second equality from
the first. Q.E.D.

3.8. When X z(A) is of class I-III, the function Z(h: E, A, Pg(A)) does not
depend on the choice of the root vectors X., (e F=E*) used to define the
transformation vy (see §6.1). If Yz(A) contains a simple component of class II,
this is not the case. However the dependence of the definition of the function
Z on the choice of root vectors X..(a€F,=F,(E)) is so little that we can cancell
it out by putting the following simple regularity condition on the choice of these
root vectors (see §6.1).

ConDITION 3.1. In the definition (3.9) of the function Z(h; E, A, Pr(A)),
we choose the root vectors X..(a€ Fy=F,(E)) in such a way that there exists
a system of root vectors X, (reF’'=F(E)JE*) such that if 7,7’€F’ and
7'*treF’, then X, ,,=e*[ Xy, X, ] for e==+1, where a=1 or 0 according as
the simple component of Xi(A) containing 7, 7’ is of type B, with n odd or
not.

In §9, we need the following lemma. For d=2Xz(A), define v=y; by means
of root vectors X.;€q such that [X;, X_;]=H; Then for yeIa(AY, we have
vpedR(A’) by Lemma 2.1, where A’ is the connected component of H%* con-
taining {h€A; £.(h)=1}. Define a root vector X,,€gq for vy from a root
vector X, €q for » as follows: X,,=vX,=X, if » and 0 are strongly orthogonal,
and X,,=e¢+~/—1vX, otherwise, where e==1 such that e7>0 (cf. Lem. 2.2).

Lemma 3.8. Let y, 7’3 r(A) be such that v’ Ly, v’ 7€ X r(A), and € 3 z(A)
orthogonal to v, v’. Then for a=0, 1, the relation X, . ,=e* [ X, X1 (e==%£1)
gives Xopioy=¢[ Xy, Xop] 0 Xipwor=e"""[—X.p, Xop] according as 7 is
strongly orthogonal to 0 or not. In the latter case, 1, v/ and & are three short
roots in a simple component of type B, (n=3) or F, of 2r(A).
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Proof. 1t is sufficient to note that y and § are not strongly orthogonal if
and only if so are not 7’ and §. In fact, in this case, the simple component of
3 (A) containing 7, 7’ and 6 must be of type B, (n=3) or F,. Q.E.D.

Note 3.3. Note that if a root system X is of type B, (n=3) or F,, then
for a short root €2, the root system X? is of type B,.; or B; respectively.
To explain the significance of this lemma, let us take the case where 2z(A) is
simple and of type B, with n=2k+1 odd. Then for any standard element
E= M (Pi(A)), FE)={esi-1+e,; (1<i<k), e,;} in the realization in (1.3) of Pr(A).
Put 6=e,, v=y; and ei=ve;€Xr(A’) for 1=i=<n—1. Let E’ be the system
obtained from vE by removing out the last element vd. Then E’ is a standard
element of Me°"(Pg(A”)) for Pr(A)=u(Pr(A)NZR(A)), and F(E’)={es;-1+es;
(1=iZk)}. Put Fy=Fy(E), Fi=F(E’), then we have vp=vr,vs, where vp, is
defined by means of a system of root vectors S={X, ; p€ F;\U—F;} and vr, by
S'={X,,; neF)\U—F,, # =0} canonically defined from S. We see from Lemma
3.8 that if the original system S of root vectors satisfies Condition 3.1 for E,
then so does for E’ the new system S’. (For the general case of X z(A), cf. §9.6.)

For the significance of Condition 3.1, see also Lemmas 7.5 and Al.

§4. Recapturation of fundamental theorems

Let G be a connected real semisimple Lie group and G’ its subset consisting
of regular elements. Let us recall here a theorem in [5(c), § 4] giving a neces-
sary and sufficient condition for that an invariant analytic function on G’ defines
canonically an invariant eigendistribution on G. This theorem is the principal
tool to calculate the discrete series characters. We also recall a characterization
of the discrete series characters as a special kind of tempered invariant eigen-
distributions on G [2(d), §§ 40-41].

4.1. As is well-known, the character of an irreducible quasi-simple repre-
sentation of G on a Hilbert space is an invariant eigendistribution on G. On
the other hand, an invariant eigendistribution = on G coincides essentially with
an (invariant) analytic function on G’ which will be denoted by z’:

(41) "= fox@dg  (feCFGY,

where dg is a fixed Haar measure on G and C3(G) is the space of all C*-func-
tions on G with compact supports.

Let H® be a Cartan subgroup of G corresponding to a Cartan subalgebra
of g. Assume that G is acceptable [2(b), § 18]. Then the character &, of HY
is canonically well-defined, where o denotes half the sum of roots in P(§). Put
for he HY,
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A(h)y=&,(h) TI (1—Ea(h)),
(4.2) aEeP(h
A"?e(/l)=aePH o (1—=&a(h)™H).

R(

Let H’S, H'(R) be the subsets of H" defined by 4%h)#0, 4'%h)+0 respectively
and put

4.3) ek(h)=sgn(d'}k(h))  (heH'"(R)).

For an invariant eigendistribution = on G, put
Bh)=4h)r'(h)  (heH'™),
£(h)=eR(h) A ()’ (h)=eR(h)E%h)  (heH'Y),

(4.4)

Then it is known that £ and «% can be extended analytically from H’® onto
H'%(R) [2(b), §19]. Note that the definitions of % and x" depend on the set
P(h) of positive roots of f. In the case when this is crucial in the discussions,
we denote 4%h), #%h) and £%h) respectively as

A PO), &h; PO), %h; P(B)).

Let )’ be a Cartan subalgebra conjugate to § under G. Choose a g= G such
that Ad(g)h=%’. Then there exists a weWH,)=W(2(H")) such that

Ad(@)P(h)=wP(y").
In this case we get

(4.5) B(h)=sgn(w)i¥(ghg™") (heH’).

For an element weW4(H?Y), denote by @ the corresponding element in Wg(h)C
W(%.) and put e(w)=sgn(@). Then A%wh)=e(w)4%h) and hence

(4.6) Bwh)=cw)i'h) (heH'Y(R)).

Moreover, define a sign &(w, h)==+1 for w€Ws(H" and he H® as in [5(c), § 2.1,
(2.2)], then it is locally constant in & and it holds that

4.7 e wh)=¢clw, h)h) (he H'Y(R)).
Take a connected component A of H® Then
(4.8) ANHM(R)=1{h€ A; &€,(h)+1 (ac Px(A))},

and this set is a disjoint union of uA*(P) over all ueW (3 x(A)CTW(A), where
A*(P) is given by (3.23). Note that for h€ A*(P), ek(h)=1 and so

B(h)=kh)  (he A*(P)),
and that we can define e(w)=sgn(@) for w€W(A*(P)) as above, and then
(4.9) B(wh)=e(@ih)  (heA*(P)).

The reason why we define two kinds of functions £% and % is the following.
They are both natural from the various points of view, for exemple, £ can be
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extended to a continuous function on the whole H® [5(c), §2.2, Th. 1]. Con-
cerning the discrete series characters in the present question, the situation is as
follows. When X z(A) is class I, £% for such a character = can be expressed on
the whole A by a single formula using the functions Z’(h, F, 4, Ps(A)) with
Fe M(Pg(A)). On the contrary, when Xz(A) is not of class I, such is not the
case and we give &% on A*(P) by a formula using the functions Z(h ; E, 4, Pr(A))
with E € M°"(Px(A)), and for other connected component uA*(P) with u € W(2 z(A))
of ANH'%R), &% on it is determined from #%| A*(P) by means of (4.6).

4.2. Let us give the necessary and sufficient condition mentioned at the
beginning of this section.

Denote by Car(g) (Car(G) resp.) the set of conjugate classes under G of
Cartan subalgebras of g (Cartan subgroups of G resp.). We fix a complete
system of representatives 2 of Car(g). Then H® (he ) gives a complete system
of representatives of Car(G). Assume that the set of positive roots P() is fixed
for every h= Q. Denote by Car’G) the set of all conjugate classes under G of
connected components of Cartan subgroups of G, and let £° be a complete
system of representatives of Car’(G) such that every element A in £° is a
connected component of H® for some He 2.

Assume that we are given a system of functions {(h; A*(P), P(§)) on A*(P)
for every A 2° with H'DA and that they satisfy the following condition.

(a) Symmetry condition. For any w€Wg(A*(P)) and he A*(P),
(4.10) Lwh ; AX(P), P(h))=e(w)l(h; A*(P), P(Y)).

Then, extending this system of functions, we can define uniquely for any
Cartan subalgebra §’ and any P(%’) a function #%(h)=#%(h; P(§")) on H'"(R)
in such a way that they altogether satisfy the conditions (4.5) and (4.6).

Let S(%.) be the symmetric algebra of §, and I(f.) its subalgebra of elements
invariant under W(5.). Let Y’ be another Cartan subalgebra. Then we say that
a homomorphism X® of I(§.) into C is consistent with a homomorphism X" of
I(%)) into C if X(D)=xY(vD) (D€ I(Y,)) for an inner automorphism v of g, such
that vh,=H..

We consider the following condition on the system of functions
L(h; A*(P), P(B) (A€ 2.

(b) Differential equations. There exists a system of mutally consistent homo-
morphisms X% of 1(8e) for HE R such that for A with H'DA,
(4.11) DE(h; A*(P), P(oO)=XYD)(h ; A*(P), P(B)) (Del(be)).
To state the necessary and sufficient condition, we need one more condition
on {'s. For ye2'(h), put
H,={heH"; &(h)=1},

(4.12)
EyR)=1{heE,; &(h)*1 for any deXp(l), #x7}.
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Let A=2° with H'DA. Let Xp(A), Pr(A)=2(A)NP(Y) be as in §2.3. Denote
by IIx(A) the set of simple roots of Xz(A) with respect to Px(A4). Then any
wall of A*(P) in A is given as &,NCI(A*(P)) for some a< Ilz(A), where CI(E)
denotes the closure of a set E. For an asllz(A), put H*=v.(h.)Ng and let A®
be the connected component of H% containing the wall £,NCI(A*(P)). We

know that B=v,a is a singular imaginary root of §* and it follows from (2.7)
that

Bp=8,=H'""H", FsNADE.NA.

Note that S,(R)CH’R) and that, under the condition (a), the function #&°
coming from some { by the conditions (4.5) and (4.6) is analytic on H’%R), and
moreover that, under the condition (b), the function &% A*(P)={(-; A*(P), P(}))
has finite limit values everywhere on the walls of A*(P). Thus the following
equation has meaning: let P(§*)=v.P(}), then for he 5, (R)NCI(A*(P)),

13) L expH); PO (o= g B exp(tn/ =T Hy; PO oco,

where the left hand side denotes the limit values for t—--0.

Let us rewrite this equation by means of {’s. There exist unique '€ 2
and Ce 2° such that CCHY, Ad(g)j*=Y and gA%g '=C for some g G. Note
that we fix P(§), P(%") for §, Y apriori. Since W(2 r(C)CW4(C), we may
assume that g(A*)*(Pr(A%)g *=C*(Pr(C)), or equivalently, Ad(g)Pz(A*)=Px(C).
(Note that Yp(C)=(Ad(g)°v.)Xr(A)*, where Jp(A)*={re3x(A); rLa}.) There
exists weW(,) such that Ad(g)P(h*)=wP(h’). Then under the condition (a),
we get for he A (P)=(A%)*(Pr(A%)),

#BCh; P()™)=sgn(w)i" (ghg™; P(Y"))
=sgn(w){(ghg™; C*(Pr(C)), P(})).
Thus, rewriting the equation (4.13), we have the following condition on {’s.
(¢) Boundary condition. For A€ ° with H'DA and a€ Il z(A), take H' €L,
Ce R and g€ G such that Ad(g))*=Y and C is the connected component of HY

containing g(E.NA)g™" and moreover that v,Pr(A)=Ad(g)'Pr(C). Let w be an
element in W(4.) such that (Ad(g)sv.)P(§)=wP(Y’). Then for he 5L(R)NCI(A*(P)),

(4.14) Hl(h; A*(P), P(h)=sgn(w)Hgl(h; C*(P), P(Y),

where the left hand side denotes the limit value at h.
The following theorem is a version of Theorem 3 in [5(c), §4.3].

Theorem A. Let 2 and £2° be complete systems of representatives of Car(g)
and Car®(G) respectively such that for any A€, H'DA for some h£2. For
an invariant eigendistribution © on G, put for A€ £2°,

(4.15) L(h s AR(P), P)=4%h; P(O)rn’(h)  (h€ A*(P)NG).
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where W€ Q is such that ACHY. Then { can be extended to an anlytic function
on A*(P), and the system of functions {(-; A*(P), P(h)) (A€’ satisfies the
conditions (a), (b) and (c) above.

Conversely assume that a system of analytic functions (- ; A*(P), P())) on
A*(P) is given for A€ 2" in such a manner that the conditions (a), (b) and (c)
hold. Then it defines uniquely an invariant analytic function =’ on G’ by (4.15),
and an invariant eigendistribution = on G by (4.1).

To deduce this theorem from Theorem 3 in [5(c), §4.3], it is enough to
apply Lemma 7.9 in [5(c), §7.4].

4.3. When G has a finite center, Harish-Chandra defined the temperedness
of a distribution on G in [2(d)]. He also gave a criterion for an invariant
eigendistribution # on G to be tempered by means of the functions £% (or &9

corresponding to it [2(d), §19]. For the present purpose it is sufficient for us
to quote it partially as follows.

Theorem B. Assume that the center of G 1is finite. Then the following
condition (d) is sufficient for an invariant eigendistribution m on G to be tempered.
Movreover it is necessary if the infinitesimal character of = is regular.

(d) Boundedness. The functions &% (or &%) corresponding to m is bounded on
H'R) for every Cartan subalgebra Y.

In this paper, we use the following conventional terminology: evenwhen G
has an infinite center, an invariant eigendistribution = on G satisfying the con-
dition (d) is called tempered.

In [5(d), §§8-9], we have studied the existence and the uniqueness of
tempered invariant eigendistributions in general for G with finite center. The
method and the discussions there can also be applied to G with infinite center.
In particular, we get the following theorem which serves very conveniently to
calculate explicitly tempered invariant eigendistributions, especially the discrete
series characters. To state it, we need a certain order in Car®(G). Let A be a
connected component of HY and denote by [A] its conjugate class in Car%G).
Take acXi(A) and let A% be the connected component of HY* containing
ANE,. Then we put [AJ<[A*]. Extending this relation transitively, we get
an order < in Car%G) which is naturally related with the condition (c) in §4.2.
In the proof of the existence theorem, Theorem 11 in [5(d), § 8], we gave a
method of constructing tempered invariant eigendistributions on G inductively
according to the order < in Car’(G). Depending on this inductive process, we
proved the uniqueness theorem, Theorem 12 in [5(d), §9]. In the way of the
proof of this theorem, we get the following result.

Theorem C. Let G be a connected semisimple Lie group not necessarily
center finite, and m an invariant eigendistribution on it. Put £'=A%7’ on H'®
for Y€ 2, and put for A€ Q°, &(-; AT(P), P(h)=k"| A*(P), where H'DA. Then
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fY A is uniquely determined by {(-; A*(P), P(§)). Assume that m is tempered
and its infinitesimal character is regular. Then for any As$°, the function
L5 A*(P), P()) is uniquely determined by the family of functions {(- ; C*(P),
P®)) with HYDC such that [CI>[A] under the conditions (a), (b), (¢) and (d)
all restricted on Q(A)={CeR; [CI>[A] or =[AT}.

4.4. Let b be a Cartan subalgebra of g such that the dimension of its
vector part takes the possible minimal value. Then B=H" is connected. Let
0% and 0% be as in §3.1. For Aeb}, define a function {4 on B by
(4.16) Cab)y= 2 sgn(w)§ ., a(b).

wWEW g (b)

Note that in this case Wg(b) is canonically isomorphic to W4(B), and identifying
them with each other, we get &,(b)=&(w™'b). Moreover note that, since
2 r(B)=0, we get M(Pgr(B))=0, M°(Pr(B))=0 and hence putting E=0, we get
from (3.9) and (3.20) that

(4.17) CAD)Y=Z(b; E, A, P(B)=Z'(b; E, A, Pg(B)).

(In this case, the symbol Pg(B) has no meaning in the definition of Z and Z'.)

Assume now that B is compact. Then G has the discrete series repre-
sentations and their characters are characterized as a special class of tempered
invariant eigendistributions on G as follows ([2(c), Part II] and [2(d), Part III]).

Theorem D. Assume that G has a compact Cartan subgroup B. For A5,
there exists at least one tempered invariant eigendistribution = on G such that
the corresponding function #*=A4°z" on BNG’ is equal to {4 in (4.16). In partic-
ular, if Ais regular, = is unique and equal to the distribution @4 in [2(c), § 24].
The distribution

(—1)%e(A4)0 4

is the character of a representation of G in the discrete series. Here

e(D=sgn{ II (4,71},
TEP ()
(4.18)
¢g=2"'(dim G—dim K),
where K is a maximal compact subgroup of G. Moreover any such character is
given in this form.

§5. Formulas for the discrete series characters

Fix a Cartan subalgebra b of ¢ such that its vector part has the possible
minimal dimension, and put B=H® We fix once for all the set P(b) of positive
roots in X(b). In this section, we give explicitly a tempered invariant eigendis-
tribution 7,4 such that #°={,, for any A€b¥. More exactly, for any fixed set
of positive roots P(§) in 2(§), we give the function £% on H’5(R) corresponding
to =, for any Cartan subalgebra %) of g. Note that since A is taken to be
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regular, 74 is uniquely determined by 4. When B is compact, =, is equal to
the distribution @4 in §4.4. Therefore the discrete series character (—1)%(A4)6 4
is written down quite explicitly on every H’S. The proof of these formulas will
be given in the subsequent sections.

5.1. Let § be a Cartan subalgebra and A a connected component of HP".
The explicit form on A of the function &% essentially depends on the type of
the root system X z(A) and is simple when 2 z(A) is of class I-IIl. Let us first
treat this case.

Assume that Xg(A) is of class I-IIl. Take an element Fe M(2z(A)), then
by Lemma 1.2 and Proposition 2.4, §¥ is conjugate to b under G. Let g, be an
element in G such that Ad(g,)b=%", and denote A-Ad(g,)~*|9% by Ad(g,)4, then
Ad(go A (hF)*. (Note that since Yr(A) is of class I-III, M“r(PR(A)):M(PR(A)):
M(Pg(A)) formally, by definition in § 1.7.)

Theorem 1. Let A€b}’. Let n)y be the invariant analytic function on G’
corresponding to the invariant eigendistribution w4. Let A be a connected com-
ponent of a Cartan subgroup HY When Sg(A) is of class I-1ll, the function
ny| ANG’ is given as follows. Let F be the unique standard element in M(Pg(A))
with respect to Pp(A)=23pg(A)NP(Y). Then there exist an element go,=G and a
woeW(b,) such that

6.1 Ad(go)b=18", Ad(go)w,P(0)=vpP (D).

Then for he ANH'(R),

(5.2) £%h ; P(9))=(ekd®)(h ; P(5)mu(h)
=sgn(wo)s(F)Z'(h; F, Ad(go4, Pr(A)),

where the function Z' on A is given by (3.20), and the sign ¢(F) in Definition 1.3
is given by

(5.3 e(F)=(—1*".

Remark 5.1. Midorikawa gave in [7] an analogous formula for the sum of
the discrete series characters with the same infinitesimal character. But he
excluded the type GI for the simple factors of G (for the definition of type G/,
see [9, p. 429]), and assumed that G is linear. Thus he treated the sum of
sgn(w)@, 4 over weW(b,). Note that the formula in Theorem 1 is a reduced
one, that is, there occurs no cancellation between terms appearing in it.

5.2. Now let us treat the general case. Let A be a connected component
of HY% For any simple component 2 of 2Xg(A) of class II, we consider the
canonical order corresponding to P=3NPx(A). Let {E,, E,, ---, E,} be the set
of all standard elements in M°(Pg(A)). Then as is seen in §1.5 and §1.7, the
associated strongly orthogonal systems Fy(E;) coincide with each other (denote
it by Fy). There exist go=G and w,eW(b,) such that
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(5.4) Ad(go)b=19", Ad(go)w,P(b)=vp P().

Here we put the following regularity condition on the choice of the root vectors
X.aeF,) used to define vp, (cf. Lemmas 6.2 and 7.5).

CONDITION 5.1. Put F'=\U,4i,(E;)*DF,. The root vectors X., (a€F,) are
so chosen that there exists a system of root vectors X., (y€F’) such that if
7, 77€F’ and y'+refF’, then X,.,=e*[X,, X, ] for e==+1, where a=1 or 0
according as the simple component of Yr(A) containing 7, 7’ is of type B, with
n odd or not.

Let A*(P) with P=Pr(A)=2r(A)N\P(h) be a connected component of
ANH'"(R) given by

(5.5) A*(P)y=1{he€A; £.(h)>1 (a€ Pr(A))}.

Then ANH'R) is a disjoint union of uA*(P) over usW(2Zr(A4)), where
W(Xr(A)) is imbedded canonically into Wg(A). We give the function &% corre-
sponding to w4 on every uA*(P) separately as follows.

Theorem 2. Let A€b% be regular and =, the tempered invariant eigen-
distribution on G such that B*=A4c)=C,. Put &%h; POO)=4%h ; P())xy(h) for
he H’®. Then for any connected component A of HY, £% is given on it as follows.
Let E;€e M (Pr(A)) (1Zi<r) be all the standard elements in M°(Pgr(A)) and F,
the strongly orthogonal system associated to them. Let go€G and w,eW(b;) be
as in (5.4). Then for he A*(P),

(5.6) &h; P(f)))——"sgn(wo)ls;sre(Ei)Z(h ; By, Ad(go)A4, Pr(A)),

where the function Z is given by (3.9-(3.9') and the sign e(E;) is given by
(1.39)-(1.39). Moreover for ucW(Sx(A)), he A*(P),

(5.7 Buh ; P(h)=sgn(u)i’(h ; P(9)).

When the Cartan subgroup B is compact, the discrete series character
(—1)%(A)O 4 is given on A*(P) by

e(EVZ(h; By, Ad(g)A, P(A)
68 (—Lfsgn(we(d), 2, A P(5)

where q and e(A) are given in (4.18).

It follows from Lemma 3.4 that when Xi(A) is of class I-III, the formula
(5.2) in Theorem 1 and those (5.6)-(5.7) in Theorem 2 concide with each other.

Remark 5.2. The character formula for Sp(n, R) given in [5(e)] is essen-
tially the same as that given above. Let M§(Pgr(A)) be the subset of M°"(Pg(A))
consisting of E such that E*e M(Pg(A)) is strongly orthogonal. Note that
M (P A=W (F,; Pe(A)E, where W(F,; Px(A) is the subset of W(Zr(A))
defined in (1.23). In [5(e)], we use essentially M (Pr(A)) or equivalently
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W(E,: Px(A)) to give a formula for #% on A, and the roll of M (Px(A)) is
implicit there. (Determine W(ﬁ‘ o Pr(A)) as a subset of a symmetric group as in
(1.28)-(1.28") and compair it with the formula in [5(e), §7, Th. 5].)

Remark 5.3. Assume that Yz(A) is of class II. For an Fe M(Pgr(A)), the
set W(E; Pp(A)) is expressed as a product of U(F) in (1.24) and V(F) in (1.23)
by Lemma 1.7. Note that the subset U(ﬁ)ﬁ in A7I(PR(A)) can be canonically
identified with the subset of M(Pr(A)) consisting of elements conjugate to F
under W(Xr(A)). These facts mean that anyhow the formula (5.6) for #° can
be rewritten by means of M(Pr(A)) not using M (Pr(A)) explicitly. By Remark
3.1, for any we V(ﬁ‘), F and w satisfy the condition in Lemma 3.1 and hence
the equality (3.11) holds. We ask in what extent this equality serves to simplify
our formula (5.6) for &

Remark 5.4. When Yx(A) contains simple component of class II, the general
formula (5.6) for #% can be reduced to more simple forms in some special cases,
for exemple, for the holomorphic discrete series (cf. [3] and [6]) for the groups
locally isomorphic to Sp(n, R). For Sp(n, R), we have shown in [5(e)] that
this reduction of the general formula can be carried out easily. See also Appendix
of this paper. However, as is remarked in Introduction, the formula (5.6) is the
most reduced one when we consider the function £% A as a function of two
variables he ANG’ and A6},

§6. Outline of the proof of main theorems

To prove Theorems 1 and 2, we apply Theorems A and B. To prove The-
orem 1 only, it is a short passage to apply Theorem C. But, because of Lemma
3.4, Theorem 2 contain Theorem 1 essentially, and therefore we give here a
proof for Theorem 2 only.

6.1. First of all, we must prove that the function £% in Theorem 2 is well-
defined. Next we study the relation between %% and %" when §) and ¥’ are
conjugate to each other under G. Thus we shall prove in this subsection the
following.

(1) For any connected component A of HY% the function #£°| A*(P) defined
by (5.6) does not depend on the choice of root vectors X., for a€F, (=Fy(E;)
for any 7) satisfying Condition 5.1. (These root vectors are used to define the
automorphism vr, and the Cartan subalgebra §" =gy h..)

(2) Let b and ¥’ be two Cartan subalgebras of g conjugate to each other
under G (we admit the case h=%’). Let P(f)) and P’(}’) be the sets of positive
roots of % and %’ respectively, and choose a g€ G such that Ad(g)y=Y. For
heH’®, put hf=ghg-!, then

(6.1) AiCh s P(O) &R 5 P(6)=4Y(h® ; P’(§)7'&Y (h* ; P'(§")).

Let us analyse (1) more in detail. Let {X¥*.} be another choice of root
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vectors for a€F, such that X*,eg, [X*, X*,]J=H,, and satisfying Condition
5.1. Using these root vectors, we define an automorphism v¥, analogously as
vr,, and put I)F°'*=gf\vifobc. We can choose gfeG and wfeW(b,) in such a
way that

(6.2) Ad(ghb=ph"o*,  Ad(gfHwiP(b)=v¥P(D).

For a while, we denote the function Z(h; E;, Ad(gh)4, Px(A)) on A by
Z(h; E;, Ad(gH4, Pr(A); vE,) indicating explicitly the automorphism v¥, under
use. Then it is sufficient to prove the following equality :

(6.3) sgn(wi) 3 e(E)Z(h; Ei, Ad(@)A, Pr(A); vE)
=sgn(wo) 3 «(E)Z(h; Ei, Ad(go)d, Pi(A); vr,).

Therefore it is also sufficient to prove that for 1=/=r,
(6.4) sgn(w¥)Z(h; Eq, Ad(gh) 4, Pr(A); v¥)
=sgn(wo)Z(h; E;, Ad(gy)4, Pr(A); vr,).

This equality will be proved in more general setting in the proof of the assertion
(2) (Lemma 6.2).

Now let us analyse (2). Let X.. for a€F, vr, g,€G and weW(b,) be
those elements used to define &%h; P(h)) by (5.6). Take a g=G such that
Ad(g)h=1’. We transform the above things by g as follows:

h¥=Ad(g)h (=), P4(h*)=Ad(g)P(h), Af=gAg™', PE(A%)=Ad(g)Pr(A),
6.5  a*=Ad(@acIp(h?), Xfas=Ad(@)X.. (a€F),
Ef=Ad(@)E;, v%s=Ad(g)evr,cAd(g)"

Note that the canonical order in a simple component X of class II of 23(A)
corresponding to P=XNPg(A) is transformed by g to that in Yf=Ad(g)¥
corresponding to P¢=Ad(g)P. We see that (i) E¥#’s are standard with respect
to P§(A%) and F&§=Ad(g)F, is associated to them, (ii) vrg is defined canonically
by Xé.s(afcFg), and (iii) (§*)7¢ (=aNvrghf)=Ad(g)h™. Therefore we get

(6.6) Ad(ggb="", Ad(ggow.P(6)=vrgP5(h%).

Thus we see that the general case is reduced to the case where §)’=} and
P'(§)# P(h) by the following lemma.

Lemma 6.1. Assume that (5.4) holds. For a g€G, put H¥=Ad(g)h, P4(5%)
=Ad(g)P (V) etc. as in (6.5), then for he H?,

A%h; P(O)=4"(h®; P2(}%)),
and for he ACH?,

(6.7  Z(h; Ei, Ad(god, Pr(A); vr)=Z(h*; Ef, Ad(ggo)d, PE(A®); vrg).
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Proof. The first equality is easy to prove. Let us prove the second one.
Note that in the decomposition of A# analogous as in (3.1), we get (A%)y=
gAvg'=(Ap)%, HY¥=(H})?. Then the second equality follows directly from the
definitions (3.7) and (3.9)-(3.9") of the functions Y and Z. Q.E.D.

Thus the proof of the assertion (2) is reduced to the case where g=e¢, hence
b’=%. In this case, the equality (6.1) takes the following form :

6.8) A1 PO &5 h; P()=4%h ; P"(§)"&%h ; P'(B)).
Note that there exist uniquely a weW(l),) and a ureW(Xr(A)) such that
(6.9 P())=wP(), PrlA)=urPr(A),

where Pr(A)=2(A)NP'(). Then A*(Pr(A)=urA*(Pr(A)). Therefore taking
into account (5.7), we see that the above equality is equivalent to the following :
for hex4+(PR(A))v

68)  szgn(w.) 3 «ENZ(h; Ei, Adlgnd, Pr(A); vr,)
=sgn(w)sgn(uplsgn(ws) 3 «(EDZ(uzgh; £y, Ad(go)d, Pr(A); vry)

Here in the left hand side, Pr(A), E;, vr, etc. are as in (5.4), (5.6), and in the
right hand side, Ei's are standard elements in M°(Pg(A)), Fi=F,(E;) for any
i, vp, is the canonical automorphism defined by a system of root vectors X%,
(ae Fy) satisfying Condition 5.1 for E;’s, and we assume the following, analogous
as (5.4):

(6.10) Ad(gi)b=8"0 (= sNwr, be) . Ad(gowsP(b)=vr P'(Y).

We arrange the suffices for E;, E; in such a way that E; and FE; are of the
same type for every 7. Then e(E)=¢e(E?7) by (1.39)-(1.39’), and since Px(A)=
ugpPr(A), we have E;=urE; Recall that for every simple component X of
class 11 (or of class I or III resp.) of Xx(A), the corresponding part of Ej is an
ordered system (or a set resp.) belonging to M°(P) (or to M(P) resp.) with
P=3NPg(A). Therefore to get (6.8’), it is sufficient to prove that for 1</<7,

(6.8")  sgn(wo)Z(h; E;, Ad(go)d, Pr(A); vr,)
=sgn(w)sgn(ur)sgn(wo)Z(urh ; urE:, Ad(g)A, PR(A); vigr,) -

We know that there exists a certain product g of g.’s in (2.18) for some
ac Y x(A) such that Ad(g)| 2 r(A)=ur. Then Ad(g)h=0, h¥=urh, Ad(g@)E;=urE;
and Ad(g) 'P'(§)=uz'P’(h). Thus, applying Lemma 6.1 to the right hand side
of (6.8”), we can reduce (6.8”) to the case ug=1. Therefore finally it is sufficient
for us to prove the following.

Lemma 6.2. Let A be a connected component of HY, and let P(Y), P’(}) be
two sets of positive roots ) such that PN p(A)=P'(DONZr(A) (=Pr(A)). Let
{E;} be all the standard elements in M°(Pr(A)) and Fo=Fy(E;) be the strongly
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orthogonal system associated to them. Let {X.a}aer, and {X%.}a.cr, be two
systems of root vectors both satisfying Condition 5.1. Define vr, and vg, by using
(X.o} and {X*.} respectively. Then for he A,

(6.11) sgn(wo)Z(h; Eq, Ad(go)A, Pr(A); vi,)
=sgn(w)sgn(wy)Z(h ; E;, Ad(g)A, Pr(A); vir,)

where P’'()=wP(h) and

(6.12) Ad(go)woP(0)=vr,P(h), Ad(go)w;P(0)=vr,P'(h).

Note that the equality in the lemma contains (6.4) as a special case where
w=1.

Proof. Put F'=U,ci(E)*. Then by assumption, there exist systems of
root vectors {X.stser and {X*¥;}scp such that if §, 0’ F’ and 0’0<F’, then
for a=0 or 1,

(*) (X Xol=e" X515, [XE, XF1=e*XF 10 (e==£1).

Let E, be the unique system among E;'s for which the number of short roots
in it is maximal for any simple component of class II, and put F,=(E,)*. Since
we utilize the canonical orders, we see that if d, 0’ F’ and 0’6 F’, then
d, 0’ F,, and that every root in F'—F, is expressed as 6’+6 or §'—d with
some 0, 0’ F, (see §1.5). We see in § 2.4 that there exists a g€ A, such that
Ad(g)X.s5=e;X¥, (6€F,) with ¢;==x1. Then it follows from (*) and what was
said above that there exist ¢;==+1 for y&€F’ such that Ad(g)X.,=¢,X%*,. Note
that if a, a’€F, and 2" (a+a’)E F’, then by (*), e,=€4 =¢s65 With 0'=2"a+a’),
0=2"Ya—a’)eF, and hence e,c,,=1. Since g commutes with every element in
A and induces the identity mapping on ), we see by Lemma 6.1 that we may
assume from the beginning that X,,=e, X%, for acF,. Now put n,=(1—e,)/2
and let w’ be the product of sl« over a=F,. Then w’e J(F,), the group gener-
ated by the commuting family {s,; aF,}, and

(6.13) Vol De=vpgew’ | B .

This means in particular that gNwphe=gNvr =07 (put). Then Ad(g,)b=
Ad(gy)b=Y%F by assumption. Hence s'=Ad(g{)Ad(go) *|H" belongs to Ws(57o).
Then it follows from P’(§)=wP(h)) and (6.12) that

vrse Ad(go)e welbe=w "o (vr,) e Ad(ge)e wo be .
Therefore we get by (6.13)

vrse Ad(go)e wolbe=w™"w’ ovpies e Ad(go)e ws | be
and hence

(6.14) sgn(w,)=sgn(w)sgn(w’)sgn(s”)sgn(wy) .

Then inserting (6.14) into (6.11), it takes the following form under the condition
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that X*,=¢,X., (@€F,):
(6.11%) Z(h  E, Ad(go)/l, Pr(A); ”Fo)
=sgn(w)sgn(s)Z(h; E;, Ad(go)4, Pr(A); vi,),

where w’'e J(F,) is given by (6.13).
We see from (3.9)-(3.9”) that to prove this equality, it is sufficient to obtain

(6.15)  Y(h; Ey, u, ss" Ad(go)d ; vr)=sgn(w)Y (h; Ei, u, s-Ad(g)) 4 ; vi)

for any s€Wg(hF) and ueW(E;; Pg(A)), where W(E;; Px(A)) is given in
Definition 1.2. The function Y(h;E, u, A) in (3.7) is denoted here by
Y(h; E, u, A;vp,) indicating explicitly the automorphism vr, in use. Put
Ay=ss’ Ad(g,)A4, then s-Ad(gi)A=A4,. Therefore the above equality becomes

(6.15") Y(h; Ei u, Ai; vp)=sgn(w )Y (h; Eq, u, Ay ve,),

where vp,=vp,ow’ on Y, with w’e€ J(Fy).
To prove this equality, first note that sgn(w’)=Ilser,co. We obtain just as
in the proof of Lemma 3.1 that
sgn{ II (A, vpy}=(C II ewsgn{ II (4, vr,)},

TEP(E) aEF)NF; TEP(ED

where F;=(E;)*. By Condition 5.1, we have eqe., =1 if 27" (a+a’)eF’, whence
IMeergnr;ca=Ilaer,ca=sgn(w’). Thus the proof of Lemma 6.2 is now complete.
Q.E.D.

The assertions (1) and (2) at the beginning of this subsection are now
completely proved.

6.2. Now we fix a complete system £ (resp. £2°) of representatives of
Car(G) (resp. Car®(G)) in such a way that every A€ Q° is contained in H® for
some h= Q. We put for any A= Q°,

(6.16) Ch; AX(P); P(O)=£&h; P(B)  (h€ AY(P)).

To prove Theorem 2, it is sufficient by Theorems A and B to prove the
following : for the system of functions {(-; A*(P))=((-; A*(P); P(h)), there
hold the conditions (a), (b), (¢) and (d) in Theorems A and B. In this section,
we prove (a), (b) and (d). The “boundary condition” (c) will be studied in
8§ 7-9.

Let us first prove the condition (a).

Lemma 6.3. Let A be an arbitrary connected component of H® Then for
any @€ Ws(A*(P)),

(6.17) Bwh; P(O))=c(@)ih; P(B)  (h€A*(P)),

where e(w)=sgn(@) is as n §4.1, and A*(P) with P=Pgr(A)=3(A)NP(Y) is
given in (5.5). In particular, the system of functions {(- ; A*(P)=C(-; A*(P); P(}))
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given above satisfies the condition (a).

Proof. The relation (6.17) follows from Lemma 3.6. This is also contained
in the assertion (2) in §6.1. Q.E.D.

For the condition (d), we have the following.

Lemma 6.4. For any Cartan subgroup H", the function & given by (5.6)-
(5.7) is uniformaly bounded on it. This means that the system of functions
L(- 5 AY(P)=L(; A*(P); P(Y)) satisfies the condition (d).

Proof. The boundedness of the functioned £° follows from Lemma 3.5.
Q.E.D.

Next we study the condition (b). For any Cartan subalgebra §) of g, take
an inner automorphism v of g, such that vb,=Y, and let X% be the homomorphism
of I(§.) into C given canonically by vA=/A-y"'|},. Then X%'s are mutually con-
sistent in the sense in §4.2. )

Lemma 6.5. For any Cartan subgroup HY of G, the function &% satisfies on
H'%R) the following differential equations:

(6.18) Di*(h ; PO)=XY(D)&h; P(B))  (DEI(h.).

In particular, the system of functions {(-; A*(P)) satisfies the condition (b).

Proof. Let A be a connected component of H% Then the function £%| A*(P)
in (5.6) is a linear combination of the functions Z(-; E, A’, Pr(A)), and the
latters are linear combinations of the functions Y(-; E, u, s4’) in (3.7), where
usW(Zr(A)), seWs(h7o) with Fy=F,(E) and A’=Ad(g,)4 with g,€G such that
Ad(gy)hFo=b. Therefore it is sufficient to prove that for any DeI(§,),

(6.19) DY (h; E, u, sA)=XYD)Y(h; E, u, sA").

Since v=vriAd(g,)~! is an inner automorphism of g. such that vb,=Y,, the linear
form A=vflsA’ on . induces the homomorphism X% of I(§.). Let us rewrite
Y(h;E, u, sA’) as follows. Express Xe), as X=Xy+X, with Xy,
Xy=(bhy)., and define a linear form A’ on Y. by

V(X)=(A)Xy+pr(u' Xy)— ;Fa(u"Xv)I(s/l’, vry)|/|a|?,

where F=E*, F,=Fy(E) and the projection pr,=pr is extended from § to ¥,
naturally. Then, since u|fjy=1, we get

A=u'2 with w'=u(Ilst)eW(Zr(A),
a€EF
where n,=1 or 0 according as (sAd’, vp,@)>0 or <0. Fix h,€A and let

h=heexp X with X€¥%). Then Y(h; E, u, sA’), as a function in X, is a constant
multiple of &;.(exp X)=exp A'(X)=exp(u’'A)(X). Since 2 and u’A induce the same
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homomorphism 2% of I(h.) into C, we get
D¢&;.(exp X)=X%(D)&;.(exp X),
and hence (6.19). This proves the lemma. Q.E.D.

§7. Lemmas to prove the boundary condition (c)

We have proved that the system of functions {(-; A*(P)) satisfies the
conditions (a), (b) and (d) in Theorems A and B. In order to prove the bound-
ary condition (c), we prepare here some lemmas.

7.1. Note that the system of functions £%- ; P(})) in Theorem 2 satisfies
the assertion (2) in §6.1. Then we see that we can choose £, £2° P(§) for
he 2, and Pr(A) for A= 2° arbitrarily. Therefore we will choose if necessary
these things as convenient as possible to prove the condition (c). Note that on
the simple components of class Il of 2z(A), we consider the canonical order
corresponding to Pr(A).

Take an A’ and an acslz(4) with H€ 2 such that ACH" where
IT(A) denotes the set of simple roots in 2Xg(A) with respect to Pr(A)=
2(ANP(). Put ¥Y=H*=gNv,h. and let A’ be the connected component of
HY containing A,={h€ A; &,(h)=1}. Then as in Lemma 2.1,

(7.1) Yr0)=1{var; 7€2R0), 7 La},
(1.2) Yr(AN={var; 7€2R(A), r La}.

We choose the set P(§’) of positive roots of %’ in such a way that P(}")=
voP(§). Then the function &%k ; P(Y)|A*(P) is given by (5.6), and the one
BY(h’; P(§)| A’*(P’) is given by the analogous formula. Put f=v,a and

(7.3) M= {heCl(A*(P)NAqg; &(h)#] for reXp(A), #++a}.

Then the condition (c) is equivalent to the following.

Lemma 7.1. Let the notations be as above. Then for ho& M,
(7.4) Ho#%ho; P(0)=Hgk" (ho; P(H)),
where

Hohy; PO)=lim -8, exp(tHy); PO,

1 d S
Y . NY— i s e _ . ’
Hgi" (he; P(h ))—ltl_l};l\/_l i &Y (hyexpt~/— 1 Hpg); P(Y)).
Note that for h,& M,, h,exp(tH,) belongs to A*(P) if t>0 is sufficiently
small, and h,exp(t~/— 1 Hp) belongs to A’(P’) for real t.
To prove Lemma 7.1, we separate the cases according to the class of the
simple component X(a) of X i(A) containing a. The case of class I or III will
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be studied in §8 and that of class II (type B,, C, and F,) in §09.
7.2. Hereafter in this section, we denote by A or A’ a regular element in

o% with b=, D=H®, Fy=Fy(E) for E€ M (Pg(A)). To prove Lemma 7.1 for
the case of class I or IIl, we apply the following elementary lemma.

Lemma 7.2. Let Ec M (Px(A)) and a3 (A). For ue W(Xr(A)), put
JW=Y(h; E, u, ANV+Y(h; E, squ, A")  (h€A).
Then the function ] is even under the transformation h—s,h on A, and hence
H.J(M=0 on A,={h€A; &,(h)=1}.
Proof. By (3.8), we get
(7.5) Y(h; E, u, A=Y *h; E, 1, A).

The assertion follows from this immediately. Q.E.D.

7.3. For the case of class II, we apply also the following lemma.

Lemma 7.3. Let E€ M (Pr(A)) and a3 (A). For ueW(Z(A)), put
JH=Xsgn(s)Y(h; E, u, sA) (he 4),
8
where s runs over Ws(h70) with Fo=Fy(E). Assume that w=u"'s,u satisfies that
wF=F, wF,CF\U—F, with F=E* and that for any s€Ws(H70),
(7.6) sghpcg (sA)sgny-1pmy(sA)=—1,

where sgnpes(A) is defined in (3.6). Then the function | is even under h—s.h
on A, and hence H, J(h)=0 on A..

Proof. By assumption, w satisfies the condition in Lemma 3.1. Therefore
we get the equality (3.16) in its corollary. Note that in this case, sgn(w)=-—1,
uw=s,u, then using (7.6), we get from (3.16),

; sgn($)Y(h; E, squ, sd)=Xsgn(s)Y(h; E, u, sA).

This means by (7.5) that J(s,h)=/(h). Hence the assertion of the lemma.
Q.E.D.

When X(a) is of type B, or C,, we also apply the following lemma.

Lemma 7.4. Let E€ M (Pp(A)) and a€ X r(A). For ueW (X p(A)), assume
that there exist u'€W(E ; Pr(A)) and weW (S r(A)) such that s,u=u'w and that
the following conditions hold: wF=F, wF,CF,\J—F, with F=E*, F,=F,(E), and
for any sEW o(§70),

(7.7 sgNpey (s A)SgNyw-1pey (s A)=sgn(w) .
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Put for he A,
](h)z%) sgn(s){Y(h; E, u, sA)+Y(h; E, u’, sA)},

where s runs over W(HT0). Then J(s.h)=J(h) for h€ A and hence H, J(h)=0
for he A,.

Proof. By the assumption on w, we can apply Lemma 3.1 to it and then
get the equality (3.16) in its corollary. By (7.7), this equality turns out to

; sgn()Y(h: E, u'w, SA):‘.,\: sgn(s)Y(h; E, u’, sA).

Since u’w=s,u, this gives us J(soh)=J(h) by (7.5), and hence H,J(h)=0 on A..
Q.E.D.

7.4. Case of type B,. An essential part of our proof of the condition (c)
for the class II is reduced to the case of type B,=~C,. This has been already
seen in [5(e)] for Sp(n, R) (cf. also [5(b)]). Here we give three lemmas
essentially for the type B..

Let A be a connected component of a Cartan subgroup H" of G, and F a
strongly orthogonal system in Pr(A). Assume that there exist in F' two roots
a, a’ such that y=2"(a’—a), r'=2"%(a’+a) are again roots in Pr(A). Then, as
is seen in § 1.2, the simple component 2 of Xz(A) containing a, a’ is of class
II, and X on={+a, +a’, +r, +7'} is of type B,. Moreover all roots in
F—{a, a’}, except at most one short root in FN2, are strongly orthogonal to 7
and 7’ (cf. §1.5 and Lemma 1.8). For a system of root vectors X.;=g (0€F)
such that [X;, X_;]=H; we define vp as in §2.2. Choosing root vectors X.,
(p=7, 1), we define v, and put F'=y(F—{a, a’})U{v7’}. Assume that any
root in F—{a, a’} is strongly orthogonal to 7, then we can give the root
vectors for F'\U—F"’ as follows: v, X.;=X,; for € F— {a, a’} because [ X,,, X.s]
=0, and v— 1 ey, X, =2"'e-ad(X;+X.)X,, for ev;r’ (e==1) because of Lem-
ma 2.2.

Lemma 7.5. Let F, a, a’, v and 7’ be as above. Assume that any root in
F—{a, a’} is strongly orthogonal to v, v'. Suppose that X., X.. are so chosen
that for some root vectors Y.,, Y, for £y and 7/, Xpoy=[Y .1, Y] (@=7"—7,
a’=7"+7). Then there exist root vectors X.; (60=r,7’) and a g€ G(a, a’) such
that Ad(g)vr|fe=vr ;D). where G(a, &’) denotes the analytic subgroup corre-
sponding to the subalgebra gemerated by X,;€q (60€2 4 o) which is locally
isomorphic to Sp(2, R).

Proof. It follows from geG(a, a’) that Ad(g)X.;=X.; for 6e F—{a, '},
whence Ad(g) and v; commute with each other. Therefore it is sufficient for
us to treat the case where F={a, a’}. Moreover it is sufficient to prove the
assertion for a special choice of root vectors X.., X... In fact, let X¥,, X%,
be other root vectors such that X¥ .,=[Y%*, Y} ] for some root vectors Y%,
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Y#*, for +7, . Then there exists h=exp(aH,+bH,.) with a, b R such that
Ad(h)Y*5=¢;Y .5 with e==+1 for 6=y, r’. Therefore Ad(h)X%, .,=eX.; .; with
e=¢,e,,. Denote by v¥ the transformation analogous as vr, defined by X¥,, X%,..
Then we get Ad(A)vE|9.=ve(s;s)Plh. with p=(1—e)/2. Assume that there
holds Ad(g)ve|he=vmv;|b,, then we get Ad(gh)v¥lh.=vrv,Ad(g)|Y,, where
g:1=(gy g,)? with g, in (2.18). Take the root vectors Ad(g,) 'X., Ad(g) 'X.p
for +Ad(g) '6=+(—1)?6 (6=7, 7/). Then we see from (2.6) that v} =
Ad(g:) vm Ad(g,), v¥=Ad(g,) 'v,Ad(g,) are defined by means of these root
vectors. Thus we get Ad(g*)v¥|h.=vF v¥|h, with g*=gr'gh.

Now let us prove Ad(g)ve|9.=vev,|b. holds for a special choice of X.,,
Xia. Since G(a, a’) is locally isomorphic to Sp(2, R), it is sufficient to prove
this for Sp(2, R), the group of real matrices x of degree 4 satisfying

0 E 10
xJtx=], where ]=( ) with E=( )
—E 0 01

Denote by d(a,, a., as, a;) the diagonal matrice with diagonal elements a,, a,,
as, a,. We take as 0§ the Cartan subalgebra of 3p(2, R) consisting of elements
of the form X=d(—t,, —t,, t;, t,) (t;, € R). The roots « and a’ are given by
a(X)=2t,, a’(X)=2t,, We take the root vectors as follows (Xj=~/2|6|'X;):

00 0 0 -tV 0 00
Xo= y Xa= , X§=( ) Xé':( )
T 0 U o0 0 Vv w0
10 00 00 01
(0 el ()
00 01 10 10

We put X’ ;=4X}5). This choice of root vectors satisfies the condition in the

where

. . . 1 (E—-W
lemma, and by a simple calculation, we get Ad(g)vr=vp v, with g= VT(W E)
in Sp(2, R). Now the proof of the lemma is complete. Q.E.D.

To reduce the proof of the condition (c) in the general case to the case of
type B,, we need also the following lemma.

Lemma 7.6. Let g be a real semisimple Lie algebra and §) a Cartan sub-
algebra of q. Assume that there exist two singular imaginary roots 8, 6’ in 2'(h)
such that p=2"%6'—0d) and 7'=2"%(0'4+08) are roots in X(N). Let g . be the
subalgebra of g. generated by X., (y=20, 0’, 3, p’), then §,=qMN\Qs . IS iSomorphic
to an(2, R). The group Ws(h) contain an element o such that

00=¢0’, 00'=ed (e=1 or —1)

and ¢ X=X for any X&€1 such that 6(X)=0d'(X)=0.

Proof. Since 0, 6’ are singular imaginary, we see that one of », 7’ is
77
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compact and the other is singular imaginary, the reflexion corresponding to
this compact root belongs to Wg(h), and is an element looked for. Q.E.D.

Note 7.1. Let 2 and A’ be two imaginary roots of a Cartan subalgebra .
Assume that 14+24’ is also a root of §. Then A+A’ is singular if and only if
one of 2 and A’ is compact and the other is singular.

Now let G be locally isomorphic to Sp(2, R), and assume for ACHY that
2 x(A) is of type B, Let
(7.8) PR(A>:{a: a/r 73 7"}-

where y=2"a’—a), 7'=2"Ya’+a). Then IIx(A)={a, 1}, M(Pr(A)={F, F'},
where

(7.9) F={a, o'}, F'={r,7}.

In this case, M°(Pr(A))=M(Px(A)) and

(7.10) W(E ; Po(AN=W(F"; Pa(A)=11},

(7.11) P(FYy={a, o', 7.7}, PUEY=1{7}; FF)=F(F)=F.

Let =0 and A’CH"Y be as in §7.1. Then 2p(A")={+v.a’} and H, o =vaH,:
=H,.. Put P(Y)=v.P(Y), then Pr(A")={v,a’} and M(Pr(A")=F", where F’=
{vea’}. Note that e(F)=—1, e(F")=1, &(F")=—1.

Put 5=4%, then W4(0) is generated by the reflexion corresponding to the
compact roots of b. Put d=vpa, 0'=vpa’, then they are singular imaginary
roots of b. Since exactly one of vpr=27%(9'—40) and vzy’'=2"%(6'+40) is compact,
there exists only one non-trivial element ¢ in Wg(b) and

(7.12) 06=¢ed’, 0d'=ed (e=1or —1).

Put P(b)=vrP() and Py )=v.P(h). Then the formula in §5.2 gives us
#(h; PO)=—Zy(h)+Z,(h)  (h€A*(P)),
B (h'; POOY)=—2Zy(h")  (KEA™(P)),

where for A<t} with B=H?,

Z(h)=3 sgn(s)Y (h; F 1, s4) (he 4),
Z,(h)zEsJ sgn(s)Y(h; ﬁ", 1, sA) (he A),
Z(W)=S sgu()Y (h; F”, 1, s4)  (W'€AY,

where s runs over {1, ¢}. Therefore the following lemma asserts that the
condition (c) is satisfied in the case of type B,.

Lemma 7.7 (cf. [5(e), Lem. 83]). Put B=v.,a. Then for ho€ M, in (7.3),
Ha(—Zo+Zl)(ho):_Hﬁzz(ho)t
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Proof. Since A is connected, Ax consists of single element hx. Put he A,
h'eA” as h=hgexp X, h'=hgexp X’ with X<, X’'€Y such that

X=t,Ho+tHo =(—t,+t) Hy+(t+ 1) H,
X'=t,W/—1Hg+t,H,, .=t/ — L Hg-+t,H,. ,

and (4, 8)=2m,, (A, 6")=2m, Then A—oA is given by (2m,, 2m,)—(e2m,, e2m,).
Since &,(hg)=§&,.(hgx)=1, hg belongs to the center of G and hence §4(hg)=
Esalhg)=c (put). Hence we get

Zo(h)=c-sgn {mmy(mi—m?} {exp(—2|m,|t,—2|my|ts)+exp(—2|m,|t,—2|m, |t2)},
Z,(h)=2c-sgn(mi—mbexp {— | —my+m,|(—t,+1t)— |mi+mq | 1)},
Z(h")=c-sgn(my)exp2mv/ — 1t,—2|mylts)—c - sgn(em,)exp(e2mon/ — 1t —2|mlts) .

On the other hand, denote by (9/0t), the differentiation at ¢,=0. Then for
hOEMax

Ho(—Zo+Z ) ho)=(0/0t:)(—Zo+Z:)ho), HpZy(ho)=(v—1)740/0t.)eZ:(ho),
Therefore we get
HoZ (ho)=2c-sgn {mymy(mi—m3} {—|m,|exp(—2|m,|ts)— | my|exp(—2|m,|ts)},
HoZ (ho)
=2c¢-sgn(ms—mi)(| —mi+m,| — | mi+my|)exp {—(| —m+mg| + | mi+ms|)ts},
HpZy(ho)=2c sgn(mm,) {| m,|exp(—2|mylts)— [m,|exp(—2|my|t,)}.

Note that
| —my+my| — |my+my| =—2-sgn(mnym,)-min(|m, |, |m,l),
| —my g |+ | mytmy | =2-max(|m; |, |m,]).
Then the equality in the lemma follows. Q.E.D.

§8. Proof of Lemma 7.1 (Case of class I or III)

In this section, we study the case where the simple component X(a) of
2'r(A) containing « is of class [ or III. The case of class Il (type B, C, or
F,) will be studied in the next section. The case of type C, has been studied
in the previous paper [5(e)]. However we will give in the next section a new
general proof for the case of class II. This proof follows essentially the idea
in the previous paper [5(e)].

8.1. Let us first give a property of an orthogonal system of roots. Let Y
be a root system of class I or IIl, P the set of positive roots in 2 and I the
set of simple roots.
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Lemma 8.1. Assume that 3 is of class 1 or 1. Let acll. Then for
Fe M(P), there exist only the following two possibilities: (i) a€ F, (ii) s.FeM(P)
and s F+F.

Proof. Assume that a&¢ F. Then we get s,Fe M(P), because for any y€ P,
#a, we have s,y P. On the other hand, there exists at least one y€F not
orthogonal to . We see from the result in § 1.2 that the angle between « and

7 is an integral multiple of 7/6. Hence s,r is not orthogonal to 7 and therefore
S.7€F, and s,F+F. Q.E.D.

Put Ye={ye; rLa} and P*=PNXY* Let M(P; «) be the subset of M(P)
consisting of F such that Foa. For FEM(P; a), put F*=F—{a}. Then we
get easily the following.

Lemma 8.2. The map F—F® gives a bijective correspondence between
M(P; a) and M(P*=).

Let F, be the standard element in M(P) and F, that in M(P%). Then
F,U{a} is an element of M(P), and there exists a u,W(2) such that u.F,=
F,U{a}.

Lemma 8.3. Let Fy,, a<Il and F, be as above. Then it follows from u.F,
=F\U{a} that sgn(u,)=1.

Proof. We may assume that X is simple. Note that it is sufficient for us
to prove the assertion for any fixed P. In fact, let P’# P be the set of positive
roots with respect to another order in X and a’€1l’ a simple root in P’. Then
there exists a unique weW () such that wP’=P and therefore a=wa’ell.
Thus Fi=w™'F, and F{=w™'F, are standard in M(P’) and M(P’*") respectively.
Hence u Fo=F;,\U {a} means that u¢Fi=F,U{a’} with u{=wu,w.

In general, when acF,, we get F,=F,U{a}, and therefore the assertion
follows from Lemma 1.2. Moreover note that when F, and F; contains a root
7y in common, the proof of the assertion can be reduced from the root system
2 to the subsystem 237.

The assertion is easy to prove for the type A,. For the type G, the
assertion is seen to hold from Figure 1.1. Let us study the type Dy (N=4).
We apply the realization of 2, P and I in §1.2. Then

II={e,—e,;, e;—ey, =+, ey.1—en, ex-1+en},
Fo= {eliez, estey, -, ezn—liezn} (71:[N/2])-

Assume that a< Il is not in F,, then a=e,;—e,;,, for some ;. Moreover F; is
the set obtained from F, by removing e,;-1te,;, €1+ es4. out and adding
€51 o490, €2;F 0541 instead. Therefore the situation is reduced to the case of
type D, and u,=s,S; with y=es;;—es;:4. is an element such that u Fo=F\U {a}
and that sgn(u,)=1. Thus the assertion holds by Lemma 1.2,

Now consider the case of type Es. In the realization in § 1.2,
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1= 27— 2 e;t(esteste—ey), es—ep 2ZiZ4), etesl,

i7s4
Fo={e,xe,, estey}.

Let « be a root in II not belonging to F,. Then FyN\F, contain y=e;+e,, the
highest root in P, except when a=e,—e;. Therefore the proof is reduced to
the case of X7, which is of type A; by Table 1.1. For a=e,—e;, we have
F,={e,+e,, e;+e;}, and the assertion is seen to hold.

Next consider the case of type E,. In the realization in § 1.2,

II={2"Ye;—ey— -+ —er+ey), e;—ei41 (2=71=D), e5+e;, e;—es},
Fo={eite,, es*e,, este, e;—eg).

Let « be a root in II not belonging to F,. Then F,N\F, contains y=e;+e,, the
highest root in P, except when a=e,—e;. Therefore the proof is reduced to
the case of X7 which is of type D, and the assertion holds for it as is seen
above. For a=e,—e;, we have

Fi={e,te,, extes, este, e1—egf,

Hence FyN\Fi2y=e,—e; and therefore the assertion holds in this case too.
Finally consider the case of type Es. Using the explicit forms of II and F, in
§ 1.2, we see as for type E, that for a=/l, either F, contains « itself or FyN\Fy
contains a root 7 in common. Moreover 27 is of type E,. Hence the assertion
holds in this case too. Thus the proof of the lemma is now complete. Q.E.D.

8.2. To prove Lemma 7.1 in the case where X(a) is of class [ or III, let
us first assume that 3'z(A) itself is of class I-1II. Let Fe M(Px(A)) be standard.
Take a go=G and a w,sW(b,) such that

8.1 Ad(god=Y", Ad(go)w,P(0)=vrP(H).
Then by (5.6), we have for he A*(P)=A*(Pr(A)),
(8.2) #(h; POO)=e(Flsgn(wo)Z(h; F, Ad(go)4, Pr(A).

Moreover by (3.9) and Lemma 3.2,
(8.3)  Z(h; F, Ad(g,)4, Pa(A)= . Znh sgn(s) X Y(h; F, u, s-Ad(go1),

Wa( uey

where U denotes a complete system of representatives of W(2 z(A))/I(F) such
that uFe M(Pg(A)).

Let H’=0* and A’CHY be as in §7.1, and put P(§)=v,P(}). Put Pr(A")=
2RAYNPY) and let F’'eM(Pg(A’)) be standard. Take g¢eG and w;eW(b,)
such that

.19 Ad(gob=1"*", Ad(gowiP(b)=vp P(§).
Then the function #%(-; P(Y")) is given as follows: for h'€ A’*(P)=A"'*(Pr(A")),
8.2 £ (h"; PO )=e(F)sgn(wy)Z(h'; F', Ad(go)A, Pr(A")),
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where

83) Z(h'; F', Ad(g)d, Pr(A)= X sgn(s’) X Y(h'; F', u', s"Ad(g) ).

S'EWG([)'F’) u' ey’

Here U’ denotes a complete system of representatives of W(Xr(A")/I(F’) such
that u’F’e M(Pgr(A")).

Note that e(F’)=—¢(F). Then we see that to prove Lemma 7.1, it is suf-
ficient to show the following: for hoe M,CANA’,

84) sgn(wo)HoZ(ho; F, Ad(go)4, Pr(A)
=—sgn(wo)HpZ(ho; F’, Ad(g0)4, Pr(A)).

Let us prove this equality. Put X=2X4(A), P=Py(A) for brevity. Then
D r(AN=v,2% Pr(A)=v,P* with P*=PN2X% First we reduce the left hand
side of (8.4) by applying Lemma 7.2. In the expression (8.3), we devide U= {u}
into two subsets U, and U, according as uFsa (i.e., uFe M(P; a)) or not, and
consider the sum Z; over seWg(hF) and uesU; for i=1,2: Z=2Z,+2Z,.

First consider the sum Z, Since uF®a, we get squFeM(P), #uF by
Lemma 8.1. Therefore we may assume by Lemma 3.2 that s,u belongs to U
and hence to U, together with u. The next lemma follows from Lemma 7.2
directly.

Lemma 8.4. For u, s,ucU,, put for every s€Wq(hF) and A,=Ad(gy)4,
JW=Y(h; F, u, sAd)+Y(h; F, squ, sA,) (he A).
Then J(sah)=J(h) on A and hence HqJ(hy)=0 on A,.

By this lemma, we get H,Z,(ho)=0 on A,, and therefore for h,e A,,
(8.5)  HaZ(he; F, Ad(go)4, Pr(A)=sgn(s) ¥ HaY(ho; F, u, s-Ad(go)4).
8 u€l;

On the other hand, we get from Lemma 8.2 a natural bijective correspondence
between U; and U’ in (8.3’) as follows: for any u’€U’, since u'F’'e M(P’), we
see that v,'u’F’\U{a} belongs to M(P; «), and therefore there exists a unique
ueU, such that

(8.6) uF=vz;*u'F'\U{a}.

Let uo=U, be such that u,F=v;'F’U{a}. Then sgn(u,)=1 by Lemma 8.3. We
may assume that any u €U, has the form u=z'u’v.)u,, where u’€U’ is given
by (8.6), because v;'u'v,€ W(X). )

Thus the proof of Lemma 7.1 is reduced to compair H,Y (hy; F, u, s-Ad(g,)4)
with HsY(ho; F’, u’, s’Ad(ge)A) for u=w3'u've)u, and he& M,.

8.3. We can choose an a,=G such that Ad(a,)|9=wu, and acha;'=~h for
he Ay. Then under an appropriate choice of root vectors, we get

(8.7 vrve=Ad(a)evre Ad(a,)".
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In fact, let X., (y€F) be root vectors used to define vp. Put F”=y;'F’, then
F"Ul{a}=u,F. For reF, put X¥,;=Ad(a)X.; and define v, » by means of
these root vectors. Then v, r=vpv.=vovp-=Ad(ao)vreAd(a,)"*. For 7'€F’,
put X,p=v . X¥.=X¥. with y"=v;"7"€F”. Then we get vp =v,vpv;'=vp., and
therefore the equality (8.7).

Assume (8.7) holds. Then §)'F=Ad(a)h”. Put gi=a.g, then applying
Ad(a,) on the both sides of the equalities in (8.1), we get

Ad(g)b=Ad(a)h"=p"*"",
Ad(gd)w  P(h)=Ad(ao)vrP(D)=vp vauos P()=vrvP(Y"),

where v=y,uw;'€W(h:). By the result in §6.1, we may take gi as g; in
(8.3"). Then, since sgn(v)=sgn(u,)=1 by Lemma 8.3, we get for w; in (8.4),

(8.8) sgn(w,)=sgn(w,)sgn(v)=sgn(w,) .
For s’eWs'*) and u’€U’, put
8.9) s=Ad(a) tes’sAdan) 16", u=0z'u"va)uo,

then seWg(§"), u€U,, and (8.6) holds. In view of (8.8), it is sufficient for us
to prove the following.

Lemma 8.5. Let ge=aogo, and let s, s’ and u, u’ be as in (8.9). Then for
hOEMa)
H.Y(ho; F, u, s Ad(ga)A)=—HgY (he; F’, u’, s’Ad(gp)A).

Proof. Note that the subspace 0, of Y’ is given by {Xe€Y,; a(X)=0}.
Then we see that h,=M, can be expressed as h,=hyexp X’ with hye Ay,
X'eb, where y(X’)>0 for any ye P*. Put

h=heexp(tH,)=hyexp(X’'+tH,),
h'=heexp(t~/— 1 Hg)=hyexp(tv — 1 Hg)exp X',

then he A*(P) for sufficiently small ¢t>0, and A’ A’*(P) for t real. For
brevity, put 4,=s-Ad(g.)4, 4,=s’Ad(gs)4, then we get from (3.7) that

(8.10)  Y(h; F, u, 41)=sgn {Tg(Al, v} €a,(ho)
Xexp Ax(PF(u"X’))-Tgexp{—(ur)(X’—l-tHa)l(/Il, veD /1717,

(8107 Y(h'; F', u!, A)=sgn{ IEL(/Izy vi I} a,(huexp(tv/'— 1 Hp))

7

xexp /12<PF'<“"‘X’>>',,££, exp {— @ T XX (Ae, ver)I /1717

For y’€F’, choose y€F such that v;'7’=u,y. Then |y'|=|r]|, and by (8.9)
v'u’y’=uy, and therefore (u’y’')X)=(ur)}X’) for X’ely,. By (8.9) and gi=a,g,
we get
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Ay=Ad(ao) s+ Ad(go)A=Ad(a,) 4, .
Therefore by y'=v,u,y and (8.7),
(Ae, ve 7 )=(Ad(ao) 41, Ad(ao)ver)=(As, ver).

Moreover, since v;'u'v,=uuy'eW(2*), we get w X =y, (ueu ' X )=uu X,
and hence pp(u' *'X)=uopp(u='X’), and finally A,(pr(u’''X")=A,(pr(u"2X")).
Since achyas'=hy, we get §4,(hy)=E&4,(hy). Thus we get from (8.10) and (8.10")
that

HY(ho; F, u, A))=—(A,, vpua)-Y(hy; F’, u’, 4,),

HgY(ho; F', u', A))=(As, ve B)-Y(ho; F', u’, A,).
Since vz'u'v,€W(X*), we see from (89) that u 'a=u;'a, and therefore by (8.7),
(A, vpu~la)=(A,, vpus'a)=(4:, Ad(ao) 'vpv.a)=(As, v B).
Hence we get finally
H,Y(ho; F, u, A)=—HgY (ho; F', u’, 4,).

This completes the proof of the lemma. Q.E.D.
Thus Lemma 7.1 is proved when 2 i(A) itself is of class I-IIL.

8.4. Consider the general case where X(a) is of class I or III, but 3z(A)
is not necessarily of classe I-IIl. Note that the above calculations to prove
Lemma 7.1 can be carried out essentially only on X(a). Therefore putting
Y=2X(a), the calculation for the general case is quite similar as that given
above. Thus the proof of Lemma 7.1 is now complete in the case where X(a)
is of class I or III

§9. Proof of Lemma 7.1 (Case of class II)

In order to prove the boundary condition (c), we continue to prove Lemma
7.1. In this section, we treat the case where Y(a)CXr(A) is of class II. (For

type Cn, cf. [5(e), §81.)

9.1. First let us study some properties of ordered system of mutually
orthogonal roots in a simple root system of class II, i.e., of type B,, C, or F,.
Let P be the set of positive roots in X, and IT the set of simple roots in P.
We consider the canonical order in X corresponding to P.

Lemma 9.1. Let FEM(P) and acIl. Then there exist only the following
three posibilities: (1) Foa; (ii) s.F=F, in this case Fda; (iii) s F=M(P), +F,
in this case Fdoa. When X is of type B, and a is a shoot root, or X is of type
C, and « is a long root, the case (iii) does not exist.

Proof. The first assertion is easy to prove. For the second assertion,
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realize 2, P and II as in §1.2, then a=e, for B,, and a=2e, for C,. Then
we see easily that the assertion holds in these cases. Q.E.D.

Let ac Il and E€M°(P). Then the relation of £ with a is devided into
three cases (i), (ii) and (iii) according as F=E* M(P) is in case (i), (ii) or
(iii) for a. Further we devide the cases (ii) and (iii) of E into (iia), (iib) and
into (iiia), (iiib) respectively according as s,E < M°"(P) or not.

Lemma 9.2. Let FeM(P) and a<Il. In order that F is in case (i) for «,
it is necessary and sufficient that there exists a 7, F such that yoXa and sq7,EF.
In this case, all the roots in F other than 7., Sa.7. are orthogonal to a.

Proof. The sufficiency of the condition is clear. Let us prove the necessity.
Since F®a, we can find a 7, F such that y,3a. Then F=s.F contains s,7,.
Therefore any element in F other than 7, s.7, is orthogonal to 7,—s.7,#0,
hence to a. Q.E.D.

9.2. Let us study the case (ii) more in detail. To prove Lemma 7.1, we
will apply Lemma 7.2 to the case (iia) of F, and Lemmas 7.3 and 7.4 to the case
(iib). To this end and also for another purpose, we list up the possible pairs
(a, E) in case (iib). First note the following. Let E= M°"(P) be

(CAY) E=(ay, az, =+, ai, Qi41, =+, @),

where «; (1=/</) are long roots, and «a; ([+1=<j<n) are short roots. Then
by definition, it satisfies the conditions (Bl), (B2) and (B3). In particular,
27 Yay;-1+as;) are again roots in X for 1</=<m, where m=[[/2]. We see that
wE with weW(X) belongs to M°(P) if and only if the following condition
analogous as (1.17) holds:
02) Whai 1 > W (1ZIZEm), wa,>was> - > Whagm-3> Wgm -1 -
.
W 1> Wy > o D WAp-1> Wy .

By Lemma 9.2, we know that there exist in F=FE* exactly two roots 7,
76=S4To which are not orthogonal to « and are permuted with each other
under S,.

Realize Y, P and II as in §1.2. Then the canonical order in 2 is the order
given there. Let 7,>70=S470

CASE OF B,. (1B) For a=e,—e,.; (long root), (7o, 7o)=(es, ers+1) (short
roots), and in E there exists some 7>/ such that

(9.3) Ai=er, Qi11=Cpy1.

(2B) For a=e, (short root), (7., 70)=C(e;+en, ¢;—e,) (long roots) for some
j<mn, and in E there exists some 7 (1=<7=<m) such that

(9.4) Qyi-1=€jten, Qy=e;—en.

CASE OF C,. (1C) For a=2e,, (7o, 19)=(e;+en, e;—e,) for some j<n, and
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in E there exists some 7>/ such that
9.5 ai=ej+en, ai=e;j—en.

(2C) For a=e,—eus1, (7o, 70)=(2e,, 2¢441), and in E, we have one of the
following :

9.6) Oyi1=2e,, @y;=2e,,; for some 7 (1=Z:i<m),
(9.6") Api-1=20;, Qpj-1=204,, for some 1=Zi<j<m.

CASE oF F,. (IF) For a=e,—e;y; with k=2 or 3, we have the following
possibilities :

(97) (TO! r(/!)z(ek: ek+1)’
9.7e) (o, 70)=2 Ye1t+ee;ter—ers1), 27 (e1tee;—erter,1) with e==1,

where {7, #, k+1}={2, 3, 4}. Let [ be the type of E€ M°(P), then the elements
E in case (iib) are given as follows:

(1=0) E=F° for (1o, 1) in (9.7),
E=F, for (7o, 73) in (9.7¢),
where F°, F°, are given in § 1.5 for type F,;
(I=2) E=(e;+e;, e1—e;, 70, 7o) for (9.7),
E=(e,—ee;, ertepss, 7o, 7o) for (9.7¢).

(2F) For a=2""(e;—e;—e;—e,), we have (7o, 70)=(e1—e;, e;-+e¢;), where j <k,
{7, j, k}=1{2, 3, 4}. The elements E€M°(P) in case (iib) are given as follows:

(1=2) E=(10, 70, 27X esFei+e;—eyr), 27 (erte;—e;4e4));
(I=4) E=(e;+e;, e;—ex, 70, 70)

(B8F) For a=e,, we have (7, 79)=(e;+e,, e;—e,) for some 7 (1=/<3). The
elements E< M°(P) in case (iib) are given as follows: let j<k and {7, j, k}=
{1, 2, 3}, then

(I=2) E=(rv, 1o, ¢j, ex) for any 7;
(i=4) E=(ro, 15, ¢;+es, e;—e) for i=1 (j=2, k=23),
(9.8 E=(ro, 1, 75, 7) with {g, p'} ={e;%e;} for i=1,

E=(e;+ei, e;—en, 1o, 7o) for i=2, 3 (j=1).
Summarizing these results, we get the following.
Lemma 9.3. Let P be the set of positive roots in X and Il the set of

simple roots in P. Let acll, and E€M°(P) be in case (iib) for a. Then
there hold the following.
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(1) Let 710, 7¢=Sa70 be two roots in E not orthogonal to a. Then they are
long or short according as « is short or long.

(2) Assume « is short. Then 7o, v are contained in E in two different
manners: let 7,>70, then either

(iibl) there exists an i=<m=[[/2] such that (ayi_1, as:)=(70, 7o), OF

(iib2) for type C, (n=4) or Fi asi1=7o, sjo1=75 for some 1=i<j<m.
In the latter case, put o’ =2""(ay;—ay;), then o’ €2 and s.. E also belongs to M°"(P).

(3) Assume a is long. Let 7:>7,, then (aj, a;j)=,, 7o) for some j>1. Put

(9.9) (60, 00)=(To+70, To—T0),

then 6o, 8, are long roots in X and 6,>0;, d¢=a.

Note that the case of short a corresponds to (2B), (2C), (2F) and (3F), and
the case (iib2) in (2) corresponds to (9.6") in (2C) and (9.8) in (3F). The case of
long a corresponds to (1B), (1C) and (1F).

Let a1l be a long root. For every E€M°(P) in case (iib) for «, we
make associate an element ¢, Ee M (P) in case (i) as follows: take out from
E the two roots 7,, 7o and then insert the ordered pair of roots (d,, d;) in an
appropriate place so as to get an element in M°(P). Then ¢, E exists uniquely.
We call the pair {E, (,E} an a-pair. (Let D and D’ be the elements in M’(P)
in §1.6 corresponding naturally to E and ¢,E respectively. Then D’=
(D— {10, 7o} )\ {00, 00)}.)

Let ac Il be long. Let E€M°(P) be in case (i) for «. We say that E is
in case (i2) if the type [ of E is odd and a;,=«, otherwise we say that E is in
case (il).

Lemma 9.4. Let acll be long. If X is of type B, Coy or F,, there does
not exist the case (i2) for a. If X is of type Coqy1, the type [ of an E€ M°"(P)
is always odd, and there exists the case (i2) for a. In general, every element in
M°"(P) in case (i1) for a makes an a-pair with an element in M°"(P) in case (iib)
for a. In this way, the elements in case (il) and those in case (iib) correspond
bijectively.

Proof. The first assertion is easy to prove. Let us prove the second one.
Let 6P be a long root orthogonal to « such that 2-)(6+a) are roots in 2.
Then we have d>a. In fact, express 0 as a linear combination of simple roots,
then a« must be contained in it with positive integral coefficient. Hence we get
> a.

Let E€M°(P) be in case (i1) for a. Then there exists in (9.1) some
i (1=i<m) such that {a,:_i, a,;} contains a. Since 2" as;_*a,)EP and a is
simple, we get az=a. Put 7,=2""ami-1+aw), 70=2""(am-1—as), then 7,>75,
7oL7:. Take out from E the two roots as;_i, az;, and then insert (7,, 7¢) in an
appropriate place, then we get an element E’ in M°"(P) in case (iib), because
$a(To, 70)=(7%, 70). Thus we get finally ¢, E'=E.

Now the bijectiveness of the correspondence ¢, is clear. Q.E.D.
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9.3. Now let us study the case (iii) for E€ M°"(P). To prove Lemma 7.1,
we apply Lemma 7.2 to the case (iiia) and Lemma 7.4 to the case (iiib).

Lemma 9.5. Assume E€M°(P) is in case (iiib) for a<Il. Then there
exist exactly 4 roots in F=E* which are not orthogonal to a. Moreover there
exists a unique non-trivial element veW(Y), depending on E such that vEe M (P)
and va=a, vr=y for any yEF orthogonal to a. Then sgn(v)=—1, and E'=vE
is in case (iiib) for a too.

Proof. Assume that in E in (9.1), a;>a; and a;—a«; is a multiple of a
positive root ¢ (a;—a;=0 or 26). Then we get s,a;>s.a; in case (iii). In fact,
since a; 1l a; we see that a;+a; is also a multiple of a positive root ¢’ Ld. If
Sa;<Sqa;, 0 must be equal to « because a is simple, and hence ¢’ La.
Therefore s,0’=d" and s,a;=a;. This means by Lemma 9.2 that £ is in case
(ii) for a.

Apply the condition (9.2) for wEeM°(P) to w=s,. Then for an E in
case (iiib), it follows from s,Ee M°"(P) that there exist a;, a; in E such that
the relation a;>a; appears in (1.17) and s,a;<s.a; In this case, as is seen
above a;—a; is not a multiple of a root. This does not occur for F,.

The proofs for B, and C, are given separately using the realization of %
and P in §1.2. First consider the case of B,. Then by Lemma 9.2, we see
that «=e,—e;, for some k. Then by the result in § 1.2, we see that in the
case (iii), F=FE* contains one of the following sets of roots:

(1) ertey, errn (B+1<0); (1) ersrtes, ep (B+1<0);
(2) eitep, era (B>1); (2") eiteps, er (B+1>0);
(3) eites, ejterys (7, j<k); (4) e;tey, epnte; <k, k+1<));

(5) ertes ejtter (J<k, k+1<i); (6) erte;, ersite; (B+1<7, j).

As is easily seen, in the cases (1)-(5), we get s,E€M°(P) and so E is in case
(ilia). In the case (6), E is in case (iiib). Put v=s, with a’=e;—e;, then
vEe M°"(P) and the assertion of the lemma holds.

Consider the case of C,. By Lemma 9.2, we see that a=e,—e,,; for some
k. Exactly as for B,, we get the possibilities as (1)-(6). (In (1)-(2"), er and e;41
must be replaced by 2e¢, and 2e¢,.; respectively.) The proof of the assertion can
be carried out similarly. The proof of the lemma is now complete. Q.E.D.

9.4. In the sequel, we will need the following lemma. Let L, L’ M°(Pr(A))
be such that u,L=L’ for some u,eW(2z(A)). We can choose an a,€G such
that

(9.10) Ad(ay) | he=u,, achas'=h (heAy).

Then choosing root vectors for F,\U—F, with Fo=F,(L) and for F¢U—F; with
Fi=F,(L") appropriately, we have

(9.11) Ad(ao)°l)Fo°Ad(ao)_1:l)F;.
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Put hFo=gNvp, b, '[)Fﬁzgf\vF;)f)c. then Ad(a,)b o=FFo. Let goG be such that
9.12) Ad(go)b=5",

then Ad(augo)b:b%. For 20}, put p=Ad(gy2, p'=Ad(a,)p=Ad(a.g.,)4, and
define Y(h; L, u, p), Y(h; L', u, ¢') on A for ucW(Zr(A)) by means of vp,
and vz respectively (cf. (3.7)). Then we have the following lemma.

Lemma 9.6. Let L, L’ M°(Pr(A)) be such that u,L=L’" for some u,<
WS g(A)). Then under (9.10)-(9.12), there holds that for any usW(3g(A)),

Y(h; L, u, )=Y(h; L', uug’, p').

Proof. This equality follows from the definition (3.7) of the function ¥
directly. In fact, it is sufficient to note that

(¢, vr)=(Ad(ao) e, Ad(ao)vr)=(', vr,uer)  (r€2r(A),
Eu(hy)=Eu(achyas )= (hy)  (hy€ Ap),
pru ' X)=ug'pr, (ueu'X)  (X€hy). Q.E.D.

9.5. Let us now return to the proof of Lemma 7.1. Let A be a connected
component of HY and let aclliz(A). Then we must calculate H,&%(h,; P(h))
for hoe M,, where the function #° is given on A*(P)CA by (5.6). This function
is a linear combination of Z(h; E;, Ad(g,) 4, Pr(A)), where Pr(A)=2 (A)NP(Y).
In turn, the latter function is a linear combination of Y(h; E;, u, s-Ad(ge)4)
with ueW(E;; Pr(A))CW (X r(A)), seWz(§F0) with Fo=Fy(E,) (for W(E;; Pr(A)),
see Definition 1.2). Therefore it is our main task to calculate H,Y (h,; E;, u, s
-Ad(go)A) for hyeM,. Put Y=23(a), and let P and II be as usual the set of
positive roots and that of simple roots respectively. Let E€M(P), ueW()
and seWg(§9). Let geG be an element such that Ad(g)b=5%"° and put 4,=
Ad(g)A. For simplicity, we write in this subsection the function Y(h;-, -, s4,)
on A as Y(h; E, u, sA,), indicating only E, u for the simple component X of
Y r(A) (fixing corresponding things for other components of Xz(A)).

First of all, we get the following result by applying Lemma 7.2.

Lemma 9.7. Let acIl and E€M°(P). For ueW(y), assume that uEe
M (P), and uFE is in case (iia) or (ilia) for «, that is, s;,uEe M (P). Put for
any s€W(h0),

JW=Yh; E, u, sd)+Y(h; E, squ, sd,) (he A),
where Fo=F(E). Then J(s.h)=J(h) on A and hence H,J(h,)=0 on A..

Proof. First note that the case (iia) and (iiia) cover exactly the case where
squEe M°(P). The assertion of the lemma follows directly from Lemma 7.2.
Q.E.D.

Next consider the case (iib). We apply Lemmas 7.3 and 7.4 to this case.
Let eIl be short, then we have two cases (iibl) and (iib2) in Lemma 9.3.
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Lemma 9.8. Lot acll be short. For E€M°(P) and usW(Y), assume
that uE€ M°(P) and is in case (iibl) for a. Put
Jh= 3 sgn(s)Y(h; E, u,sd,) (h€d),

sew g hf o)

where Fo=F(FE). Then J(sch)=J(h) on A and hence H, J(hs)=0 on A,.

Proof. Express E as in (9.1), and put E'=uE=(aj, as, -+, a1, Ql+1, ***, An).
Then uE=E’ means that ua;=aj for 1<j<n. Since E’ is in case (iibl) in
Lemma 9.3, wet get (asi_1, as;))=(1o, 7o) for some :=m (cf. Lemma 9.3). Put
w=u"'squ, then wF=F with F=E* wF,=F, and moreover

Wi 1=si, Wi =01, Wa;=a; for j#21—1, 2.
Therefore putting D=P(E)N\w 'P(E) and y=2""(as;-1—a,;), we get from the
definition of P(E) in (1.21) that
P(E)=DU({r}, w'P(E)=DU{—7}.
Hence for any seWq(§70),
sgNw-1pm (s A1)=—sgnp(sdy) .

These facts mean that the assumption in Lemma 7.3 is satisfied for u, £ and
«. Thus the assertion follows from Lemma 7.3. Q.E.D.

Now consider the case (iib2) for a short ac/].

Lemma 9.9. Let asIl be short. For E€M°(P) and usW(X), assume that
E'=uEeM°(P) and is in case (iib2) for a. Then X is of type C, (n=4) or F,,
and in E'=(ay, ai, -+, ap), we have Ye=ayg;_1, Ye=0as;-1 for some 1=i<j<m.
Put a’=2"Yaj;—a3;), then '€y and s, E'=s, uEeM°(P). Put

Jiy= = sgn){Y(h; E, u, sd)+Y(h; E, seu, sA},

SEW g (57 0)

where Fy=Fy(E). Then J(sqh)=J(h) on A and hence H, J(he)=0 on A,.

Proof. Put uw'=s, u and w=u'"'s,u. Then s;u=u'w, wF=F with F=E*,
wF,=F, Moreover sgn(w)=1 and w 'P(E)=P(E). Therefore the assumption
in Lemma 7.4 is satisfied. Thus the lemma follows from Lemma 7.4. Q.E.D.

Note that when a<1l is long, every element E’€ M°(P) in case (iib) forms
an a-pair with exactly one element ¢, E’eM°(P) in case (il).

Let us now consider the case (iiib). We apply Lemma 7.4 and obtain the
following.

Lemma 9.10. Let ac Il and E€M°(P). For uesW(Y), assume that E'=
uEeM°(P) and is in case (iiib) for a. Let veW(ZX) be the unique non-trivial
element such that E"=vE’e M°(P) and va=a, vy=y for any y< E’* orthogonal
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to a. Put u’=vu, then E”=u’E. Moreover E” is in case (iiib). Put for hE€ A,

Jh= 3 sgn(s){Y(h; E, u, sA)+Y(h; E, u’, sdy)},

sew g Foy

where Fy,=Fy(E). Then J(sah)=J(h) on A and hence Hq J(ho)=0 on A,.

Proof. We apply Lemma 7.4. Put w=u'"'s,u, then s,u=u'w, wF=F with
F=E* wF,=F, and sgn(w)=1 because sgn(v)=—1 by Lemma 9.5. Moreover
we get w'P(E)=P(E). In fact, 2 is of type B, or C, in this case, and we
see in the proof of Lemma 9.5 that a=e,—e,,: for some k, and the four
elements in F’=E’* not orthogonal to a are given as e,+e;, e,,:+e¢; for some
7, j<k. Then w=u"'s, s,u with a’=e;—e;. Since uP(E)=PuE), this gives
us w lP(E)=P(E). Therefore the equality (7.7) in Lemma 7.4 holds. Thus the
assertion of the lemma follows from Lemma 7.4. Q.E.D.

We see from Lemmas 9.7-9.10 that to calculate H,&%h,; P(B)), it is sufficient
to pick up such summands Y(h; E;, u, s-Ad(g))4) with ueW(E;; Px(A)),
seW(hF0) that satisfy the following conditions. Put Y=23(a).

(1) When a<ll is short, the X-part of uE; is in case (i) for «, i.e., uE;
contains a.

(2) When a< Il is long, the X-part of uE; is in case (i) or in case (iib)
for a. (The latter corresponds to (1B), (1C) and (1F) in the list in §9.2.)

9.6. The case of short a. We assume Y=2X(a)=23(A). Let us prove
Lemma 7.1 when a€ Il is short. Put §'=4%, P()=v,P(h), and let A’CHY be
as in §7.1. Our aim is to prove the equality

(9.13) Hok%ho; POO)=Hpi"(ho; P(§)  (he€M,),

where the left hand side denotes the limit value as he A*(P) tends to h,€ M,.
Let us realize Y and P as in §1.2. Since a is short, we see from the
result in §9.4 that

(9.14) H#(ho; P(B))
=sgn(w,) X e(E;) 2 3 sgn(s)H.Y(ho; E;, u, s-Ad(gn)4),

1sjsr u€lj; sEWy
where w,, E; g, are as in (5.4), W,=W(") with F,=F,E;) for any j, and
(9.15) Up={ueW); uE;e M°(P) and in case (i) for a, i.e., uE;2a}.

Recall that X p(A")=v,3x(A)%, Pr(A)=Zr(AYNPY )=v,Pr(A)*. We put
2'=y,2* P’=y,P% Note that the canonical order in X corresponding to P
induces in 3'* the canonical one corresponding to P¢, except perhaps for X of
type F,, and in this exceptional case, we can apply Lemma 1.5 to X% because
it is of type B; or Cs;. Let Ej (1=<j<r’) be a complete system of standard
elements in M°(P’), then Fy(Ej)) coincide mutually for all j (denote it by F}).
Take woeW(b,) and g;=G in such a way that
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(9.16) Ad(gdb=1"", Ad(gi)wsP(O)=vs, P(Y).
Then by the formula for % analogous as (5.6), we get for h,& M,,
9.17)  HgiY(ho; P(Y))
=sgn(w6)lsjzs‘,r,s(E3) 3 X sgn(s)HpY(ho; Ej, ', s’Ad(g0) ),

u'eU'j s EW,
where W{=W 4(§’Fo) and
(9.18) Uj=W(E}; P")={uw'eW(Z"); u'Eje M°(P")}.

We see from (9.14), (9.17) that our task is to find (1) a natural correspond-
ence between {E;; U;#0} and {Ej}, and (2) if E; corresponds to Ej, a natural
correspondence from Uj onto Uj, and finally (3) the relation between
H,Y(ho; Ej, u, s-Ad(go)A) and HgY(he; Ej, u’, s’Ad(go)A).

We discuss separately according to the type of 2.

CASE OF B,. Let Y be of type B,. Then 2’ is of type B,... We have
in P only one short simple root a=e,, the lowest root in P. Let /; be the type
of E;, We see that U;#0 if and only if /;<n, and that if U;#0, E;, contains
a as its last element. In that case, let E} be the system obtained from E; by
removing out «, then Ej=y,E} gives us a complete system of standard elements
in M°"(P’). Hence in an appropriate numbering of E;’s, we have E; for 1<j<#’
with »’=r or »—1 according as n is odd or even.

Note that E;=(E}, a) and E;=yv,E/. Then taking an appropriate system
of root vectors for Fy\U—F; satisfying Condition 5.1, we have Ad(gi)vr,lhc=
vp‘ovalf)c with an element g,=G. In fact, we may put g,=e, when F,>a, or
equivalently, when n is odd. Otherwise put a’=a,-; in E; (a=a,), then
a’'tacsF,, and a, a’, a’+a are strongly orthogonal to any element in F,— {a’+a}.
Apply Lemma 7.5 to F,, « and a’, then under an appropriate choice of root
vectors for +a, Fi\U—F;, we have Ad(g)vr,|be=vr,valh. with an element
g:€Gla, a’), where G(a, a’) is given in Lemma 7.5. Then Condition 5.1 follows
from Lemma 3.8.

In that case, putting P(§)=v.P(5)), we have

* Ad(g)h"o=0", Ad(g.)vr,PH)=ve P).

On the other hand, consider the following term in the expression of
B(h’; P(Y)) in (9.17):
(9.19) sgn(we)e(E;) 2 Isgn(s’)Y(h’; Ej, ', s’"Ad(gpd).

s ew,

Then we see easily that this term, as a whole, does not depend on the choice
of go. wp in (9.16). This means that in (9.19) we may take go, ws in (9.16)
depending on (j, u’). Take g¢ as gi=g.g, then we have w;=w, In fact, we
get from (5.4) and (*) that

Ad(gi)b=1"", Ad(g)w.P(O)=vg, P()").
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Assume Uj;;#0. For ueU;, uE; contains « as its last element, hence
ua=a. Therefore ucW(3*) and uE,=uEY, «). Put uw'=y,uvz;'eW(3’), then
vouEj=u'E;. Moreover we see that u—u’ gives us a bijective correspondence
from Uj onto Uj Therefore we see from (9.14), (9.17) and e(E;)=—e(E;) that
to get the equality (9.13), it is sufficient to prove the following.

Lemma 9.11. Let E,=(EY, a), Ej=v.EY, and put for ucW(X*), u'=v,uvy'
EW(Z). For seWu(b), put s'=Ad(g.)es°Ad(g,) ! |§"Fo eWs(5'Fo) with g, in
*), and put gy=g18.. Then, for hy€ A,, '

HoY(hes Ej, u, s+Ad(go) D)=—HY (ho; Ej, u’, s"Ad(go)4) .

Proof. The proof can be carried out analogously as for Lemma 8.5. In the
proof of Lemma 8.5, it is sufficient to put ay=gi, u,=1. Q.E.D.

Thus the proof of Lemma 7.1 is now complete when « is short, and
2(a)=2(A) and is of type B,.

CASE OF C,. Let X be of type C,. Then XY?is of type C,_,+ A (Ci=A{P).
We know that a=e,—e,,, for some £<n, and A{-component of X* is {*+a’}
with a’=e,+e,s1. Let [; be the type of E;, then Uj#0 if and only if [;<n.
For uelU;, L=ukE; contains &’ together with « in such a way that for some
p>1; depending on u,

(ap, ap)=(a’, a),

where we put L=(aj, a3, -+, a;). We define for L=uE; an ordered system of
roots in 2% by

(9.20) Jal=Jj.(uE)=(a’; ai, a3, =+, Qp1, Wpsa, =+, An).

Let 2; and X, be A{®-component and the other one of 2% Then {a’}
€M(P,) and (aj, @3, =+, Qp-1, Aps1, -, an)EM(P,), where P;=3;N\P. We
denote this fact symbolically as j,L€ M (P®) with P*=X*N\P. Then we see
that uE;—j.(uE;) gives us a bijective correspondence between {uE;; ucU ;)
and {(MeM*(P*); type of M=Il}. Let E’ be the standard element in M°"(P’)
with P'=y,P* of type (0, /;) with /;<n—1. Then for any ucU;, there exists
a unique u'€U;=W(E}; P’) such that

9.21) JuEp)=u'E},

and vice versa. Hence we see from (9.14) and (9.17) that our task is to study
the relation between H,Y (hy; E;, u, s-Ad(go)4) and HgY (he; Ej, u’, s"Ad(go)A).
The situation is quite similar as that for class I in §8.3. (The relation (9.21)
corresponds to (8.6).)

The following lemma corresponds to Lemma 8.3.

Lemma 9.12. Let u;€U; be such that j(u;E;)=FEj. Then sgn(u;)=1.

Proof. Put [=I;, then we have
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Ej:(zel, 2e,, -+, 2ey, Cri1tCris, Cly1— €y, , Eno1ten, no1—€y),
—1 [ .
va'Ej=(er+ersi; 2e;, 2e5, -+, 20, €js1+Clus, €li1—Cluz, -, Chorten, enoi—e),

where ep=e, if p<k, ep=ep., if p=k. When « is contained in E;, we get
u;=1. Otherwise the situation is reduced to the case of C; or C,. Checking
case by case, we get sgn(u;)=1. Q.E.D.

Put E}=u;E; and v;'Ej=(a’; 71, 72 ***, Fn-2)- Then for some ¢>I;, we
have

(9-22) E‘J)Z(rlv Tey oo rq—l; a,) «, rq: ) Tn—2)-

For w'eUj}, put v=v;'u'v,€W(X). Then va=a, va’=a’, hence veW(X««)
with Y« =(3%)* Moreover

(9.23) va'u'Ef=(a’; v71, Ve, o, UFn-s) -

Let u€U; be the element corresponding to u’ under (9.21). Then by (9.20),
(9.24) wE; =1, V12, 0, UFp-1, @, &, UTp, =, VT no2)

Therefore we see from (9.22), (9.24) that u=vwu;, where w is given by
(9.25) WEI= (1, 2 o Vo1, @5 @ Ty 0, Tnea)

Let a;=G be an element such that Ad(a;)|h.=u; and a;haj'=h for he Ay.
Then,
Ad(dj)“))po"Ad(aj)—]:l)Fo s

if the root vectors for Fo\U—F,, FJ—F° are so chosen that Ad(aj)X“:Xiujr
(reFy), where Fy=Fy(FE;), F'=F(EY).

Lemma 9.13. Assume that vp, and vpo are normalized as above, and put
A=Ad(g) 4, Ai=Ad(a)4,, and s;=Ad(a;)-s-Ad(a;) |97 € W(§7°), where HF'=
gNvple. For ueUj, let u'€U; be the element corresponding to u under (9.21),
and put v=vz'u’v,. Then

Y(h; E;, u, sA)=Y(h; E}, v, si47).
Proof. We have by Lemma 9.6 that Y(h; E;, u, s4)=Y(h; ES, uuj?, s;4}).
Therefore, since uuj'=vw, it is sufficient to prove that
Y(h; ES, vw, siA)=Y(h; ES, v, s14}).

To do so, we apply Lemma 3.1. As is seen from (9.22), (9.25), E} and w

satisfy the assumption in Lemma 3.1. Moreover we get w'P(E})=P(E}) and

sgn(w)=1. Therefore we get the desired equality from Corollary of Lemma 3.1.
Q.E.D.

Now note that a’+a< F° and that «, a’, '+« are strongly orthogonal to
any other roots in F° Apply Lemma 7.5 to F° «’ and «, then for an appro-
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priate choice of root vectors for +a« and Fi)U—F; with Fi=F(FE}), we have
for some element g, in G(a, a),

(9.26) Ad(g)vpolhe= VFyYa I,

and hence Ad(gl)I)F°=I)’F3. Note that Condition 5.1 can be satisfied for (F£°, EY)
and (Fy, Ej). If Ad(aj)evp,oAd(a;)"'=vr holds, then putting §’=49* as above, we
get

(9.27) HFo=Ad(g.:a,)h", v, P())=Ad(g:a;)vr uj P(D).

According to the remark about the term (9.19), we put for (9.19) go=g.a;8
with g, in (5.4). Then we get from (5.4) and (9.27) that

Ad(gi)b=1"To, Ad(ghweP(O)=v, (vau5'vi)P(Y).

Therefore wg in (9.16) satisfies that sgn(wg)=sgn(w,)sgn(u;). Hence by Lemma
9.12,

(9.28) sgn(wg)=sgn(w,) .

Note that ¢(E})=—e(E;). Then by Lemma 9.13 and (9.28), we see from
(9.14), (9.17) that it is sufficient for us to prove the following.

Lemma 9.14. Put gi=gia;g, in (9.16), and A'=Ad(gp)4, A;=Ad(a;g.)A.
Put for uw' €U} and S’EWG(T)'F;J), v=y;'u'v, €W(X) and s;=Ad(g,)*-s’-Ad(g|
W eWe(h). Then for any u’ and s’,

H.Y(he; ES, v, siA)=—HgY(he; Ej, u’, s'A") (hye A,).

Proof. Note that v=v;'u’v, belongs to W(X**') of va=a, va’=a’. Then,
taking into account (9.26) and (9.23)-(9.24), we can get the equality directly
from the definition (3.7) of the function Y. Q.E.D.

Thus by Lemmas 9.13 and 9.14, the proof of Lemma 7.1 is now complete
when « is short, Y(a)=2r(A) and is of type C,.

CASE OF F,. Let 2 be of type F,, and a<II be short. Then X is of type
B;, and a=e, or 27 '(e;—e,—e;—e,). In any case, if E€M°(P) is in case (i)
for a, i.e., EDa, then «a is contained in E as its last element. Therefore the
proof of the equality (9.13) can be carried out quite analogously as for type B,.
Thus the proof of Lemma 7.1 is now complete when « is short, and 3(a)=
2 r(A) is of type F..

9.7. The case of long a. We assume Y=23(a)=2p3(A). Let us prove
Lemma 7.1 when a<ll is long. Our aim is to prove the equality (9.13). Let

us realize Y and P as in §1.2. Since a is long, we obtain from the result in
§9.5 that

(9.29) H,.&%he; P(H))
=sgn(w,) > X 2 sgn(s)H.Y(h,; E;, u, s-Ad(gy1),

1=jar u SEWy
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where w,, E;, g, are as in (5.4), W,=W(§7) with Fy,=F(FE;), and u runs over
Uj U WUy Here Ujy's are the subsets of W(E;; P)={u; uE;=M°(P)} given
by

Uj={u; uE; is in case (i1) for a},

Uj,={u; uE; is in case (iib) for a},
Ujs={u; uE; is in case (i2) for a}.

This expression of H,&%h,; P(§)) corresponds to (9.14) for a short a. On the
other hand, the expression (9.17) of Hg&"(he; P(}’)) holds in this case too.

We see in §9.3 that U;;=0 except when X is of type Cuq41. Moreover
Uj#0 (resp. Uj;,#0) if and only if ;=2 (resp. n—1{;=2), where [; denotes the
type of E; Note that [; is always even for B, and Fy, and n—/; is always
even for C,.

Let us normalize the numbering of E; as [(n—[;)/2]=j. Then we know
by Lemma 9.4 that for any ue&Uj, there exists a unique @,(u)€U ;.. such
that @.(u)E;4: and uE; form an a-pair:

(9.30) tol@a(WEj)=ukE;.

The map ¢. gives a bijection from Uj; onto Uj.y,.. Put for uelUj,
(9.31) uE;=(a;, az, -+, az).

Then by the definition of the case (il),

(9.32) (asp-1, azp)=(a’, a)

for some p (2p=!;) with a’>a such that a’le«, 2" (a’+a)e P. We call a’ the
counter-part of a in uE; Put

(9.33) To=2"Ya'—a), ri=2"Ya'+a).

Then Y,={*a, +a’, &7, +7¢ is a root system of type B,. By the definition
of ¢, and by Lemma 9.3(3), we see that for some ¢=/;,,=[,—2,

(9.34) W Ej=(ai, as, ==, Aap_s, Aspy1, **+, Qg To, Tos Agar, == Q7).

We will apply Lemma 7.7 to these a-pairs with the help of Lemma 7.6.
This gives us Lemmas 9.16 and 9.18 below. The assertion corresponding to
Lemma 9.14 for a short a is Lemma 9.16 except when 2 is of type C,q4:, and
is Lemma 9.17 when X is of type Cigs1.

To state these lemmas, we need some preparation. First remark the fol-
lowing.

(IB) If Y is of type B,, 2¢ is of type B,-,+A{"” (B;=A{") and a=e,—ez41
for some k<n. The counter-part a’ of a is unique and a’=e,+e;y;. The
A®_component of X% is {+a'}.

AC) If 2 is of type C,, X« is of type C,-; and a=2¢,, the lowest root in
P, and as the counter-part of a, any long root a’=2e¢, in P is possible (k<n).

(IF) If ¥ is of type F,, 2% is of type C; and a=e¢,—e, or e;—e,. Note
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that in any case, if a’ is a long root in P such that a’lea, then a’'>a,
2" (a’+a)e . This means that any such «’ is possible to become the counter-
part of a.

As a cut-off of the root @, we define an operation j, as follows according
to the type of Y. Let uE; for Uj be as in (9.31)-(9.32). If X is of type B,
put

dn JauEp=(a’; aj, az, **, Qip s, Azpr1, =, An) .
If 2 is of type C.q or F,, [; is always even, and put

(J2) ja(uEJ):(aI; a;! Ty a;p—z; aép+17 tty azjr a,rv a;j+ly Tt a;z)-
where V indicates the boundary of long roots and short roots. If X is of type
Csa+1, I; is always odd, and put

dJ3 Ja(uEp=(ai, i, -+, Qop-z, Qipsr, =+, Appmr, @y @Y @ jar, 0, Q).

When 2 is of type Caqy1, Ujs#0. Then by the definition of the case (i2),
uE; for uelUj; has the following form:

(9-35) qu:(a;, a;r T a;j—lr a.-v a2j+1: ) a;l)’
that is, aij:a. We put in this case
(J4) JauE)=(al, ab, -+, @Y @l o, @b

For ueU; in case (J3), we define #< U}, as a kind of exchange of a’ and
the last long root tx”=afj in uE; (I; is odd in this case): for uE; in (9.31), put
a”=a2j and

(9'36) ZAtEj:(a;/y aé’: Tty aé’q—ly agqy Tty a;/]rv a2j+1r ) a;’t)v

where ai’jza’, and (agg-1, azp)=(a”, a) for some ¢ (2¢<!/;), and all the other
roots are arranged in the same order as in uE; (¢ is uniquely determined by
the condition that 2E;& M (P)).

Let E; be the standard element in M°(P’). We normalize the numbering
of Ej in such a way that the number of short roots in E; and E} coincide
with each other. Note that in the cases of (J1), (J2) and (J4), j.(uE;) is an
element of M°(P’). But in case (J3), j.(uE;) does not necessarily belong to
M°"(P’) because a’ and a”=a{j may be any pair of long roots in P<.

In the cases of (J1) and (J2), we define for u€U;, an element ¢.(u)€U; by

(w) Vaja(qu):S/)a(u)E;’ .

In the case of (J4), we define for u€U;; an element ¢.(u)€U; by the same
equation (¥). Then we have the following lemma.

Lemma 9.15. Let X be of type Bn, Coy or F, then ¢, gives a bijective
correspondence between Uj, and Uj. Let ¥ be the type Ciqrr, then o gives a
bijective correspondence between U, and Uj.
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Proof. This can be proved case by case by applying the result in § 1.5.
Q.E.D.
Now we can state the lemmas mentioned before.

Lemma 9.16. Let X be of type By, Coy or F,. For ueUj, put u(j)=
u, u(G+D)=0(u)EUjs1,5. Then for hoeM,,

(9.37) sgn(wo) 2 e(Ey) 3 sgn()HaY (ho; Ey, u(i), s-Ad(go)4)
i=j,j+1 SEW
=sgn(wo)e(E)) 2 sgn(sVHpY (ho; Ej, ¢a(u), s’Ad(g)4),
s’EWO

where w,, go, Wo are as in (9.29), and wq, go, Wy are as in (9.17).

Lemma 9.17. Let 3 be of type Coasr. Then for any ucUjs, it holds the
following equality: for hoe M,,

(9.38) sgn(wo)e(E;) 20 sgn(s)H,Y (he; E;, u, s-Ad(go)4)
SEW

=sgn(wo)e(Ej) X sgn(s)HpY (ho; Ej, Pa(u), s’Ad(go)A),

STEW,

where w,, go, Wo, wo, go, Wo are as in Lemma 9.16.
Moreover when X is of type C,4+1, We have the following.

Lemma 9.18. Let X be of type Cogsr. For u€Uj, let a€Uj, be given by
(9.36). Put u(j)=u, u(j+1)=p.(u), @(j)=a, a(j+1)=pu (), then for h,€M,,
(9.39) z > > sgn(s)HY (ho; Ey, v, s-Ad(go)4)=0.

=504 poy iy, Wy SEWO

Assume Lemmas 9.16-9.18 for a moment, then we see that the equality (9.13)
to be proved follows from them. In fact, when 2 is of type B,, C.,q of F,, it
follows from Lemmas 9.15, 9.16, and (9.17), (9.29). When X is of type ézd+1, it
follows from Lemmas 9.15, 9.17, 9.18, and (9.17), (9.29).

9.8. We can prove Lemma 9.17 following Case of B, in §9.6 and using the
analogous lemma as Lemma 9.11. We omit the details.

Thus it rests only to prove Lemmas 9.16 and 9.18. To do so, we apply
Lemmas 7.6, 7.7. We need some preparation.

Let us introduce an operation k, on uE; with u€Uj, as a cut-off of a and
its counter-part a’: for uFE; in (9.31)-(9.32),

(K) k(uEj)=(a;, as, =+, Qap-z, Qaps1, -, An).

Let a' be a long root in P such that a’lea, 27(a’ta)eP. Let U, be
the subset of U;, consisting of u such that in uE; «’ is the counter-part of a.
Then Uj is the disjoint union of Uji,.’s. (Note that if X is of type B, and
a=e,—e+1, then U;=U; i, with a’=e,+e41.)

Fix such an a’ from now on. Put Y*®'=(3*)* and P**=PNJY** then
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we see easily that k.(xE;) is an element of M°(P**') of type [;—2 for any
Ujla'- Let

(9.40) Na':(rl) Tas s Tn-z)

be the standard element of type /;—2 of M°(P=*'), and define p,.(u)esW(3**")
for ueUj, by

P ko(uE)=pa(u)Na: .

Then we see that p..(u) gives a bijective correspondence between Ui, and
W(Ng ; Pes).
Choose x..€W(X) as

(9'41) xa’Ej:(rl) TZ; tty 7tj—z, aly a’V th—l, Sty Tn—Z)’

and put Kp=x0E; Lyo=x4.E;z1. Let b, be an element in G such that
Ad(ba )| 9e=xq, bahbz!=h for heAy. Then choosing the root vectors for
Fo\U—F, with Fo.=F(K,)=F,(L. ) appropriately, we have

(9.42) Ad(ba)ovp,eAd(bar) '=vp,, .

Hence b« =Ad(b.)h™, where 47« =gNvp h.. Moreover by Lemma 9.6, we
get for ueW(2),

Y(h; Ej, u, )=Y(h; Koo, uxz!, Ad(ba)p)  (h€A),

(9.43)
Y(h; Ejr, u, )=Y(h; Lo, uxzt, Ad(ba)p) (h€A),

where p=Ad(g,)A for 1€b¥’, and g, is given in (5.4).
For u€Ujia, let v=p.(W)EW (N ; P**') be as in (P). Then by (9.31)-
(9.34),
(uxHKar=uE; =11, 072, ***, Vlep-2, &', &, VFap_1, =, Uln-p),
(9.44) { /
(Pa(W)XN Lo =a(W)E j51=T1, VT2, =+, UTgy Tos Tor Ulger, o+ 5 Vin=2) .
Put ga =ba g, and for s€Ws(h"),
(9.45) s'=Ad(ba)- s+ Ad(ba ) 5O .
Then s’€W¢(hF«' ), and for p=Ad(g,)4,
(9.46) Ad(be)sp=s"Ad(ba: go)A=5"Ad(ga:)A .

Moreover put M,=(a’, &), Mi=(4, 7o), then M°(P,)= {M,, M,}, where P,=PNY,
with 3,={xa’, £a, £75, %7}, and P(Mo)=F,, P(M))=M¥ by (1.21).

Let he A be h=hyexp X with hye Ay, X€bhy. Decompose X as X=X+ X,,
where X;€ RH,+RH,. and a(X;)=a’(X,;)=0, and put h,=exp(X,), h,= hyexp(X,),
then h=Ah.h,. Put for A,=s'Ad(g..)4,

9.47)  Y(h: M, A)=Y(hy; M,, Ay)
=sgn{ II )(r“A,, O II exp{—7r(X)IG&*4:, DI/ 1713,

TEP(M reu’
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(9.48)  Y(h; My, A)=Y(hy; My, 4))
=sgn{ II ("4, N} II exp{—7(X)| 4, DI/1171%,

TEPM ) =m*
. rTMy

(9~49) Y(h ) N} v, Al):Y(hZ; N’ v, Al)
=sgn{ II (7'A, Péa(he) IT exp{—@r)Xo) |4y, NI/171%,
TEP(N) TEN*

where N=N,., T=Vp,,.
Then we get from (9.43)-(9.46) the following lemma.

Lemma 9.19. For u€Ujia:, let pa(W)EW(N, ; P**') be given by (P). For
seWg(h ), put s’ as in (9.45). Then for he A,
Y(h; E; u, s-Ad(go)A4)
=Y(h; My, s"Ad(ga) D) Y(h; N, pa(u), s’Ad(ga) ),
Y(h; Ejui, @a(u), s+ Ad(go)A)
=Y(h; My, s’Ad(ga) D) Y(h; N, pa(u), s"Ad(ga) ).

Put d=ra, 6’=ra’, then they are singular imaginary roots in X,=2(fFa)
such that 2-%(d+¢")ed,. Then applying Lemma 7.6, we see that there exists
o’'eWg(§F«") such that

0'0=¢ed’, 0’0’=ed (e=1 or —1); ¢’p=7 for any p€,, 19,0

Note that for any yeN, (z7s’2, r)=(c"'a’s’2’, ) for any s'€Wy(hf«) and
A’=Ad(g..)A with 2€b}’. Then we see that for any veW(¥*"),

(9.50) Y(h; N, v, s’2)=Y(h; N, v, a’s’2).
On the other hand, applying Lemma 7.7 to 2, we obtain the following.
Lemma 9.20. Put go =ba go, and let s’€Wg(hFa'). Then for hy=exp X’
with X'=t"H,,
(9.51) e(Mq)yw_/V_,:ﬂs' sgn(y)H,Y (he; My, y-Ad(ga)A)

q=0,1

== 2 sgn(yHgY(ho; {a'}, y-Ad(ga) ).

y=si,o

Here the function Y in the right hand side is given as follows: let A] be an
element expressed as hj=exp(t~/— 1 Hg)-exp X’ with X'=t'H,., then put for
Ay=s'Ad(g.)4,

(952)  Y(hi; {a'}, 4)
=sgn{(z'4,, a’)} & 4,(exptv/'— 1 Hp))-exp{—a'(X")|(z7 4;, )|/’ |%.

Recall that any element h,eM, is expressed as h,=hyexp X’, where
hye Ay, X'ehp={X<by,; a(X)=0}. This enables us to utilize Lemmas 9.19,
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9.20 and (9.50) for our purpose. In fact, Lemma 9.16 follows from these results
and the expressions of Y(h'; Ej, u’, A’) analogous as those in Lemma 9.19. On
the other hand, Lemma 9.18 follows essentially from them by the help of
Lemma 7.6.

9.9. Proof of Lemma 9.16. To finish the proof of Lemma 9.16, we need
the following lemma analogous as Lemma 9.12.

Lemma 9.21. Let u;€Uj be such that vajo(u;E;)=Ej; Then sgn(uj;=1.

Proof. This can be proved analogously as Lemma 9.12 using explicit forms
of E; and Ej. Q.E.D.

Now let X' be of type B,, Cyq or Fy. Then Uj;=0 and [; is always even.
Let Q. be an ordered system of roots in 2'¢ given by

vt_lea':<a/; 71) 7’2; ) 7‘n-—2) fOl‘ Bn;
(9.53)

=1, T2 Tij-2 a’y Tij-1 Ta-2) for Cpq or F,,

where 7;'s are in (9.40). Note that v;'Q,. is obtained from K, by cutting off
the root «, and that « is strongly orthogonal to any y=2°. Then we see that
choosing root vectors for G, \U—G, with G, =Fy(Q..) appropriately, we have

(9.54) YV, =VY6,, Ya=Va¥e,,

Therefore we get ) e =} % with )’=4%. Now let z,,€W(Z’) be an element
such that z, Ej=Q,. Take a ¢, G such that Ad(c..)|Ye=2zar, Carh’cat=h’
for h'eAj. Since a is strongly orthogonal to any yreuv;'2’'=2%¢ we may
assume in addition that Ad(c,.) commutes with v,. Therefore choosing root
vectors for Fo\U—Fy with Fi=Fy(E}) appropriately, we have

(9.55) Ad(ca)eovr, *Ad(ca ) =vg

Hence we get Ad(ca,)f)’%:[)’aa'
Starting from vp, we normalize vp,, by (9.42), ve,, by (9.54), and finally
vr, by (9.55). Then we have

Ad(bar)ovry Ad(ba) '=Ad(car)ovr, vac Ad(car) " .
Put do=catbar, u;j=3'2aVa) x4 Then
(9.56) Ad(dar)ovr e Ad(d o) '=vF,va, Ad(da)|he=u;.
Moreover it follows from (9.41) and (9.53) that
(9.57) u; €U, vajolu;E)H=E}].

Hence u; is independent of «’, and so is Ad(d..)|).=u; Moreover the trans-
formation hA—d. hdz} on A is independent of a’, because d, hdz}=h for he Ay.
Using (9.55), we get from (5.4),
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(9.58) Ad(da g0)0=1", Ad(da go)weP(O)=vg, (vattz ) P(') ,
where P(§)=v,P(h). Hence we can take d,.g, as g; in (9.16) for the term in
(9.19). In that case, we get from (9.57)
(9.59) sgn(wg)=sgn(w,) sgn(u;)=sgn(w,) ,

because sgn(u;)=1 by Lemma 9.21.

After this study on the relation between vy, and vg, we will rewrite
Y(h'; Ej, u’, A’) analogously as for Y (h; E; u, ) and Y (h; E;41, u, +) in
Lemma 9.19. Firstly we have by Lemma 9.6 the following expression analogous
as (9.43): for w’ eW("),

(9.60) Y(h'; Ej, u', p)=Y(h'; Qar, u’'zzh, Ad(ca)pt) (h'e A,
where p'=Ad(g¢)A with 1€b}’.
Note that Ad(c.)Ad(go)A=Ad(b..)Ad(g,)A. For seW,=W(hF0), put s’'e
We(§7« Y=W (% ) as in (9.45) and
(9.61) $:=Ad(ca) 5" Ad(ca) | 5:F0=Ad(d o) -5 Ad(d o) 5:F0 .

Then sgeI/V‘;:WG(f)’FB), and Ad(ca ) s.-Ad(ge)A=s"-Ad(g..).
Put Uja=¢o(U j10+), then Uj is a disjoint union of them. For u'=¢,(u)EUjq.,
put v=pu (W)EW(Ny ; P**). Then we get from (¥) and (9.44) that
9.62)  va'((u'za)Qa)=va (W' Ej)=(a’; vI'1, VT2, =+, UFn-2) for B,, or
:(UTI, UT27 Tty Vrlj—z’ a,!v Url]-—b Tty vrn—2) for C2d or F4'

Express h'€A’ as h'=hih;, where hi=exp(t+ — 1 Hp)-exp(t'H,), hi=
hy exp X’ with hye Ay, X’ €Y} such that a’(X")=0. We put for 4,=s’Ad(g..)4,

Y(h'; {vea'}, A)=Y(hs; {a’}, 4), Y(h';v.N, u', A)=Y(h;; N, v, 1)),

where N=N,., u'=¢(u)EUja, v=pa (u) for some uE€U;i,, and the functions
in the right hand sides are given by (9.52) and (9.49) respectively. Note that
the decomposition h’=hih; is not necessarily unique on A’. However we need
only to apply it for a fixed hy.

Now we have the following lemma analogous as Lemma 9.19.

Lemma 9.22. For seW,=W(HF), put s’ as in (9.45), and s, as in (9.61).
Then for u€Uji,, h'EA’,

Y(h'; E}, ¢palu), s:Ad(ge)d)
=Y (h'; {va’}, s’Ad(go)A)-Y(h'; valN, pa (), s’Ad(g.)1).

Thus the equality in Lemma 9.16 follows from Lemmas 9.19, 9.20, 9.22, (9.50)
and (9.59), by summing up over a’. The proof of Lemma 9.16 is now complete.

9.10. Proof of Lemma 9.18. Let us prove Lemma 9.18. Put y=yp, a=1",
{=[; for simplicity. Recall that /=/; is always odd in this case. Fix an element
ueUj, and let y=a’, the counter-part of a in uE; and d=a;, the last long
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root in uE; (see (9.31)).

Let No,eM°(P**') be as in (9.40). Then k,(wE;)=p,(u)N, for uclU;,.
Since / is odd, the last long root in k.(uE;)=p,(u)N; is 6. From the definition
of @, we see that a€ U, and in k. (2E;)=ps(@)N;, the last long root is 7, and
all the other elements coincide with the respective elements in p(u)N,. Let
(71, 73, ***, Tn-s) be the common part, then

(9.63) Pr(u)Nr:(T;y Té) Tty Tf—sy 57V Ti—z: Tty 7;1—8)’
p(;(u)Nﬁ:(T]’y Té) ) r;—Sy rrv r;—% Ty T;r—3>~

Now let us rewrite the last result in §9.8. In (9.47)-(9.49), we see from
(9.42), (9.46) that for ne, A,=s'Ad(g.)4,

(74, p="'s-Ad(go4, x3'y),
where t=vp ,. Let E;=(a, as, -+, @3), then by (9.40), (9.41), we get
Xar@-3=a', X0 @ 1= X0@p=1p (P=1=3), Xapss=T7p (p=1—2).
Since y=a’, 6=a;=7,-5, putting A’=s-Ad(g.)4, we get
(e s, 1p)=(A", vay) (p=1=3), (7' Ay, 1p)=(A', vapss) (p=I-1);
(' 4y, =, vay ), 744, O)=(A", vay), (t7'4;, a)=(A", va;_).

Using these results, we obtain from Lemmas 9.19, 9.20 the following.
For ueUj, put u(j)=u, u(j+1)=¢.(u), then for hyeM,,

(9.64) 2 e(E) X sgn(s)HoY (ho; Eq, u(@), s-Ad(go)4)

i=j,j+1 SEW
=e(E})sz‘v70 sgn(s)Y j(ho; u, s-Ad(gaA),
where the function Y; in the right hand side is defined as follows. Let h,=
hyexp X’ with hye Ay, X’'€Yy, then for A,=s-Ad(g,)4,
(9.65) Yiho; u, A)=Ujho; u, 4:1)-Vihe;u, A1)
with
Ujiho; u, AD)=sgn{(4;, va,_.)X(A1, va,)}
xexp {—7(X) (4, vai-s)l/lai-»1% -exp{—d(X")| (4, va))|/|a;]%,
Viho; u, A)=sgn{(4,, va,1)} -§4,(hy)
ngn{nel;l(m(/h’ vn)} '15p§l_3exp{—7p(X')l(/1n vBu)l/1Bs1%,
where E=(f1, B, =, Ba-s)=(a1, as, =, a1-sY Qs =+, @n).

It follows from what was seen above that U;(hy; u, 4,) is obtained from
Ujiho; &, A1) by an exchange of the roots 7 and ¢, and

(9.66) Vj(ho; u, A!):Vj(ho; u, 4,).
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On the other hand, put d:=va,_,, §,—=vea,. Then they are singular imaginary
roots of a such that 27%(d,4d,)€3(a). Hence we see by Lemma 7.6 that there
exists a c=W,=Wq(a) such that

001=¢0;, 00,=¢0, (e=1 or —1); ayp=7 for p€X(a), 1Ld,, J;.

Clearly we have Vi(he; u, 04)=V,(hy; u, A)=V,(he; &t. A)). Moreover, since
laie|=la,|, we get Ujhy; u, 0 A)=Uj(h,; &, A)). Hence

Yj(ho; u, GAl):Yj(llo; i, Al) .
This gives us for any seW,,
sgn(as)Y ;(ho; u, os-Ad(go)A)+sgn(s)Y ;(hy; @, s-Ad(ge)4)=0.

This equality together with (9.64) proves Lemma 9.18. Thus the proof of
Lemma 7.1 is now complete when a is long and 2(a)=2X%(A) is of class II
(88 9.5-9.10).

9.11. Let us consider the general case where 2z(A) is no longer simple.
We see that the discussions to prove Lemma 7.1 can be carried out exclusively
only on the simple component X(a) of Y z(A) containing a< Il in question. This
fact comes out from the very definition of the functions ¥ and Z in §3.1.

Now we have completed the proof of Lemma 7.1, and accordingly the proof
of Theorem 2. Since Theorem 1 follows from Theorem 2 by means of the

result in § 3.4, this is the end of our long proof (§§6-9). (How well everything
works!)

Appendix. The case of the holomorphic discrete series for Sp(n, R)

1. As is remarked in Introduction, for the group Sp(n, R), the character
formula in Theorem 2 is an another expression of the formula given in [5(e), § 7].
Once this is admitted, the reduction of the general formula in Theorem 2 to the
known one in the case of holomorphic discrete series [3, 6] is proved easily by
using certain identities of the same kind as (A15) below in the symmetric groups
[5(e), §9]. This is remarked in Introduction. However, since the equivalence
between the formula in Theorem 2 and that in [5(e)] is not so apparent, it has
some worth to mention here how the reduction occurs for the holomorphic dis-
crete series. It is a simple calculation given, in a certain sense, by going back
to the formula in [5(e)] and following the proof there.

For the group SO,2n, 2n+1) and A0} in the Weyl chamber of Borel-de
Siebenthal, the reduction of the same kind is given by S. Mikami [11]. Similarly
as for Sp(n, R), it is carried out using some identities like (A15) below in the
symmetric groups. Note that for the group SO,(2n, 2n), the formula in Theo-
rem 1 contains no cancellation. In general, for 4€8% in the Weyl chamber of
Borel-de Siebenthal, the reduced formula is given also by J. A. Vargas [12] by
a completely different method.
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2. Let G=Sp(n, R) and A the connected component of the unit element
of a split Cartan subgroup. Let §) be the corresponding Cartan subalgebra, then
the root system Yg(A) is identical with X(h) and of type C,. We use the
notations in (1.5), and introduce the co-ordinates (i, t,, --+, t,) of X%, by
t;y=e«(X) (1=i=n). The standard systems in M(Pr(A)) are given by

Fr=1{2e; 1=ZiZ]), erpojrterss; 1=k},

where [+2k=n. Let ©, be the symmetric group of order n and define its
operation on 7 (1=/=<n) in such a way that (so)(@)=0(s(?) (s, 0€S,). All the
elements in M°"(Pg(A)) of type [ are given as follows:

(AD E=Q2e,, 2e5m, , 285w, Cousntesasn, erasn—Coq,
o=t Catn-nCrmy)
where ¢=&,, satisfies the condition
0(2i—1)<a(2i) 1=i=m=[1/2]), 6(1)<o3)<--<o(@m—1);
(A2 { o(l+-21—1)<o(l42]) (1ZiZk), o(I+D)<o(I+3) < <o(I4+2k—1)

=o(n—1).

Put N=[n/2], then k+m=N, 0<k<N. Put E,=F,, then it is standard, and
by (1.21) and (1.39), we have

(A3) P(E)={2¢; 1=iZ)), ejitey; (1S7Em), eppairtes 1SSk,

(A4) 6(Ek):(———1)"—m:(,_1>n—1v+k‘

3. Now put b=0 =y (h)Ng, and let B be the corresponding Cartan sub-
group. Introduce the co-ordinates (xi, x,, -+, x,) of X&b, by x;=e;,(vFlX)
(1=i<n). Then the real subspace b is characterized by x,€v— I R (1<j=n),
and the kernel of the mapping exp of b onto B is the n-times product of
v —12zZ. Therefore At} is given by

/I(X):]sjESnzjxj (X:(xly x2r Ty xn)Ehc)’

where A;€Z for 1=j<n and X is denoted by its co-ordinates as X=(x,, x,,
=, xXa). The group We(b)=W(B) is given as follows. Since the roots vp(2e;)
and vp(2e;41) are both singular imaginary, exactly one of vp(e;*es1) is com-
pact. Assume that vp(e;—eje;) is compact, where ei=1 or —1. Put e;=1,
e;=¢ejes -+ €i-1 (2<7<n), and introduce auxiliary co-ordinates for Xb and 4<b%
as follows:

xi=ex; (I1Zi€n); Ai=ed; 1Zi<n).

Then A(X)=2A;x+Ax2+ - +A,x;, and Wgs(b) consists of the transformations
given by

(A5) X=(e1x1, :x5, =+, e, x0)2>sX=(e1x {1y, X523, """, EnXicn)) 5
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where s€&,. Then for A=(eid], €43, --*, €,4%), We have sA=(e1dic1, €2A5¢2,
-, €ndsemy). The sign of this element in Wg(b) coincides with the usual sign
sgn(s) of s in &,. Thus the function #% on B corresponding to @, is given by
(A6) ifyexp X)= 3 sgn(s)exp( X Aipx}).
SES 1sjsn
Put Ai=v;p,, that is, ;;=ev;p; with v;==1, p,>0. We put on A the fol-
lowing condition :

(A7) P1>pe> > P >0, vi=v,= - =v,=v (put).

Then e(A)=v"ee, - €,. Assume that the root vectors used to define vp, satisfy
Condition 5.1. Then we assert that ¢, 5;-1=¢,-,; (0=j<N—1) and so under the
condition (A7), we have &(A4)=yv", and for exp X€ A with X=(t,, t,, -+, tn)EYH
such that t;>1,>->1,>0,
(A8) #lexp X)=(—w)* I sgn(s)exp{— 3 pspt}-

SEBq 1sjsn
Note that, with respect to the canonical order, simple roots are given by
e;—ei (1=i=n—1), 2e,.

4. Let us first prove that under Condition 5.1, we have e,-p;-;=1, that is,
Vr(@n-2j-1—@n-s;) is compact for 0<j<N-—1. Once this is so, we have e, 2;-1
=¢q_g; for 0=Z7=N—1, and ei&, -+ ;=1 for [+2k=n. Let X..,, (1=i=n) be
the root vectors used to define vp,. Then Condition 5.1 says the following: let
a'=2ey_3j-1, 0=2e,_5; (0=j=<N—1), and 7'=2"%a’+a), r=2"'(a’—a), then there
exist root vectors Y, and Y., for 7/ and =+7 such that X, =[Y,, YV, ], X.=
[Y.,, Y, ]. Thus we come to the situation in Lemma 7.5.

Lemma Al. Let g, % F, a, ', 7 and 7’ be as in Lemma 7.5. Let vp be the
automorphism g, defined by the system of root vectors {X.;€q; 0€F} satisfying
[ X5, X_s1=H;. Assume that every root in F—{a, a'} is strongly orthogonal to
7,7 and that Xo =LYy, Y1, Xe=[Y-;, Y] for some root vectors Y_.,, Y, €g
for £ and 7’. Then the root vpy=2"'ve(a’—a) of §¥ is compact, and the other
vpr'=2"vp(a’'+a) is singular.

Proof. Let gla, @’) be the subalgebra of g generated by Y., Y.,, where
Y_, g is also a root vector for —7’, then g(a, a’)=2p(2, R). Since [X.; X]=0
for 60 F—{a, a’}, X=g(a, a’), it is sufficient to prove the lemma in the case
where g=g(a, a’). Thus we may take g=28p(2, R). We first prove the assertion
for a special choice of F={«a, a’} and X.., X.. given in the proof of Lemma
75. Let T, U be as there. Note that v,=exp{—+/— 1 (x/dad(X,+X")} is

the inner automorphism of g, given by the element exp{—+/— 1 (#/4)(X o+X"_.)}
of Sp2, C), and similarly for v,,. Then we get by a simple calculation

0 —:T 0 —iU
vFHZ,:v,‘H:,:( ), vFH;,zv,,,H’a,z( .
T 0 w0
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Remark that vp'H,=—vpH,, vitH, =—vpH,., that is, v¢'|).=—vp|h.. Moreover
vpH}, vpH; are given easily and we get two root vectors Z. (e==1) for evgpr
as follows:

0 —D 0 —/FE A €B
yFH;:( ) VFH)/": ’ Z£: y
D 0 E 0 —eB A

A B R !

We see that Z. belong to f,.={Xegq.; 6 X=X} for §X=—"'X, whence vg7 is
compact.

Now consider for g=8p(2, R) another choice of F*={a*, a*}, X¥., X¥fsu
satisfying Condition 5.1. Let r*=2"(a* —a*), r*'=2"(a* +a*), then by assump-
tion, X¥. =[Y%, Y], Xi=[Y*., Y} ] for some root vectors Y ¥,., V.. Since
all the roots of §) are real, there exists an element geSp(2, R) such that

where

Ad(@r=r* Adl@r'=r*; Ad(@)Y,=:Y%, Adl@Y, =e'Y¥,

where ¢, ¢’=1 or —1. Then we have Ad(g)X..=ee’ X*ss, Ad(@)X. 0=’ X¥su,
and hence

Ad(g)evpe Ad(g) ' =(vp)™.

Note that Ad(g) 'r*=7y, (vp)*'r=(ee’)vpyr, then we get vpy*=(ee’)Ad(g)vsr.
Since Ad(g) maps the compact roots of §¥ to the compact roots of §* we see
that ve.g* is a compact root of H7*, Q E.D.

Applying this lemma to our situation, we see that yp(en_sj-1—en-s;) is
compact for 0=7=<N—1, as desired.
5. For a=2¢; or e¢;+e¢;€ 3 (A), we have
(sd):/2 for a=2e¢;,
(A9) (sd, vp)/|a|*=
((SA),"_‘(SA)I)/Z for a:eii-ej,

where (sA); denotes the i-th component of the co-ordinates of s/ : (sA);=¢:i.
Note that eie, -+ e;=1 and sgn(p?—p3=sgn(j—7), we obtain under the condition
(A7),

(A10) sgnmk)(s/1>=v’mgmsgn(3(2i)—S(2i—1))15;1,.sgn(5(!+2j)—s(/+2j—1)) .

For an element E in (Al), there exists a u€W(2(A)) such that E=uFE,. Then
by (3.7), we have for X=(t,, t5, -+, tn)EY,

Y(expX; E;, u, sA)=v’lslgmsgn(s(Zi)—s(Zi—l))

Xlsggksgn(s(l+2j)—s(l+2j—l))-eXp(—f(t, b, o, 5),

where
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f&, p,0,89)= X bsptaws
15)5l

+ X k2" {I pscirzi-nFDsasen | Goarzi-nttocsen)

1sis
+pscsei-n—DPsasenr | Foarei-n—toasen)}-
Here we used the fact that &,,2:-1=¢€42;. Note that v'=y" and
27 pstpil+10i— i D=bminci. s> »
{ 27 pitpil =1 0i— i 1)=Pmaxci. > -

(A1)

Consider the following condition on s€&,:
(A12k) sU4+2i—-D)<s(+2) (1Zi=Zk).
Then if s€&, satisfies (A12k), we have
1@, p, o, S)=ls§ni>s<j)ta<j)-

Taking into account (All) and the factor sgn(s) ITic;<e sgn(s((+25)—s((+2j—1)),
we get
> sgn(s)Y(exp X; Ex, u, sA)=v" > sgn(s)

s€ESy (8, 0): (A2k)(AL12R)
X TI sgn(s(2)—s(2i—1))2%exp(— X psploiy) s
1sism 1sjsn

where the sum runs over all (s, o) satisfying (A2k)=(A2) for k, and (Al2k).
Put j’=0a(j), s’=0¢"'s, then s(j)=s(a~*(j")=s'(j’), sgn(s)=sgn(s")sgn(a),

2 bspten= 2 Psipply,
1sjsn

1sjsn
and the condition (Al2k) takes the form
(Al3s'k) s'(e(I+27-1))<s'(a({+2))) (I=j=h).
For a fixed s’'€6,, (A13s’k) is considered as a condition on ¢. Thus

Z(exp X; E;, 4, Pp(A)=v" X > sgn(s’)

S'ESp  0:(A2k)(A138' R)

x2*sgn(a) II sgn(s'(0(2))—s"(a(2i—1))exp(— 2 ps nts).
1sism 1sjsn

Since ¢(E,)=(—1)"""*+# we have

0sks

ENE(Ek)Z(eXpX; E, 4, PR(A))=(—V)"S'EE@ Sgn(s’)f(s’)exp(—lsjzs‘,n pspts)s

where

(Al4) Jsh= X > (—1)¥+#2*sgn(o)

0sSksSN o:(A2k)(A135' k)

X II sgn(s’(o(20))—s'(a(2i—1))).

1sism
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Thus our task is to prove J(s’)=1 for any s’'€6,.

6. Now fix s’€&,. Denote by C.(s’) the set of all =&, satisfying (A2k)
and (Al3s’k). For k=0, (A13s’k) does not exist and Cy(s’)=C, is independent
of s’. For 0<k<N and 0€&,, denote by P,(¢) the set of ordered pairs
(6(2i—1), 0(20)) (1=<i=m) and (a(I+2j—1), o(+2])) (1=j=k). For z€C,, let
Ci(s’, ) be the subset of C,(s’) consisting of C,(s’) such that P,(c)=P(z). Put

Py(z, s")={(, NEPyz); s’O)<s'(},
and M=M, =#Py(z, s’). Then 4Ci(s’, ﬂ:(’}f). In fact, put

Do={(o(l+2j-1), o(l+2j)); 1=j=k},

then D, Py(z, s’) for sC,(s’, ), and conversely, for any subset D of k-elements
of Pz, s’), there exists exactly one element ¢=C,(s’, z) such that D,=D.
Moreover note that for any o=C,(s’, 7),

sgn(o)=sgn(z), II sgn(s'(a(2i)—s"(c(2i—1))=(—1)"*.
1sism
Then we get for a fixed s’e®, and r€C,,

> (=D)V**2*sgn(e) IT sgn(s'(a(2i)—s'(e(2i—1))

05ksSN d€CL(s',T)

=san@(— DY 5 (¥ 28V )=sgne)(— DT A1)
0sksM k
=sgn(z).
Note that C,(s’) is the disjoint union of C,(s’, r) over t€C,. Then we get

J(s")= 2 sgn(z).

T€CH
On the other hand, we have
(A15) > sgn(r)=1, or equivalently, X sgn(z)=N!,
TE€CY T: (A16)

where the last sum runs over all 7€&,, satisfying
(A16) 7(21—1)<7(27) (1Z/=N).
Hence we have J(s")=1 as desired.

DEPARTMENT OF MATHEMATICS
KyoTO UNIVERSITY
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Symbols
page

Ag, A(F) 435 H'S, HY(R) : 450 sgn(w) : 425
Ay, Ay 438 Ca: 454 sgnpcgy (A) ¢ 440
A+(P) : 444 0: 433 sa. 421
b%, b3’ : 440 64: 454 S 424
Car(g),Car(G) : 451 I(F): 431 ) : 433
Ci(:): 452 I(v,): 451 Fr(A): 435
45, 47%: 450 taE: 476 S(a): 463
e(E): 432 K0, R 450 UF) 428
eh(h),ew): 450 M(3),M(P): 422 V(E): 498
F. 427 Mor(P), Mer(P) : 426 W () : 418
Fo(E) : 428,432 M) : 427 W(Z): 422
g: 432 M,: 463 W(E;P): 428
gat 437 Ny (C): 433 W (C) : 433
&yt 434 Yot 433 et 438
IR 440 vp: 434 w: 437
Ey, E(R): 451 P(E): 428,432 Xoy X 433
H', HY, H}: 433 P(b), Pr(b) : 433 Y(hie): 440
B, 9, bp: 433 Pr(A): 435 Y'(hy-): 444
Hg, Hy: 433 Pr: 440 Zy(C): 433
pa 433 Pa. 469 Z(hy-): 441
hF . 434 TR 418 Z'(hy): 444
by, by : 438 HR(A) H 452
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