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On well-posedness of the Cauchy problem
for p-parabolic systems

By
Ahmed EL-Fiky

§ 1. Introduction.
We are concerned with the Cauchy problem for the following p-parabolic
systems
(1.1 % Ulx, 1) = A, £; D)U(x, )+F(x, 1),  (x, )ER'X0, T]
(1.2) U(x, 0) = Uy(x)e H*(R"),
where U(x, t) and Uy(x) are m-vectors, and
(1.3) Alx, t; D) = Yi(x, t; D)A*+PB(x, t; D).

Here (/f;)(f)= |€|8(€) and p is a positive number. H(x, t; ) is homogenuous of
degree 0 in & and all its derivatives 8%8;.4{(x, t; &) are assumed to be bounded for
(x, H)eR" x {&:|&|=1}. B(x, t; &) belongs to the class S4o,, 0< p<p, modulo
smoothing operators. (x, t; §) and B(x, ¢; &) are Holder continuous in ¢, (see
section 3).

Historically, p-parabolic systems were defined by I.G. Petrowsky [2] for systems
of differential operators. However, we can start our considerations from systems
of pseudo-differential operators. We believe that this will have good applications
in the future. Here we assumed only p>0. Assume also that F(x, ¢) satisfies, for
some ¢ (0, 1],

(1.4 [|F(x, t)—F(x, 7)||<C|t—z]|°, for any ¢, &[0, T].
We suppose there exists a positive constant 9, such that it holds
(1.5) Re 2;(x, t; §)<—0, fesit,
where 2,(x, ¢, £), (j=1, 2, ---, m) are the roots of the equation
det(AI—H(x, t;€)) =0.

1.G. Petrowsky [2] treated this problem with constant coefficients. Note that
S.0. Eidel’'man [9] has studied this problem but his point of view is different from

Recevied May 12, 1986



570 Ahmed El-Fiky

ours. Also S. Mizohata [8] treated this problem when the right-hand side F(x, ¢) is
continuous in ¢ with values in H?. Here we apply a theory of parabolic semi-group
in order to consider the Cauchy problem (1.1)—(1.2) under the condition (1.4). P.E.
Sobolevskii [3] and H. Tanabe [10] have has treated the following evolution equation

®) id‘j—+u4(t)v = 1(¢)

v(0) = v,

under the following assumptions:

1) A(2) is a linear closed operator acting on a Banach space E and the domain
of the definition D is dense and independent of ¢.

2) The operator (A/+ A(¢)) has a bounded inverse satisfying

9

AT+ A< 2

for any 2 with Re 2> >0, where C and g are positive constants.
3) There exists a positive constant C such that, for some 0 (0, 1],

I(HO)— A A @I <C|t—z|7,

holds for any ¢, =, s€[0, T], where Ag(s)=A(s)+AI.
4) The function f(¢) satisfies the following Holder condition

IfAO—fLC|t—=|°, for any 7, |0, T.

He proved that for any v, E there exists a unique solution v(x, ¢) for (P) which
is continuous for all ¢t &[0, T] and continuously differentiable for :1>0. In case of
v,E D, the solution is continuously differentiable for t=0 too.

In this article we shall apply the results of Soboleveskii and Tanabe on the
Cauchy problem (1.1)—(1.2). Our purpose is to show that the operator JA(x, ¢; D)
satisfies the conditions 1), 2) and 3) mentioned above. These properties of A(x, ¢; D)
are derived from the following a priori estimate (1.6) below. The statment of our
theorem is given in detail at the end of § 3.

Fundamental Proposition. [f we take B(>0) sufficiently large, then for any
t [0, T] and any U &€ H? we have the following estimate

(1.6) A=A, t; DUIF=CAIUI+21°-AHIUI},  Red=p>0,

where ||+||, ||+||, denote L? and H?—norm respectively and C is a positive constant
independent of t.

The proof of the fundamental proposition is not derived from Garding’s ine-
quality differently from the case m=1. In fact, consider the case when 2 is real
positive, we get

NAI—=AU|P = 2| U|[*—24 Re (AU, U)+||AU|P.
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First, since A is elliptic operator of order p, we obtain
AU 7||U|3—cl|U| 2, ( 7 is a positive constant) .
Hence, if we obtain a estimate of the form
(*) —Re(AU, U)>—const. ||U|?,

we arrive at the desired estimate. But this last estimate is not true in general in our

case. We explain it by taking a simple example. Let 4 =[
a

is real. H satisfies (1.5) since its eigen-values are double of —1. Now consider,
taking A=H A?

0
I:I, m=2 and a

—2Re (AU, U) = (S4*U, U),
2 —a . . .
where S= 5l Using a unitary matrix N,, we have S;=N,SN;'=
—a

2—a 0
0 2 :I Put NyU=V="(v,(x), vy(x)). Then taking account of N¥=N7!, we
—a

get (SA*U, U)=(S,4?V, V). By choosing as V, the function of the form V=
(v(x), 0), we obtain

(S, 4%V, Vo) = 2—a)|| 42y |2
Denoting N,Uy=V,, we get
—2Re (HU,, Uy) = —(a—2)||4*2U,||*.

Now since v,(x) is arbitrary, we see that the inequality of the form (x) fails to hold
if a>2.

The above example suggests that a little detailed argument will be required in
order to obtain (1.6). For this purpose we use a partition of unity of the unite
sphere S%~! and a partition of unity in R} as in S. Mizohata [8]. In actual case the
inequality (1.6) is sharper and of different character than those obtained in [8]. Our
main aim is to show clearly how to derive the inequality (1.6). In §4 a direct
application of the Cauchy problem for a higher order single equation is given.

§ 2. Proof of the fundamental proposition.
We start from the basic lemma due to Petrowsky [2].

Lemma 2.1. Let A=(a;;) be a constant mxXm matrix with eigen-values
Ay, A, **, A, then there exists a constant non-singular matrix C=(c;;), such that
i) CA=DC, where
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ii) |det C|=1, |¢; | <1
iii) |a¥| <(m—1)12"| |, where | A|=max|a;;|. (See [4]).
'.’l

By applying this lemma to the matrix H(x,, ty; &), for an arbitrary point
(xos o EQER"X[0, T]x S, there exists a constant non singular matrix Ny(x,, %,
&, satisfying the properties in Lemma 2.1. Namely

11({‘0’ to; $o) 0
2.1 No(xo, 105 E0)IH(xo, to; §o) = *'. Nos
T 2,(x to; €0)

where |h¥;| <(m—1)12"M, and M,,=‘81111z | H(x, t; £)]. Put
I, = €0 . . We fix & (small) such as

2.2) & = min (1, 6/(m—1)12" M ,4m) .
Putting N(x,, to; &o)=1, No(x; 1o; &), then we have
N(xg, to; Eo)H(xg, 105 E¢) = Dylxq, 13 EQN (Xg, o3 &)
4(*e, o3 €o)
where D,= h**

xm(xO’ tO; EO)

and BEE(xo, to; §0) = 5!’;_jh:"<z'(xo, to; €1 .
Hence,
(2.3) |BXE | <eo|hY| <(m—1)12"M 4e,<0/4m .

Since N=I,,N,, then |det N|=det I, | =e§ 1/ holds. Considering N5'=(m;;),
then m;;=4;;/det Ny, where 4;; is the (j, i) co-factor of IV,. Since |entry of Ny| <1,
by virture of Hadamard’s inequality, we get [4;;| <(m—1)"~D2  Taking into
account that |det Np| =1, we see |m;;| <(m—1)""D/2  Since N'=Ng'Iz}, so it
holds

(2.4) lentry of N-1| < (m—1)m-Di2gzm=1
The above results lead to

Lemma 2.2. The matrix N(x,, to; &) satisfies the following property
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|det N(x, to: &)| = epm—d72,
lentry of N~ (xq, to: €9 | < (m—1)m=Di2eg(m=1)

For (x, t;;6)e R" X [0, T] x SZ™', we decompose N(xy, to; EQH(x, to; &) X
NY(x, ty; &) as follows:
(2.5) N (xq, to; E)IH(x, to; E)N "N(xq, ty; €5)
= N (g, to; E)H(xgs 25 EQN Mo, 103 €0)
+ N (xq, o3 o)A ((x, 15 §)—FH (X, to; E)IN ~HXo, 203 €0
= Dy(xq, 13 Eo)+Dy(x, xp 105 &3 &) -

Observed that it holds
(2.6) [;(%, to; €)—hy (X, 105 €0)| Kol €—&o| +co| x—x,],
where
=23 sup | i, x e,
EBERN a&'k
2.7 i oh
¢t =) sup ii(x,t;6)|, L j=1,2, e, m.
E=1 iyf,1,0,E axk

Denote D(xy, xo to; €; E0)=(d;;(x, Xq, 245 €3 &p)). In view of Lemma 2.2 and |entry
of N(x, to; &p)| <1, we obtain

(2.8) Idij(x, Xo» 103 €5 €0) | sz(m—1)("'_1)/25(7("‘_1)50(l5_fo| +x—=xl),

where ¢,=max (¢, cp). If

(2.9) |E—&| 4 | x—x,| <O ef™ ™/ {8md(m—1)m—Dl2g} — 2¢
then
(2.10) | d;j(x, xo, to; &3 )| <O/8m .

In view of (2.2) we express ¢ in more explicit form

(2.10) e = €(0, m, cg, M)
= 8/{l6m* (m—1)""=D2c} min (1, 6/ {(m—1)12"dm M} )»~* .

The condition (2.9) follows if (x, {) satisfies
(2.12) |x—xo|<e and |E—&|<Le.

Summing up the above results we state

Proposition 2.1. Denoting
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(2.13) N (xq, to; EQH(x, 1g; E)N ~Y(xy, 145 &)
A 0

L0 [ -0
= ‘e, + h?;ﬁ.'- . +(dx'j(x’ Xo» toZ E; 50)):

0

we have the following properties

2, 0

|| <o/4m,
|d;;(x, xo, o5 €5 &) | <0/8m if |x—xy|<e and |§—&;| <Le.

Remark 1. The quantity ¢ which is defined by (2.11) is independent of
(0 203 €0)-

Partition of unity. On S?~! we choose finite points &,, &,, -+, £, satisfying the
following property. For any point §&S:™', there exists at least one point, say
£,, such that

[§=¢,1<e/4.

Now, for each j we define a function &(§)=a&(f—¢;), where @,(§)eCy satisfies
0<&,(£)<1 and =1 for [§—&;|<e/4, =0 for [£—&;| >¢/2. Since 33; @;(6)>1
for any &, we define e; (§)=&;(£)/{(X; @;(6)}2. Then a;(¢) has the same support
as @;(€) and it holds

g a Y =1.

On the other hand we define a partition of unity in R%. Let x; be a z-lattice
point (m,7, ny7, +++, m,n), where m;€Z, (i=1, 2, -+-, n) and n=¢/4\/n. Now, we
define for each i a function B (x)=pF(x—x;), where A(x)ECy, =1 for |x| <e/4,
=0 for |x|>¢/2, 0<F(x)<1. Since 3} F,(x) is bounded and larger than 1, we
define

Bi(x) = Bi(x) {2 Bixy32.
Then £,(x) has the same support as g;(x) and it holds
5;1‘ BixE=1.

For ¢t [0, T], we can associate {N(x;, t; £;)}, 1<i, j <m, which was explained
in Proposition 2.1, replacing (x,, #,; &) by (x;, t;&;). Since ¢ is fixed, we write
N(x;, t; §;) simply by N;(t). Applying Proposition 2.1 by taking (x,, #5; &)=
(x;, £ €;), we get

/11' 0
(14 N;(OH(x, t; )N (1) = O" .. | FPLO+Dix, 156),
A



Well-posedness of the Cauchy problem 575

©.0

where Di; = h,, , Dij(x, t; &) = (dii(x, 15 &))r<ei<me
0

Then we have

@.15) lh,';‘{.l <o/4m,

|dii(x, t; &) <o/8m, for {x; |x—x;| <e} and {&; [§—€;| <e}.
For the proof of the inequality (1.6), it is convenient to introduce

(2.16) Uik = 2 INV;; e (D)B)UI*.

From (2.4), we see easily that

@17) TP UG eITIP,

where ¢, and ¢, are positive constants independent of i and j.
Let us consider

(2.18) l(x, t; D) = H(x;, t; E)+(H(x, t; D)—H(x;, 15 £5) .
Denoting the constant matrix H(x;, t; &;) by H;;(t), we get

(x.19) N;;() ;) (D)B(x) 42U
= D};(t)N;;(t)a (D)8 (x) A?U+D’ j(1)N ;1(t)e;(D)B(x) AU,
where DY; =
0 . Zm(xi, t; 6])
By commuting A? with g;(x) in the right-hand side, we obtain

(2.19 Nii(OHj()a(D)B(x) AU
= (D}(t)+Di (1) AN, (t)a;(D)Bi(x) U
+(Di(t)+Di ()N ()a (D) Ai(x), 41U .
Next, we consider

(2.20) Nii()a;(D)B(x)(H(x, t; D)—I;;(1)4*U .

Now we microlocalize the symbol H{(x, ¢t; ). First we define a smooth function
X (x), x€R" as follows:

X(x)=x for |x|<e/2, =x; for |x|>e. If ¢/2<|x|<e, then |X(x)|<e and
define X;(x)=X(x;—x)+x;. Similarly, we define é (&) for £ S¢! as follows:
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E(&)=¢& for |E—&;|<ef2, =€, for |E—&;|>e. If
e2< |€—¢&;] <e, then |E&)—¢;| <e.

With these preparations we return to (2.20). Since X;(x)=x on the support
of B;(x), we obtain

Bi(x)I(x, t; D) = Bi(x)AH(X«(x), t; D).
Hence, by commuting B;(x) with (J(X(x), t; D)—4;;(1)), we get
(2.21) N;j(O)e(D)B(x)(H(x, t; D)—IH; (1)) AU
= N;j()a(DYAH(X(x), t: D)—JH;;(1)B:(x)4*U
+N;j()e;(D)[B:(x), H(Xi(x); D)4*U .

By commuting a; with (J(X,(x), t; D)—H;;(t)), the first part of the right-hand
side of (2.21) becomes

222) NAOIUX(), 5 D)=l ()e; ;AU
+N;(Dle;, H(Xi(x), t; DAV .
Since J(X;(x), t; §)a(E)=H(X(x), t; f(:?,-))a,-((."'), denoting
(2.23) X0, 13 €48) = Hi(x, 1:€)
we get N;(O)(H(X(x), t; D)—H;(t))a(D)p;A*U
= Nyt H;:i(x, t; D)—H;(t))ai(D)B;A?U .
Now denote again D}j(x, t; &)=N;;(t)(IL;/(x, t; E)—I;;(t))N 77 (1), then
@.24) N 1) S, 1 D)= (1)) (D)B APU
= D}i(x, t; D)A?N; (t)a;8;U+ D’ }(x, t; D)N;i(t)a;[5;, 471U .
Summing up the above relations, we get:
(2.25) N;j(t)e;8; 9(x, t; DYAPU
= (D3,(0)+ D)+ DY, 1; DYAPN () ,U
+(DY(1)+ D)+ DHx, 1; DYN, (1) [B,, ANU
FN;(0)ay, JUX (%), 15 D))B AU
+ N ()e,lBi, (X (x), t; D))APU .
Proof of the Fundamental Proposition. For U & H?, we denote
(2.26) N;i()e,;p;U = W;; .
Since N;j(t)a; B,(AI—A(x, t; D)U
= N;i(t)e; B(AI—H(x, t; D)A")U—N;(t)e; B; B(x, t; D)U,
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using (2.25) and (2.26), we get
2.27) [|N;(8)e; Bi(AI— A(x, t; D)U|?
>(1—6,)||(\— D3 (1) 4P — D} (1) A* — Dti(x, t; D)A)W[?
—M0)I(D%;(1)+D? (t)+Dij(x, t; D)YN;(D)ajl:, A?TU
+Ni(0le;, H(X(x), t; D) A U+N(t)a,[8;, H(Xi(x), t; D)AU
+N;(t)e;8;B(x, t; D)UI|?,

where 6, is an arbitrary number in (0, 1).
Now denote the first term of the right-hand side of (2.27) by I;;, then

Ty = (1= 0)lIQI— DY) AW P~ (1= )| (DD AW

In order to estimate the first part of I;; from below, we use the following Lemma.

Lemma 2.2. For any (x, ty; E)ER"X[0, T]x St", and any 6 (0<6<1), we
have

(2.28) | 23— (%0, 103 €[ €]2122(1—6)0%| €2+ M(0)| ]2 Re 2>0,
where M(6) is a positive number independent of 2, (xo, to; &) and | €|, k=1, 2, -+, m.
Proof of Lemma 2.2. Put

(2.29) ¢; = max sup Im 2,(x, t; §)|.

k ERN

Then we devide the proof into two cases according to the location of 2.
Case 1. Where |Im 2| <2¢,;|€|? holds. Denoting

J= mhaxll—l,,(xo, to; €D 1€12|% then from (1.5),
we get
J>(Re 2—Re ,(x,, to; &9 | €17
>0 €+ (Re 2.
Since 66%|&|%#>66%4c3|Im 2|2 holds. So, we have
J=(1—0)0| €% +(66%/4c5)| Im 2|+ (Re 2)?
> (1—6)82| &|?+-min {1, 66%/4cd} |2]2.
Case 2. Where |Im 2| >2¢,|£|? holds. We get
J=(Re 2408 &[#)*4+-(Im 2—TIm 4(xq, 13 €9)|€]9))?
>(Re 2+0[€[?)*+(1/2|Im 2])?
=02 &% +1/4]2]%.
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Hence, by taking M(6)=min (1/4, 6’6/4c3), we get Lemma 2.2,
Applying this Lemma we obtain
I(AI— D3 ) A2 W] > (1— 0)8%) | AP W | P+ M) | A || W11 .

The second part of I;; is estimated as follows:
Since (2.15) yields

|entry of (D%;4D%i(x, t; £))| <36/8m, fesi!
applying sharp form Géarding’s inequality, we have
||(D};4+Dti(x, t; D) A*W ;|2
<AGoBy 4} AWyl P4 C(NWIIP

where &’ is an arbitrary.
Hence

(2.30) 1;;>(1—0){(1—0)8?/2—(3/8)*8*— &'} || AP W |

+a=0){ L M@ 1217—c) JIwie.

In order to estimate the second term of (2.27), we use the following Lemma.

Lemma 2.4. Let a(x; D) be a pseudo-differential operator of class S%.0, (p=0).
Then there exsits a positive constant C, such that

33 IL8s, aCx; DIulP<Cllull;—:,  for usH?.

(See appendix for the proof).

The decomposition A?= A?ay D)+ A?(1—a (D)), (a(§)ECF, ayé)=1, |£|<L1)
and the application of Lemma 2.4 yield

(2.31) S3[14*, £ UlP<const. NUll3-: -

Put H,(x, t; §)=H(X(x), t; &) and decompose U as U=U,+U,. Here U,=ay(D)U
and U,=(1—a(D))U. Concerning (2.27) we consider the following estimate
(2.32) >l e, Hix, t; D)] p;4? U|*<const. ||U|[;-1,
LrY)

only for U=U,, since the estimate (2.32) for U=U, is simpler. Then it suffices to
show
(2.32) 2} {1 lej, I AB; A7 UIP+|| [, S [Bi, A1 427 U}

<const. |[4*7 L U|2.

Here we apply Calderon-Zygmund theorem. In fact, @;(§) and J(x, t; {) satisfies
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the conditions of this theorem. So, [¢;, J{;]4 is a bounded operator in L2 Hence
the first term of (2.32) is estimated as follows:

23 [y, A 4547 UIP<C S 183477 U|P=C| 47 U,

where C is a positive constant independent of i and j.

The similar argument is valid also for ;[8;, H(x, t; D)] AU in (2.27). In view of
Lemma 2.3, the second term of (2.32)' is smaller than C||U||i_,. Finally, from
(2.17) and (2.26) we get

(2.33) g [|A2Wy;|2 = g [|N;j e; A28, U|I?
1
=6 2 [|1428; U|P> 5 ell4? UIP—cl|U|13-: .
Summing up (2.27) for i, j and use the inequalities (2.30), (2.32) and (2.33), we
obtain:

(234 ||AI-A(x,t; D) U|l;

_ 2
>(1-0) {(150—(2)) -} (L clrvir—cilvli-s)

+(1-0) (3 MO127—c(e)) cllVIP—cllUIE-1

Now, we fix 6, 6, and ¢’ in such a way that the coefficients of ||42U||?> becomes

positive. For example, we choose 0=%, 01=—;— and e'=—65;‘~ 0% Then we obtain
(2.39) [[AI—JA(x, t; D) Ul
> oo aruiP— (L sei+e) 101
10 5
4 1 2 , 2
5 @ (5 HOI—CE@))IUIP.

Since the following inequalities
42U |P=A =) U3—M" (U],
U3 = || U3+ H " NUIR

&, we get

hold for any positive numbers ¢/ and
(2.35) Il AI—A(x, t; D) U|P=6||U|l3+C(12]*—gAIUIE,

where d,, # and C can be taken as positive numbers satisfying the following relations:

o= L{ea—eno(Lgora)e) o= 22 o),

a 5¢y
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, I 8%, YU
P c11C {% ,C(e )+% o M (e )62+(? cz+c4)ﬂ4 (C )}-

Thus the proof of the Fundamental Proposition is completed.

§ 3. The conditions of Sobolevskii and Tanabe.

In this section we show that the operator A(x, #; D) which is defined by (1.3)
satisfies the conditions 1), 2) and 3) in §1. As we will see below, these properties
are derived from the inequality (1.6).

Propositin 3.1. Assume (1.6). Then (AI—JA(x, t; D)) defines a one to one
surjective mapping from H? onto L%, for Re 2> f,, where B, is a positive number larger
than B.

Proof of Proposition 3.1. From (1.6) it follows that (A/—A(x, t; D)) is one
to one mapping from H? into L2 Now, we show that the image (AI— A(x, ¢; D))
H?is closed in L2, Indeed, (AI—A)U,—V, implies that {U,} is a Cauchy sequence
in H?. Since H? is complete, we get U,— U, in H? and (A/—A4) Uy=V,. Therefore,
we have to show only that the image (2/—A4)H, is dense in L2 We will show this
by a contradition. If not dense, then there exists ¥ (3=0)& L? such that

Q- A) U, ¥)=0, forall UeH?.
Hence, we have
3.1) QI-AH¥ =0 in 9,

where _A* is the formal adjoint of 4 denoted by A*=(*A?+ P, where B=
[H*, A?)+B*. Since ¥ L2 (3.1) shows that A*¥ =27 L. We can show that
¥ & H? in view of the Lemma 3.1 below. Now, we show that (A* satisfies the same
conditions as 4. It is sufficient to prove that the eigen-values of H* satisfy (1.5).
Namely, putting

P) =det (AI—H(x,t;¢) =0,
we get PA) = det AI—I*(x, 1; E) =0,
which implies that the eigen-values of 4(* are equal to 1;, where j=1, 2, «++, m.
In order to show that ¥ & H?, we will use the following Lemma:

Lemma 3.1. Let C(x; D) be a matrix of pseudo-differential operators of class
S? o and assume the following estimate holds:

(3.2 IC(x; D) VIZcollVlly for VeH?,

where c, is a positive constant. Then the assumptions VEL? and C(x; D) Ve L?
imply Ve H?,
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(a simple proof is given in the appendix).
Therefore, we can use the inequality (1.6) and have
0 = [|[AI=A*) Z|F=C"{(121>= DT IP+ 17115} -

This inequality requires that ¥ =0. This is contradictory to our assumption that
¥=+0. Thus the proof of Proposition 3.1 is completed.

Proposition 3.2. Assume all the coefficients in (1.1) are smooth in x and Holder
continuous in t. Then the following inequality holds

[[{A@) =A@} Ap ()7 M|<c|t—7 |7, for some (0, 1],
Jor any t, v and s€(0, T], where Apg ()= A(s)—Bol, Bo>>PB.

Proof of Proposition 3.2. For any g, satisfying §,> 8, from above Proposition
3.1 Apg,(x, t; D) is a one to one linear mapping from H? onto L% Moreover, it
satisfies

| Ag(x, s3 D) Ul|>c'|U|l,, for UEH?,
where ¢’ is a positive constant independent of s and U. This implies
IVII=c'l|Ap(x, 53 DY V]],, forall Vel?.

All the coefficients appearing in (1.1) are supposed to be smooth in x and Hélder
continuous in . Namely

max  sup [{HE (x, t; ) —HE) (x, 7; O} |£]?]
B|<l, xeR"(sSE! -

a §lo Sclt—fl 4

max  sup [{BE (x, t; &) —BF) (x,7; O} |

|8 <l, x&R" £ S}

lar| <1 <c|t—z|7,

where loz[%]+2. Since A(x, t; D) is a matrix of pseudo-differential operators

of class S? o, we get
{ACx, t; D)—Ax, 73 D)} Agy(x, 53 D)7V ]|
<clt—z|7 [|Apy(x, t; D)WV |[,<cc'Hi—=|°|[V]].
Thus the proof of Proposition 3.2 is completed.

Theorem. For any initial data U,€ H? and for any right-hand side F(t) satisfying
the Holder condition (1.4), then there exists a unique solution U(x, t) for the Cauchy
problem (1.1)—(1.2) belonging to C? ([0, T], H*) N Ci([0, T], L?.

Proof of Theorem. Since all condions of Sobolevskii and Tanabe 1), 2) and 3)
are satisfied, so the solution U(x, t) satisfies
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U(x, )e Ci((0, T], LY N Ci(0, T], L?).

In order to prove the solution U(x, 1) CX([0, T], H?), we apply the following ine-
quality,
AWM UllZellUll,—<llUIl,

where ¢, and c, are positive constants independent of £. Thus the proof is complete.

Definition 1. u(x, t)&C4([0, T], H?) means that u(x, ¢) is continuous in ¢ up
to the k-th derivative with values in H?.

Definition 2. B is said to be a smoothing operator if B is bounded from L? to
H>,

Example. Let 8% a(x, &), (| ¢| >0) be symbols of Calderon-Zygmund operator.
Then for any a(§)e9D, a(x; D) ay(D) is a smoothing operator since it holds for
any k>0

llee(x; D) ay(D) ull,<C, 33 [|0% a(x; D) DP2 ay(D) ul
1B, +Bol<k

< Cilleg ul| <C|lull -

§ 4. Higher-order p-parabolic equation.

In this section, we consider the Cauchy problem for a single higher-order
equation as a direct application. Let

@.1) Or ut+ S ay(x, 1;8,) 07 u = f(x, 1), (x,)ER'X[0, T],
ji=1
4.2)  Bfux,0) =y (x)EH ™D, (j=1,2, ., m),

where a;(x, 1;8,)= >3 a; 4(x, t) 95
lel<pj

Supposing that the coefficients a; , are smooth in x and Holder continuous in z.
Putting u;=(14A)?"~1=) 8] u, 0< j<m—1,

U= t(u()v R um—l) , F(x, )= t(o’ e, f(x, 1)

and
01
01
0
01
H(x,t;6) = . . s B(x,t; &) = ,
. . by, eeeererennes
01
8, 13 €| €| e
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where c%(x, t; €) is the homogenuous part of degree pj of a;(x, t; £). Denote a;=
tgj—|—a§. Then b; is given by

b; = 3,-((1 + A)7GD A=2GD) g/(1 4 A)"2GD
So, we can see that (4.1) and (4.2) reduce to (1.1) and (1.2). In fact, put
B = B(1—a(D)+B (D) = B,+3,,

where ;€9 and a,=1 for {£: |€|<1}. Then B, belongs to Si5', and we see,
from Definition 2 and Example, that B, is smoothing operator. Hence, we have

Corollary. Assume (1.5). Then for any initial data u (x)eH*™) and any
right-hand side f(x, t) satisfying (1.5) there exists a unique solution u(x, t) for the

Cauchy problem (4.1) and (4.2) belonging to n cri ([0, T], H?).
j=0

Appendix

1. Proof of Lemma 3.1. We use the method of mollifier. Let &(§)eCy,=1
for |£| <1, =0for |£]|>2, 0<P(£)<1. Also we use the operator @(eD) defined

by @(eD) u=0(e€) ¥(€). Now, let us apply @(¢D) to C(x; D) U=F& L2 then we
get

(a.1) ®(eD) F = ©(eD) C(x; D) U

First, the right-hand side of (a.1) can be expressed as follows:
Clx; D) ((eD) U)+ 33 e w17 Cy(x; D) (0 (D) Utry,o U
vi=1

Put N=p. Then we have
llry,e UlISC@V) €l Ul .
Next, replacing @(eD) in (a.1) by @*)(eD), (|#] < N), we have
(a.2) 0¥ eD) F = " (eD) C(x, D) U .
Denote by . ,(x, D) the right-hand side of (a.2), then we get
(@3) I = C(x; D) (2" (¢D) U)-i—lgwgv_me"'I v!I71 Cop(x; D) (¢ U)
+rynU.
In the same way we see that
(a4) lle™ ry wUl|SC@V) €||U]| -

Hence,
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@5  M(OOED) Fll2 e [|C(x, D) (D) V)
—CW)_ 3 e [[04(eD) Ull,—eCVUII,

for |#] <N. Adding these inequalities after the multiplication M'*!, where M is a
large constant, we obtain

(a.6) 2 MMM OB Fl|[> 37 e MM ||C(x, D) (2™ U)|
ks SIHIS N
—C(N) > > Mo U],

0K |MSE ISIHISN - |1

—C(N)e 23 M™||UJ|.
IH<w

Applying the inequality (3.2) to the first term of the right-hand of (a.6), then we get
@@.7) > MIMM|C(x; D) (@M U)l[Zeq >3 (eM) ][0 U], .
oSIkISN

0LS|M SN

Next, the second term of the right-hand side of (a.6) is estimated by
1

1v]

(a.8) C'(N) X

=N 1Svisy-M M

(Me)* ™ @M U], .

If M is taken large (taking into account that |v| >1), then we get

(a.9) >3 (Me)*™ || o™ FJ|
MWV
>Le 1 Mo |j0® Ull,—ec(v) 3 M™ U
2 oKiH<N e

From this inequality we see that, ||@(¢D) U||, remains bounded when ¢(>0) tends to
0, this implies U< H?. Thus the proof is completed.

2. Proof of Lemma 2.4. Let {(x)eC7, =1 for |x—x;| <37, =0 for |x—x;|
>47 and 0<{(x)<1. Denoting by C; the commuteter [4;, a(x; D)], we get

Ciu = [Bi, a(x, D)] {i(x) u+pi(x) a(x; D) (1—Ci(x) u.
First, we consider
Bix) alx; D) 1—Ci(x)) u.

Let w; be the ball of radius 7 and of center x; in R" which is the support of g(x),
then for any xE w; and y €C3w;, we get

alee; D) (1= €,0) u = tim [[ 7716 et s & (1~ () y) dyate

— tim [ v (L‘M) ax; €) (1—C,(») u(y) dydé

#>0 [x—y|*

By integration by parts in § and taking the limt as e—0, we obtain
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la(x; D) (1—¢(x)) u| gcs |(1—[i.-£yy))|::(y)l dy

[u(»)|
<c|,,. .

for fixed k>—;— (p+n+1). By Shwartz’s inequality, we get

2
la(x; D) (1—C(x)) ul? < C? SCSw; leu(_% dy SCS(».' |xiJ;|2k
<C* C XC’SO); TLCL(—J%” d

where the sum is taken over all w;, such that
dis (w;, )>7 .
Hence, we obtain
[18:(x) a(x; D) (1—¢(x)) ulf?
<o 53 lBsulE__

J diS ((D", wj)Zk

Finally, summing up in i, we get

3 118:0x) atx; D) (1—¢ ) ulp< €7 33 53 sl

i diS (Q)i, Q)])Zk

<c' sy gue {= oL

7 dis (w;, @;)*

SC”Kgl 18; ull* = C" K[lull?,

where C” and K are constants dependent on 7.

Next, we consider

(b.1) [B:(x), a(x; D)] {i(x) u
= —{ 23 v Bin(x) aV(x; D)+ry i(x; D)} C(x)u.

1SSy

The first part of the right-hand side of (b.1) is estimated as follows:

(b.2) 31 w17 IBin(x) a®(x; D) £i(x) ull?

1SSV

<OW) 33 sup | Bico()|¥la®(x; D) ¢,6x) ull,

SCW) IR E(x) ul?,
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where ¢’ is a constant independent of i.

Considering the second part of the right-hand side of (b.1), we fix N as the smallest
integer satisfying p—N—1<0. Since ry ;(x; D) S?"~!, we obtain

(b.3) 33 Iy, ix; D) Ci(x) ul*<const. 33IC:(x) ull}-1

<const. |[u|l3-1,

where const. is independent of i. Now from (b.2) and (b.3), we have Lemma 2.3
for p=(0, 1].
For general p>1, we decompose

AP L(x) = Ci(x) KADPTIH[KAM, L)) .
Assume that Lemma 2.3 is true for P& (k, k+1]. Then we see that, Lemma 2.3
holds for pe(k+1, k+2]. So, Lemma 2.3 holds for all p>0.
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