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On well-posedness of the Cauchy problem
for p-parabolic systems
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Ahmed EL-Fncv

§1. Introduction.

We are concerned with the Cauchy problem for the following p-parabolic
systems

d(1.1) U(x, t) = ,4(x, t; D)U(x, t)+F(x, t)
dt

(1.2) U(x, 0) =  Uo(x)eHP(R n
)  ,

(x, t)ER" x[0, T]

where U(x, t) and U0(x) are m- vectors, and

(1.3) ,A(x, t; D) = St(x, t; D)AP -I-23(x, t; D) .

Here (Au)(e)= t (C) and p is a positive number. S ax , t; e) is homogenuous of
degree 0 in e and all its derivatives ail am x , t ; C) are assumed to be bounded for
(x, e) x  fe :Ie l>11 . g (x , t; C) belongs to the class St?0 , 0< po<p, modulo
smoothing operators. .41(x, t; C) and g(x, t; C) are Holder continuous in t, (see
section 3).

Historically, p-parabolic systems were defined by I.G. Petrowsky [2] for systems
of differential operators. However, we can start our considerations from systems
of pseudo-differential operators. We believe that this will have good applications
in the future. Here we assumed only p > 0 .  Assume also that F(x, t) satisfies, for
some a e (0, 1],

(1.4) IIF(x, t)—F(x, I t—r I  , for any t, [0, T] .

We suppose there exists a positive constant S, such that it holds

(1.5) Re 2; (x, t; C)s —à ,e
where 2i (x, t, e), (j=1, 2, •••, m) are the roots of the equation

det(21—..91(x, t; e)) O.

I.G. Petrowsky [2] treated this problem with constant coefficients. Note that
S.O. Eidel'man [9] has studied this problem but his point of view is different from
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ours. Also S. Mizohata [8] treated this problem when the right-hand side F(x, t) is
continuous in t with values in H .  Here we apply a theory of parabolic semi-group
in order to consider the Cauchy problem (1.1)-(1.2) under the condition (1.4). P .E .
Sobolevskii [3] and H. Tanabe [10] have has treated the following evolution equation

dv -Fa (t)v  =  f( t)
dt

v(0) vo

under the following assumptions:
1) „q(t) is a linear closed operator acting on a Banach space E and the domain
of the definition D is dense and independent of t.
2) The operator (21+,,g(t)) has a bounded inverse satisfying

I Kai+ act»- I,fl +1
for any 2 with Re 2 > /9>O, where C and 8  are positive constants.
3) There exists a positive constant C such that, for some a e(0, 1],

IIG4t(t) - -Ar)Mi i (s)11< CI t— r
holds for any t, r, [0, T], where a (s)= il(s)+ / 1 I.
4) The function f ( t )  satisfies the following Holder condition

II f(t)—f(r)II<C I t — r  , for any t, r  [0, T] .

He proved that for any voEE there exists a unique solution v(x, t) for (P) which
is continuous for all t e [0, T] and continuously differentiable for t> 0 .  In case of
voc D , the solution is continuously differentiable for t=0 too.

In this article we shall apply the results of Soboleveskii and Tanabe on the
Cauchy problem (1.1)—(1.2). Our purpose is to show that the operator a (x , t; D)
satisfies the conditions 1), 2) and 3) mentioned above. These properties of a (x , t; D)
are derived from the following a priori estimate (1.6) below. The statment of our
theorem is given in detail at the end of § 3.

Fundamental Proposition. I f  w e tak e 19(>0) sufficiently large, then for any
t e[0, T] and any U E IP  we have the following estimate

(1 .6) t; D)UII2 C{IIUlj+(j212 
192)11 0 1 2 } ,

R e  1> fi> 0

where ii•11, ii•iiP denote L2 and HP— norm respectively and C is a positive constant
independent oft.

The proof of the fundamental proposition is not derived from Garding's ine-
quality differently from the case m = 1 . In fact, consider the case when 2 is real
positive, we get

11(21—,A)Ui12 = Or —22 Re (c_AU, U)+11,1UII2

(P)
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First, since „A is elliptic operator of order p, we obtain

11o1U112 1- 11U11 — c11U112 ,( r is  a positive constant) .

Hence, if we obtain a estimate of the form

(*) — Re (AU, U)>_ —const.IlUir

we arrive at the desired estimate. But this last estimate is not true

case . We explain it by taking a simple example. Let St=[a—
 1

is real. H  satisfies (1.5) since its eigen-values are double of —1.
taking ,A= St AP

—2 Re (au, u) (sAPu, U),

in general in our

, m =2 and a

Now consider,

where S = L  2  — a l
— a  2

Using a  unitary matrix N0 ,  w e have S, = No S N (7, 1 =

[2 — a  0  .  
Put N o U= V = I (v,(x), v2(x)).

0  2— a
get (SAP U, U)=(S,APV, V ) .  By choosing a s  V , the function of the form V0 =
t(v(x), 0), we obtain

(S1APV0, V0) (2 — a)11A P " V 0112 •

Denoting N o Uo = Vo, we get

—2 Re (4t U0, U0) = — (a — 2)11AP/2 U0112

Now since v1(x) is arbitrary, we see that the inequality of the form (*) fails to hold
if a>2.

The above example suggests that a little detailed argument will be required in
order to obtain (1.6). For this purpose we use a partition of unity of the unite
sphere S r' and a partition of unity in Rxn as in S. Mizohata [8]. In actual case the
inequality (1.6) is sharper and of different character than those obtained in [8]. Our
main aim is to show clearly how to derive the inequality (1.6). In § 4 a direct
application of the Cauchy problem for a higher order single equation is given.

§  2 .  Proof of the fundamental proposition.

We start from the basic lemma due to Petrowsky [2].

Lemma 2 . 1 .  L e t a------(ai s f)  be  a constant m x m  matrix with eigen-values
22 , ••• , 2., then there exists a constant non-singular matrix C:=(c i i ), such that
i) C ,A =D C , where

Then taking account of Ng'=N eT', we

D =
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ii) Idet CI
iii) I a t I (m —1) !2'n I ,_y7 I , w here LAI =max I ai i  I . (See [4]).

By applying this lemma to the matrix ,g1(x0, to ; Co, for an arbitrary point
(x0 , to ; eoGRn x [o, T ]x  S r 1 , there exists a constant non singular matrix No (x o , t„,
et)) satisfying the properties in Lemma 2 .1 .  Namely

2,(x0 , e0)
V

(2.1) No(xo, to ; e0 ),A(A70 , to; ==
h r .  ** t0; _

where 1 0; 1 (m —1) !2mM , and M = supI ,91(x , t; C)1. Put

N ,,

1

. We fix ea (small) such as

      

n--1Co ,

  

(2.2) eo = min (I, 6/(m -1)!2m m ,e4m).

Putting N(x o , t 0 ; e0)=-40N0(x, to ; Ce), then we have

N (x o , to; eo)St(xo, to; ea) Do (xo , to ; eo) v(xo , to; Co),

' 21(x0 ,  to; e0) o
where D ,=

and

Hence,

(2.3)

• 2,o (x0 , to ; eo)

h77(x0 , to; Co) = to; el) .

ht7 eo — 1)!2m M ,Œ, 814m  .

Since N =4 0 N 0 , then I det NI =  I det /4 1 =ez ( m- 1 ) /2 holds. Considering N5- 1 —(m i1 ),
then m11 =4 11 1det 1V0 , where 4» is the (j, i) co-factor of N 0 .  Since I entry of No I 1,
by virture of Hadamard's inequality, we get 14 1  < (m -1 ) ( m- ' ) . Taking into
account that I det N o l =1 , we see 'mu ' S (m -1 ) ( m-1 )1 2 . Since 1V- 1 = N (7' IT„', so it
holds

(2.4) I entry of <(m-1)(m--1)/2ev.-1)

The above results lead to

Lemma 2.2. The matrix N(x o , t 0 ; C0) satisfies the following property
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Idet N (x o , to; eo)I eô ( m -
1 )

12

!entry o f  N '(x o , to; COI <(71-1)(- - ')"ev- - " .

For (x, to ; e) e R" x [0, T] x S 1, we decom pose N (x o , t o ; e0)1-1(x, to ; e)x
1V - 1 (x, t o ; ed as follows:

(2.5) N(xo, to ; ed...qt(x, to ; e)1V - 1 (x0, to ; ed
= N(xo , to ; edst(xo, to ; e0)1■1- 1 (x0, t o ; ed

+N(xo , to ; edstqx, to ; C)- 91(x0, to ; co))N - Vo, to; CO
pax°, to ; ed+Dax, xo, to; e o ; ed .

Observed that it holds

hiAx, t 0 ;  e) — hiAxo, to; fo) I co I e—eo I +c6 I xoexo I ,

I co =  x E  su p
k  ia,x ,1,E

C 4  =- - -  Ê  sup
k=1

Denote D(xo, x, t o ; C; Co)=(d i i (x, xo, t o ; e; Co). In view of Lemma 2.2 and I entry
of N (x o , to ; ed 1, we obtain

(2.8) d11(x, xo , to; e ;1 .7 ,2 ( n z
l ) (

„,-iy2eiTcm-1)
— eol + Ix—x01)

where eo=max (co , et)). If

(2.9) e— co l + (3 e6 . - i )i {8m3( n  1 ) ( m_i
)I2j a  _

then

(2.10) I di f(x, xo, to ; e; co) I 6 18 m

In view of (2.2) we express e in more explicit form

(2.10) e = e(a, m, co, Ma)
al -(16m3(m -1) ( m- 1 ) 1 2  col  min (1, 8/{(m-1)!2rn4mM,})m - 1 .

The condition (2.9) follows if (x, C) satisfies

(2.12) I x—x I a n d  le—eo l

Summing up the above results we state

Proposition 2 . 1 .  Denoting

(2.6)

where

(2.7)

        

j = 1, 2, •••, m
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(2.13) N(xo• to; eo
)H x , to ; e)2V - 1 (x0, to; eo)

' 2 1
022

'0
0

h ” . . * +(d/i (x, xo, to; e; e0)),
O 2.

we have the following properties

1h771 a/4 m

di f (x, xo , t o ; e; e0) I s 8 / 8 m i f  I x—x 0 I a n d  ie — e0 I <6
Remark 1 . The quantity c  w hich is defined by (2.11) is independent of

(xo , to ; OE0).

Partition of un ity . On sg- ' we choose finite points C1, C3 , •••, C, satisfying the
following property. For any point C S 1 , there exists at least one point, say
C, such that

e --et, , c14.

Now, for each j  we define a  function a- ,(e)=&-(e —e where a 1(C)E C '  satisfies
0 <Ei .i(e)< 1 and = 1  fo r  OE—OE, €14, = 0  fo r  e—c;  e / 2 .  Since E 1 (C)> l
for any c, we define cr i  (e)=Er i (e)/{(E ;  ei.,(02}1/2. Then a f (e) has the same support
as Ft i (Œ) and it holds

E af(e)2 1
=1

On the other hand we define a partition of unity in R .  L e t  xi be a 77-1attice
point (m177, m277, •••• where rni Z, (i= 1 ,  2 ,  • • • ,  n) and 72 =e14.\/ n . Now, we
define for each i a function -g i (x)=g(x—x i), where Ax)E = 1 for ix! <e/4,
= 0  for Ix I > e/2, -gi(x). 1. S in c e  E ii i (x) is bounded and larger than 1, we
define

fli(x) A(x)/{ iii(x)2} 1/2 •

Then igi (x) has the same support as /5"i (x) and it holds
CO

E fi 1(x)2 =  1 .
i = 1

For t [0, T], we can associate {N(x i , t; e i )} , < which was explained
in Proposition 2.1, replacing (x0, r Co)  by (x i , r; Ci ). S in c e  t  is fixed, we write
N(x i , t; C. ) sim ply  by N u (t). Applying Proposition 2.1 by taking (x,, t 0 ;
(x i , t; e1), we get

(2.14) 1V11(t),41(x, t; e)N, ; (t) - ' = +IY t; ,

0
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- 0 0
where = t; e) = t;

0
Then we have

Ilk il<814m  ,
(2.15)

I c/1,1(x, t; e)I 618m , for {x; Ix— x1 1 Se} and {e; le—el
For the proof of the inequality (1.6), it is convenient to introduce

(2.16) IIULI = E a 1 (D)fi i (x)U112 .J.;
From (2.4), we see easily that

(2.17) c211U112.<1012K_<ciiiUli2,

where c, and c, are positive constants independent of i and ].
Let us consider

(2.18) l(x , t; D) = t; e ; )+(.91(x, t; D)— St(x i , t; e )).

Denoting the constant matrix St(x i , t; ei ) by S l i (t), we get

(x.19) Ni1(t)S1i(t)a1(D)/91(x)APU

= M i (t)/V i i (t)ot i (D)R i (x)AP U+D'o (t)N
11

(t)a
1
(D)/3 i (x)A P U ,

where =

t; e1) 0
•..

0 2„Ag, t; f

By commuting AP with /3i (x) in the right-hand side, we obtain

(2.19)' Nii(t)Slii(t)ai(D)fii(x)APU

= (D? ; (t)+D l i (t))APN i i (t)ai (D)fti (x)U

-F(D1 _KOH D'i  i (t))N i i (t)a i (D)[fii (x), AP]UU.

Next, we consider

(2.20) Ni1(t)ai(D)19 i (x)(St(x, t; D)--,gt i i (t))AP U

Now we microlocalize the symbol St(x, t; e). First we define a smooth function
x e R. as follows:

X (x )=x  fo r lxj 5 /2 , =x , fo r I x I If e l 2 . 1 x l . e ,  t h e n  X(x)I and
define X i (x)=X (x i — x)+x i . Similarly, we define É'i (e) for e e S r  as follows:
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(Œ)=Œ for l e— j <5/2, e  fo r  e—e, >6. If
e/2< I e- -e .,1 <5., then I e1(e)—e;  s e .

With these preparations we return to (2 .20 ). Since Xi (x)=x on the support
of Ri (x), we obtain

191(x),54x, t; D) = f l i (x)Sl(X i (x), t; D) .

Hence, by commuting fi(x ) with (A(X i (x), t; D) — t i (t)), we get

(2.21) Nii(t)ai(D)fli(x)(A (x, t; D)— Sl i i (t))APU

= N 13(t)a i (D)G9t(X1(x), t; D)—,9( 11(t))fi i (x)AP U

+N i i (t)a i (D)[fii (x), .gl(X i (x); D)]APU

By commuting a ;  w ith  (A (X i (x), t; D) —,4111(t)), the first part of the right-hand
side of (2.21) becomes

(2.22) N ii(t)A (V i(x ), t; piAP U

Sl(X i (x), t; D)]fl1APU

Since Jt(X i (x), t; e)ci i (e)—Sl(X i (x), t; i pa i (e), denoting

(2.23) St(Xi(x), t; ei (e)) t; e)
we get Nii(t)(A (X i(x), t; D)— ‘ 91"(t))ai (D)fl i APU

= N u (t)(St i i (x , t; D)-91 i 1 (t))a3 (D)131AP

Now denote again D (x , t; e )=N u (t)(Sl i i (x, t; e)—S1 i 1 (t))NT1(t), then

(2.24) N ii(t)(Stii(x, t; D)— A i i (t))ai (D)19; APU

t; D)APNi i (t)a i fti Ud-D(x , t; D)N i i (t)a i [fii , AP]U

Summing up the above relations, we get:

(2.25) Nii(t)crifiA (x, t; D)A PU

= (D2 i i (t)+Df;(x, t; DDA PN i i (t)a i Ri U

-F(D71 (t)+D 'i  AO-ED/4(x, t; D))N i 3 (t)a i [131, A P I  U

St(X i (x), t; D)P i APU

+N u(t)airf li, Jl(X ; (x), t; D)APU .

Proof of the Fundamental Proposition. For U e H P, we denote

(2.26) Nii(t)etiftiU W .

Since t; D))U

N 13 (t)a3 fli (2I—A(x, t; D)AP)U—N i i (t)a ;  ,9.. (x, t; D)U ,
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using (2.25) and (2.26), we get

(2.27) 11Nii(t)aii9i(2I—J1(x, t; D))U

>(1-6911(21—D?;(t)AP—D'o(t)AP—DI;(x, t;

Mi(ei)ii(D? ;OH A O+ D(x; t; D))IV ii(t)ai[fii, A PIU

+N u(t)[ai, S l(X i (x), t; D)]R i AP UH-Ni j (t)ap i ,  Sl(X i (x), t; D)]APU

+N ii(t)crif tig(x , t; D)U112 ,

where 81 is an arbitrary number in (0, 1).
Now denote the first term of the right-hand side of (2.27) by l, then

I ,  —1 ( 1 —  8 I)11(2 /— M (t)A P)W11112 — (l — 0 1)11(V ii - FD )A P Wii112

2

In order to estimate the first part of I i ;  from below, we use the following Lemma.

Lemma 2 .2 . For any (x 0 , t o ; e)e R" x [0, T] X S r 1,  and any  8 (0<8< 1) , we
have

(2.28) 12— 2 k(xo , to; fo)le I P12 ._ (1. —0)t 2 1e12 -pm(0)1212 , Re 2>0,

where M(8) is a positive number independent of 2, (x 0 , to; eo) and ICI, k =1, 2, •••, m.

Proof of Lemma 2 .2 .  Put

(2.29)e 3 = max sup Im 2k(x, t; e) I
k

Then we devide the proof into two cases according to the location of 2.
Case 1. Where 1Im 21 <2e, 1e1P holds. Denoting

max12 —  Ak(xo, to ; e0) I CIP1 2 , then from (1.5),

we get

J> (Re 2—Re 2k(xo , to ; eo) I e I P)2

>3 2 1 e I 2P+(Re 2)2.

Since e e l  I 2 P > ea2/4C3 I IM 212 ho lds. So, we have

J (1 -8 )Ô2 IC 12P + (61 (72 14c3)1lin 212±(R e 2)2

> (1 — 082 1 e 12P + min -(1 , e a2 ptel} 1212.

Case 2. Where 11m 21 2 c 3 ICI holds. We get

2 - Faiel P)2+(lm  2-1m  2 k(xo , to; eo) I e I P))2

>(Re 2+a e P)2 +(i /21Im 21)2
(1 2 If I 2P+1/4 IA 12
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Hence, by taking M(0)=min (1/4, (12014c3), we get Lemma 2.2.

Applying this Lemma we obtain

11(2/- 1 3 71)AP Wiiii2_>..(1 — c)allAP wiill2+m( 0 )12 1211WiiII2 •

The second part of I "  is estimated as follows:
Since (2.15) yields

I entry of (Lvi i +D (x, t; e))I 3a/8m , e eS V

applying sharp form Garding's inequality, we have

a/X i -I-D ( x , t; D))A P WiJ112

{(36/8)2+ I I AP WiiI12+ C(61)11WiJI I2

where e' is an arbitrary.
Hence

(2.30) /ii>_(1-69 {(1-19)(3212—(3/8)2 s 2 -61- I IAP wii 112

+(1-01)f÷m(e)1 2 12 — C(e')1IIWi1II 2 •

In order to estimate the second term of (2.27), we use the following Lemma.

Lemma 2 .4 .  L et a(x ; D) be a pseudo-differential operator of class S t o ,  (p>0).
Then there exsits a positive constant C, such that

11[fii, a(x; for uG HP .

(See appendix for the proof).

The decomposition AP= APao(D)+ AP(1—ao(D)), (ao(e)EC (7, a0(f )=1, i ei <1)
and the application of Lemma 2.4 yield

(2.31) E II [ A P , fl] UI12 const. .

Put J l i (x , t; e)—si(xi (x), t; e) and decompose U as U—U,d- U , .  Here U,=a,,(D)U
and U2—(1—a0(D ))U . Concerning (2.27) we consider the following estimate

(2.32) E II [at, t; D)] /91A  U 1 1 2 5 c o n s t . ,i.t
only for U= U2 , since the estimate (2.32) for U = U 1 is simpler. Then it suffices to
show

(2.32)'E  - (  II [ai, Al9iAP-1 {fi, A] AP- 1  012}
_<const. UII2.

Here we apply Calderon-Zygmund theorem . In fact, cri (e) and S l i(x , t; e) satisfies
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the conditions of this theorem. So, [ct1, .J A  is a bounded operator in L2. Hence
the first term of (2.32)' is estimated as follows:

E II [ap Ad A 190 1 2 E 11RiAP- 1  u112=c11AP- ' u112 ,

where C is a positive constant independent of i and j .
The similar argument is valid also for «AA, t; D)] 'W I in (2.27). In view of
Lemma 2.3, the second term of (2.32)' is smaller than CilUll;_2. Finally, from
(2.17) and (2.26) we get

(2.33) E 11AP Wii112I 1 N i ;  a  A P igi U112

>_c2 E IIAPRi (1112c2I1AP u11 2—dlug_1 .

Summing up (2.27) for 1,1 and use the inequalities (2.30), (2.32) and (2.33), we
obtain:

(2.34) 1 1 (2 / — a (x ,  t ; D) U0

(1 —0 1) {( 1
2

°1  — ( 3
8 )2) (32-61 (÷ c211AP U112 — c2. _ UW-1)

+ (1 - 0) (÷ M( 0 )12 12 - 40) C211U112 — C411U1122)-1

Now, we fix 0, 0, and e' in such a way that the coefficients of I IAPUII2 becomes
1positive. For example, we choose 0—  

 1  , 0, —  and e' 5
—  (12• Then we obtain16 5 64

(2.34)' 112/—a(x, t; D) Ull 2K
> 19 1
— 10 5

+ 4  C 2  (J2._ 51(0 )1212—c(e'))11u112 .

Since the following inequalities

HAP U112 ( 1 — 611101; — (6")11 UII2

IlUIL2P-1- 8 ' " 11U112A+A " (5 " )11012

hold for any positive numbers e" and ë " , we get

(2.35) 11 t; D) 012 .>_aollull2p+c(1 2 12—/8 2 )11012

where (70, /9 and C can be taken as positive numbers satisfying the following relations:

{  C2a 2  (   51  c  + c 4 ) c 2c2 a ( 0 )

c 10 5c,
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fi2 1 (  4 (32

5  

c 2 C ( 6 ' ) +  

 1

1
0  

c2 .512/ 1 (e")(32 4 - -
5  

c' d- c4) A "(e")}
c iC  

Thus the proof of the Fundamental Proposition is completed.

§ 3 .  The conditions of Sobolevskii and Tanabe.

In this section we show that the operator A (x , t; D) which is defined by (1.3)
satisfies the conditions 1), 2) and 3) in § 1 . As we will see below, these properties
are derived from the inequality (1.6).

Propositin 3.1. A ssume (1.6). Then (21— ,A (x, t; D )) defines a o n e  to  one
surjective mapping from HP onto L 2 , for Re 2> Ro , where Ro is a positive number larger
than R.

Proof  of  Proposition 3.1 From (1.6) it follows that (21— J1(x, t; D)) is one
to one mapping from HP into L 2 . Now, we show that the image (21— a(x, t; D))
HP is closed in L 2 . Indeed, (AI— J1)U n -4. V, implies that { }  is a Cauchy sequence
in H .  Since HP is complete, we get Un —>. U, in HP and (A I A ) U0 = V ,. Therefore,
we have to show only that the image (2I—A)H0 is dense in L 2 . We will show this
by a contradition. If not dense, then there exists ($0) E L 2 , such that

((21 U, =  0, for all UE HP .

Hence, we have

(3.1) (21 — (1'9 W  = 0  i n  .0 '

where a* is the formal adjoint of J1  denoted by J/*=St*A P-1-..43, where a=
[H*, B* . Since W L 2 , (3.1) shows that ,A*T - -HT' EL'. W e can show that

e HP in view of the Lemma 3.1 below. Now, we show that J1* satisfies the same
conditions as a . It is sufficient to prove that the eigen-values of S I* satisfy (1.5).
Namely, putting

2 (2 )  = det (21—S1(x, t; 0,

we get 2(2) = det (2I—S1*(x, t; 0

which implies that the eigen-values of S I* are equal to -2j , where j=1 , 2, •••, m.

In order to show that Tr we will use the following Lemma:

Lemma 3.1. L et C(x ; D ) be a matrix of pseudo-differential operators of  class
S t ,  and assume the following estimate holds:

(3.2) I1C(x; D)17 11> co lIVIII„  f o r V E  HP ,

w here c, is a positiv e constant. Then the assumptions VE L 2 and C(x ; D) Ve L 2

imply VG HP.
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(a simple proof is given in the appendix).

Therefore, we can use the inequality (1.6) and have

2p0 11(2 /— , -A*)T112 C"{(1 ,1 12 — /PDIT112 +11T111
This inequality requires that This is contradictory to our assumption that
TP*0. Thus the proof of Proposition 3.1 is completed.

Proposition 3.2. Assume all the coefficients in (1.1) are smooth in x  and Hdlder
continuous in t. Then the following inequality holds

II fa ( t ) , A(T)}ap o(s)11-<.c I t — r I cr, f or so m e  a e (0, 1]

f or any t ,  r and s [0, 71, where a p o (s)=a(s)-- 1)0 > p.

Proof of Proposition 3.2. For any flo satisfying /90 >ft, from above Proposition
3.1 A 30(x, t; D) is a one to one linear mapping from HP onto V .  Moreover, it
satisfies

ik-Ap0(x, s; D) U II> c' lip  , f o r  Ue HP ,

where c' is a positive constant independent of s and U .  This implies

II for all VEL 2 .

All the coefficients appearing in (1.1) are supposed to be smooth in x and Holder
continuous in t. Namely

m ax sup 1 {HM (x, t; 0— HM (x,r;e))- jelPI

1T1° 
ex R",eeSi - 1

a  S l o. c l t — r l `  r  ,

m ax sup I-f-Acg̀ (x, t; 0 —..V 3 (x , r; e)} i
1 ,61 10 x E R U e S r i

lal lo - .c lt— ric r

where 4 = [ 1 + 2 .  Since ,_A(x, t; D) is a  matrix of pseudo-differential operators
2

of class S,, we get

II fa ( x  t; D)— ,A(x, r; D)} a p o (x, s; D) - 1  V II

<clt— r I a. Ilap o(X, t; I t—rIall VII .

Thus the proof of Proposition 3.2 is completed.

Theorem . For any initial data Uo c  HP and for any right-hand side F(t) satisfying
the Holder condition (1.4), then there exists a unique solution U(x, t) f o r the Cauchy
problem (1.1)—(1.2) belonging to C? ([0, T], HP)ncw o, T],

Proof  of  T heorem . Since all condions of Sobolevskii and Tanabe 1), 2) and 3)
are satisfied, so the solution U(x, t) satisfies
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U(x, t)e C?([0, T], fl T], L2) .

In order to prove the solution U(x, t) EC?([0, T], HP), we apply the following ine-
quality,

I A(t) Ull>c 1IIUllp —c2 11U11,

where c, and c, are positive constants independent of t. Thus the proof is complete.

Definition 1. u (x , t) T], HP) means that u(x, t) is continuous in t up
to the k-th derivative with values in H .

Definition 2. _B is said to be a smoothing operator if .B  is bounded from L 2 to
H - .

Example. Let a: a(x, e), ( I a I >0) be symbols of Calderon-Zygmund operator.
Then for any a(C)E.9, a(x; D) a0 (D ) is  a  smoothing operator since it holds for
any k> 0

iia(x; a0 (D) II a(x; D) Do2 ao(D)uii

Cjtilao HUI' •

§  4 .  Higher-order p-parabolic equation.

In th is section, we consider the Cauchy problem for a single higher-order
equation as a direct application. Let

(4.1) u+ E ai (x, t; 8 )  ar - j u = f (x ,  t )  ,  (x ,  t )  le  x[0, ,
-1

(4.2) al to , = u i (x)eHP(m - i) , ( j =  1, 2, .••, m) ,

where ai (x, t; 8 ) =  J a;  0 ,(x, t)

Supposing that the coefficients cif , .  are smooth in x  and Holder continuous in t.
Putting u; =(1+ A ) m - i - i) a{ u, <

= t(t°, • •• , u„,_1) F(x, t) =  '(0, • f(x , t))

and
/  0  1

0 1
0

0 1

oB(x, t; = [  
b„,

• •
01

t; e imP

H(x, t; =_
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where t; e) is the homogenuous part of degree pj of ai (x, t; e). Denote ai =
0a1+ 4  Then bi  is given by

=  4 ( l ± A ) -p(i-1)._ A- p c i - i ) )+ a ti o+ p ( i - i )

So, we can see that (4.1) and (4.2) reduce to (1.1) and (1.2). In fact, put

g  g9(1 —a0(D))±..B a 0(D)

where cro E g  and a0 l for -fe: e < 11. Then g i  belongs to S to
l , and we see,

from Definition 2 and Example, that B, is smoothing operator. Hence, we have

Corollary. A ssume (1.5). T hen for any  initial data ui (x)eHxm - i )  an d  any
right-hand side f (x , t ) satisfying (1.5) there exists a unique solution u(x, t) f or the

Cauchy problem (4.1) and (4.2) belonging to h' ( [ 0 ,  T], HPi).
j= 0

Appendix

1. Proof of Lemma 3.1. We use the method of m ollifier. Let 0(e)e Qr, =1
for I el =0 for ICI 0< ø(C) 1. Also we use the operator 0(5D) defined

by 0(6D) u=0(ee) Iv ) .  Now, let us apply 0(eD) to  C(x; D) U = F E L 2 , then we
get

(a.1) 0(eD) F = 0(eD) C(x; D) U .

First, the right - hand side of (a.1) can be expressed as follows:

C(x; D) (0 (eD) U)+  e  11' Cc o (x; D) ((Do') (eD) U) -kr " UU.

Put N = p .  Then we have

IlrN,o UlI C(N) 6 11 Ull •

Next, replacing 0(6D) in (a.1) by 0 0 9 (ED), (I it I we have

(a.2) 0()(6D) F = 0 ( 1 ) (6D) C(x, D) U .

Denote by 1 (x ,  D) the right - hand side of (a.2), then we get

(a.3) /p = C(x; D) (0(") (ED) U)H- E u! - 1 C()(x; D)(95 ( ) U )

± r N . ,,, U.

In the same way we see that

(a.4) Hem

Hence,
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(a.5) el 111 110 ( P) (eD) F em IC(x, D) (0 ( ''') (eD) U)11

— C (N )  E 110 (" ) (e D ) L  p — eC(N)IjUll

for kuI < N .  Adding these inequalities after the multiplication M 1'21 , where M  is a
large constant, we obtain

(a.6) iwis.rr oirid N
E  e igi migi 110N Fil> E eiPi migi lic(x, D) (ON U)11

— C (N ) E E m iP 1 ,1 1 ,+ v

ill 0 ( '  U l I PO cIW ISN  1 ll1 15.1T - 11-, I

— C(N) e E  M ''' HUH •
IWISH

Applying the inequality (3.2) to the first term of the right-hand of (a.6), then we get

(a.7) E elm 1M "  IIC (x ;D )( 0 ( ' ) U )I1>c0 E  (e M ) 'T M ' 110 ( P )  LI lip -oslihi N

Next, the second term of the right-hand side of (a.6) is estimated by

(a.8) C '(N ) E
1

,„, (M O " ' 110 ( " ' ) UlIP •IW ISN 15115N - IPI

If M is taken large (taking into account that I v I >1), then we get

(a.9) E  (Me )'TMl lioNFil

1>— co E  (Me)'TMl 110 ( ' ) Ull p —eC(N) E
2 osik, isir

From this inequality we see that, 110(e D) U I remains bounded when e(>0) tends to
0, this implies U E H P .  Thus the proof is completed.

2. Proof of Lemma 2.4. Let Ci(x)E C c7, =1 for Ix—x i  I <372, =0 for Ix—x
i

>472 and 0<C i (x )< 1 .  Denoting by Ci the commuteter [fi a (x ; D )], we get

C. u [fi a (x , D)] C i (x) u+ ,8(x) a(x; D) (1—C i (x)) u.

First, we consider

ft 1(x) a(x ; D) (1— C i (x)) u.

Let coi be the ball of radius 77 and of center x i in R" which is the support of 19,(x),
then for any x  coi and y C3a 1, we get

a(x; D) (1—C i (x)) u = lim e 'I t 12a ( x ;  e )  ( 1 —  C  i (y)) u(y) dyde
E->0

liM
(— Z ie )k  e i(X -Y )

a(x; —C 1(y)) u(y) dycl ,
e÷o y i 2 k

By integration by parts in e and taking the limt as e—*0, we obtain
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a(x; D) (1—C i(x)) u I <  C  I(1 — C i(Y))u(Y)I  dvIx  y l 2k

C c3coi  xl u(Y)112k  d y
,

for fixed k > -
1  

(p + n + 1 ). By Shwartz's inequality, we get
2

Ia(x; D) (1—C i(x)) Iu(Y)I2  dy  f d y  
C3(0 i Ix—y !

 2 k J C 3 C 0 1  x — Y 1 2 k

C(n) Iu(Y)I2
,  d yC30); I x  y

< C 2 c(n) E Ifii(Y)u(Y)1 2  dy
,

-1 (
1)

5I x — YI"

where the sum is taken over all coi , such that

dis (a7i , coi )>_ 72 .

Hence, we obtain

Ilfii(x) a(x; D) (1 —C i(x)) uII 2

5 C 'Ioh IE "1"112dis (cos, aii )2 k

Finally, summing up in i, we get

11/3i (x) a(x; D) (1—C i (x))11112 < C " E E 11/9 .; u112 

s dis (coi , co ; ) 2k

< C "  A u jj 2 1E I  
i  dis (coi , coi )2/

: ‹C "  Kili9j1-1112 = C" KI114 112 ,

where C" and K are constants dependent on n.

Next, we consider

(b.1) bei(x), a(x; D)] C1(x) u

— E  v! - - 1
191 ( , ) (x) am(x; D)+r,, i (x; D)} Ci (x) u.

The first part of the right-hand side of (b.1) is estimated as follows:

(b.2) E v! - - '11ja (x) am(x; D) c(x) uII 2

. C ( N )  E  sup I fii ( v ) (x) I 2 1 jam(x ; D) c (x )

C(N) clI<A>P -  1 Ci (x) u1!2 ,
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where c' is a constant independent of i.

Considering the second part of the right-hand side of (b.1), we fix N  as the smallest
integer satisfying p — N — 1< O. S ince r,, i ( x ; D )  S t-oN - 1

 ,  we obtain

(b.3) E D) Ci(x) u112 . const. E11C1(x) ull;_,

<const.

where const. is independent of i. Now from (b.2) and (b.3), we have Lemma 2.3
for pE(0, 1].
For general p > l ,  we decompose

<A>P-1 i (x) i (x)<A>0-1 +KA>P-1, i (x)] .

Assume that Lemma 2.3 is true for P e ( k ,  k + 1 ] . Then we see that, Lemma 2.3
holds for p e(k + 1 , k + 2 1 . So, Lemma 2.3 holds for all p>0.
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