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The spectrum
of periodic generalized diffusion operators

By

Matsuyo TOMISAKI

1. Introduction.

Some properties of the spectrum of periodic diffusion operators on the real
line were recently studied by N. Ikeda, K. Kawazu and Y. Ogura [3], [5]. As was
shown there, the spectrum has the same structure as that of Hill’s operators.
Namely, it is expressed as a countable union of closed intervals [#, #{,], n>0
with a sequence —oo<pP<u{’<pP< - <puP<LuP <+ 1 co. But periodic
generalized diffusion operators present a little different spectrum. M.G. Krein [6]
proved that, for a class of periodic generalized diffusion operators, the spectrum
is expressed either as U y.o[z(?, «{?,] in terms of an infinite sequence as above,
or as UM [u®, u,] in terms of a finite sequence — oo <<ufP < ufV < u{< -
<uf) <uly’<oo;in particular, if the operator is associated with a periodic discrete
measure, that is, if the operator is reduced to a periodic second order difference
operator, then the spectrum has the latter expression. These observations suggest
that the spectrum of periodic generalized diffusion operators has a structure similar
to that of Hill’s operators or that of periodic second order difference operators
according as the support of associated measure intersects a bounded interval with
an infinite set or with a finite set. Our first aim is to show that this is valid for a
class of periodic generalized diffusion operators containing Krein’s operators as
well as periodic diffusion operators.

The results for periodic diffusion operators by N. Ikeda, K. Kawazu and Y.
Ogura also tell us that the spectrum consists only of the continuous spectrum and
the point spectrum is empty as long as the operators are treated on the real line.
On the other hand, if we deal with the operators on the half line, both the continuous
spectrum and the point spectrum are nonempty in most cases. E.A. Coddington
and N. Levinson have already pointed out in the book [1] that, for a boundary value
problem of second order differential operator, the spectrum depends on the boundary
condition, and the continuous spectrum and the point spectrum are nonempty.
Further, W. Ledermann and G.E.H. Reuter [7] studied a class of birth and death
processes and also obtained the analogous results for their generators which are

Communicated by Prof. Watanabe, March 26, 1986



532 Matsuyo Tomisaki

second order difference operators. Their works interest us the problem how boun-
dary conditions affect the spectrum. Our second aim is to clarify it for a class of
our operators restricted to the half line [0, o) with sticky elastic boundary con-
ditions at 0.

Our tool is an eigenfunction expansion, known as Weyl-Stone-Titchmarsh-
Kodaira theory [10]. We have also to recall the spectral theory of generalized
diffusion operators due to K. Itd and H.P. McKean [4], [9]. Their arguments
enable us to generalize Weyl-Stone-Titchmarsh-Kodaira theory developed for
second order differential operators to our general case.

In Section 2 we will describe precise definitions and state our main results. The
first theorem is related to the discriminant. We will see there that the discriminant
has a finite number of zeros if and only if it is associated with a periodic difference
operator. In Theorem 2 we will give the precise formulas of spectral measure den-
sity functions of our operators on the real line and in Theorem 3 their asymptotic
behaviors near the points £{> mentioned above. Theorems 4, 5 and 6 are devoted
to our second aim. The continuous spectrum of operators restricted to the half
line is independent of boundary conditions, but the spectral measure density
functions are naturally affected by them (Theorem 4). The asymptotic behaviors
of the density functions near the points £{’ can not be also independent of boundary
conditions (Theorem 5). Neither can the point spectrum (Theorem 6). We will
prove Theorem 1 in Section 3, Theorems 2 and 3 in Section 4, and Theorems 4, 5
and 6 in Section 5, respectively. Some typical examples will be given in Section 6.

The author would like to thank Professors Y. Ogura, S. Watanabe and S. Kotani
for their valuable suggestions.

2. Definitions and main results.

2.1. Let s, m and k be real valued functions on the real line R satisfying the
following conditions:
(2.1) sis continuous increasing,
(2.2) m is non-trivial right continuous nondecreasing,
(2.3) a) kis right continuous nondecreasing, or

b) k is right continuous, dk is absolutely continuous with respect to dm
and the Radon-Nikodym density is bounded,

where dm and dk stand for the measures induced by m and k, respectively. We
may assume s(0)=m(0)=k(0)=0 without loss of generality. We denote by D(®)
the class of functions we L3R, m) such that there exists the derivative u*(x), of
bounded variation on compact intervals of R, and for some #, & LR, m)

b+ b+
2.4) S,,+ h(x)dm(x) = u+(b)—u+(a)—sa+ u)dk(x), a bER,
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where u*(x) is the right derivative of u(x) with respect to s(x), that is,

e u(x+h)—u(x)
u ) = i ) —s(x)”

and the integral is read as

. S ]f(x)df(x) for a<b,
[ rowew =1
“ —S(b JedEw)  for a>b.

Then the map &: u(eD(®))— h, is called a generalized diffusion operator on
R (cf.[4]). @ isobviously reduced to a second order difference operator if m satisfies

2.5) #{Supp (dm)N (0, 1]} = N<oo,
and k satisfies (2.3.b).

We now assume that ®& is periodic with period 1, that is, Gu(-41))(x)=
(®u)(x+1), xER, for every u such that both u and u(-+1) belong to D(®). In
the same way as in [3], we can see that this property is equivalent to the following:

(2.6) There is a positive p such that for every x, yeR
s(x+1D)—s(y+1) = o(s(x)—s(»)) ,
m(x+1)—m(y+1) = o~ (m(x)—m(y)),
k(x+1)—k(y+1) = p7Hk(x)—k(y)) .

® is called a periodic generalized diffusion operator provided (2.1), (2.2), (2.3) and
(2.6) are satisfied.

We next consider the restriction of & to the half line B, =[0, o) with the
sticky elastic boundary condition at 0. Let I" be the collection of triplets (7,, 72, 73)
such that r,=r,=r;—1=0o0r r,eR,, r,=1, r;,€R. For each r=(ry, 7o r5)ET
we define the measure m"(dx)=17,0(0)(dx)+ X(o,«)(x)dm(x) and denote by D(®") the
set of all functions ue L*(R,, m") having the property that the derivative u*(x)
exists and is of bounded variation on compact intervals of R, and satisfying (2.4)
for some h,€ L*(R,, m") and for every a, bE R, as well as the following bound-
ary condition (2.7).

2.7 711,0) = ru*(0)—75u(0) .
& is the map u(€ D(®"))— h,.

2.2. Let gi(x, ), xER, AC, j=1, 2 be the solutions of the integral equa-
tions

pi0 ) = 14| 60—s0Ne0, D= 2dm(n)+ak(»)),
(2.8) N
o, 2) = S(x)+So+(S(X)—S(y))¢z(y, A= 2dm(y)-+dk(y)) -
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Note that the Wronskian of ¢, and g, is equal to 1:

29 @i(x, Dz (x, H—oi(x, H@(x, ) = 1.

We define the functions 4 and D by

(2.10) 4Q2) = ¢,(1, D+093(1, ), D) = £(A)—4p.

4(2) is called the discriminant following the terminologies in the theory of Hill’s
operator. We also define the following sets:

S = {A€R: D(})<0}, Sy = {A€R: D()<O0},

@.11)
S, ={€R: ¢f(1, ) =0}, S,={€R: ¢, 2)=0}.

Now the following assertion is well known in the case of Hill’s operators.
Further, the result corresponding to the case of that s(x)=x, k(x)=0 and p=1is
obtained by M.G. Krein [6].

Theorem 1. Assume (2.5) with some N&N. Then there exists a finite sequence
—oo =a< P <pP L pP < <p VKPP <o K pP <P <P = oo such that

AN>2vp if 2@, u®), and n is zero or even,
@.12) A< 20 if 2e(®, 2, and n is odd,
' 42) =20 if 2=u"ER, nis zero or even, and i=1, 2,

A= —2v/p if 2=s"ER, nisodd, and i=1, 2.

In the other cases, there exists an infinite sequence — oo=uf<p{P< V< pP<.
<UD uP <.ov } 0o which satisfies (2.12).

The following notations are used frequently.

I=#{neN: LP<ud},
x—l = :ug)l) = —0©o9, 10 = ﬂSZ) s
Ay = min{ad: 2, <uP<puP, neN}, j=0,k=1,2.
Clearly 1<I/<oo and 2;s are defined for j&[—1,2/]NZ. It follows from

Theorem 1 that / <N and 2;,=oo in the case of (2.5); 2y4-I<oo or lim;,.2;=]=00
in the other cases. Namely

1-
(2.13) S = .U: [A2j, Z2544] » in the case of (2.5),
i
1-1 o .
@14 S= Ul ys]Uly ), or Ulky 4m],  otherwise.

2.3. As was mentioned in § 1, Weyl-Stone-Titchmarsh-Kodaira’s theorem
[10; Chapter 5] combined with the spectral theory of generalized diffusion operators
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due to K. It6 and H.P. McKean [4; § 4.11] is still effective for our operators. We
summalize it.
For 2z C\R, there exit the limits f;(3), j=1, 2:

A@ = —lim ¢,(x, Dfelx, ) = —lim ot (x, V/gi (x, 2),

S = —lim o,(x, D/ (x, 2) = —lim o1(x, H/p(x, 2).

(2.15)

We set

Fu®) = 1((D—AQ)
S1o®) = fud) = L DISAD—£(2) »
S22 = HADFD—f(2) -

Define o4(u), j, k=1, 2 on R by
2.16) 0;4(up)—0 (1) = lim S"’ﬂm TV =TV,  w<upj, k=1,2,
T v Uy

and denote the induced Stieltjes measures on R by doj. The matrix valued
measure [do]; 4, ; is the spectral measure of . Weyl-Stone-Titchmarsh-Kodaira
theory in this case tells us that for gL (R, m),

0= 3 | eitx ([ o0, 0g0)an) )o@ .
We now set
0,(w) = 2|o(1, )|, OPuu) =20|ei(l, u)],
Dyp(u) = Op(u) = ppz (1, u)—p(1, 1),
1+
ij(“) = S(H_?’s-j(x, w@s_i(x, uydm(x) , k=12,
1+ ) 1+ 2 1+ 2
v ) = | gt wam) [ pix, wyam)—({ " x, wens, wm .
o+ o+ o+
The following theorem gives us the spectrum of &.

Theorem 2. The spectrum of & is continuous and coincides with S. The spectral
measures doj, j,k=1,2 are absolutely continuous with respect to the Lebesgue

measure in S. The densities p;, are continuous in S, the interior of S. More
precisely they are given by

(=190 w22/ D),  #P<u<udy, n>0,

217 pju) = (— 1™ ()22 T (), ue S\Sx .

The following is immediate from the first assertion of Theorem 2 combined
with Theorem 1.
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Corollary. The spectrum of & is bounded if and only if the set Supp(dm)N
(0, 1] is finite.

Next we study the asymptotic behaviors of p;; near the points #{’. Note that
4 e S implies 4§ & S; N S, (see the proof of Theorem 3 in § 4).

Theorem 3. Let ,a=,a$,")ER\S°‘, n>0, i=1,2. Then it holds as u—p, ucs
that for j, k=1, 2

(2.18) o) = Cylu—u|*#+0(lu—a|*»*),
where Cj,=C;(#) and 8;,=0;,(») are given by

(— 1)(n+i)(i+k)@jk(ﬂ)/4n.p1/4\/m’ nes S3_.j USsss
qu’jk(/‘)/z”\/m ) #ES;_ ;U S; s
—1/2, ueES;_jUS; s

12,  2ES,_;USs,.

Ci(e) = {

Ou() = {
2.4. For each r=(r,, 7o, r3) €I we define the functions v}(x, 2), xER,,
AeC, j=1, 2:

YI(x, 2) = rei(x, )—(r d—raedx, 2),

2.19)
Yix, D) = {(rd—rdeilx, D+relx, DY/ {lrd—rs|*+r.

Then there exist the limits
@) = lim yY(x, D/yAx, 4 = lim y 3 (x, H/yTHx 2
for 2<&C\R. Obviously it holds by (2.15) that
2200 HQ) = {rA—r D=7} {r i+ 1ad—rd HIrd—rsl* 47} .
Define the function ¢” on R by

@2) )=o) = —lim [P =T, w<i
T uy

We denote by d¢” the induced Stieltjes measure on R, which is the spectral
measure of &". Weyl-Stone-Titchmarsh-Kodaira theory leads us to the spectral
representation

¢ = [ vice (], vi0. 0e0Im @) Jaoraw

for ge L(R,, m").

Now let =7, 27, 27 be the spectrum, the continuous spectrum, the point spec-
trum of &7, respectively. Notice that the residual spectrum of & is empty.

We are first concerned with the continuous spectrum.
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Theorem 4. 1) ZY=S for every rEI'. 2) The spectral measure do" is abso-
lutely continuous with respect to the Lebesgue measure in S. The density function p¥
is positive continuous in S, the interior of S, and for r=(r,, vy r3)ET it is given by

l@o1, ) [/ | D(u) |

P = 2 (A, w)—rd@RY+ 1, D@1~ “E %
Y Wu(u)\/Wu)

o) = a{{(ru—1) ¥ W) —1.¥ 2 )} *+ 7, ¥ (u)} ’

(2.22)

uESZ\S* .

We next observe the asymptotic behavior of o¥(u) as uES tends to ;. It
should be noted that for each j &[—1, 2/]N Z there exists the limit

lim (2 = 4;,

AFAFAER\S
and 4; is given by

a -1

—(S PT¥(x, O)ds(x)) : if j=—1, or (2.5) holds and j =2/,
0

Aj: (A(l;)/2_¢l(]’ ’I;))/¢2(1a 'z]) s if ’IJGESZ >
+ o0, if jisevenand };ES8,,
— oo, if jis odd and 2;E€S,,

where a=inf{x>0: m(x)>0} and —c™!is understood to be — oo for ¢=0 (see the
proof of Theorem 6 in § 5). We put

T} =1t rd;—r; (E[—o0, +)),
for r=(ry, rp 799 ET and jE€[—1, 2]]C Z, where 0« 0o =0+(— 00)=0.

Theorem 5. Let 2=2;<oo,j &[0, 21N Z and r=(ry, 15, 75)EI". Then
(2.23) 0'W) = Clu—21*4+0(Ju—2|*")  as u—2, ues,

where C and 0 are constants depending on A and r given as follows:

C = | 4| Vfzp T (2), &= —1)2, if 28, and r,=0;
C = o, Vx| 4N, 8=1/2, if 2€S8,and r,=1;
C=lg(1, D[z 4@, ¢ =—1/2, if AES,and 7=0;

C = oo (1, H] [ AWz {yA0, H—rd(R)[2}2, 8=1/2,
if A&S,and t}=£0.

Finally we turn to the point spectrum. As is clear from Theorem 4 with (2.13)
and (2.14),

1
E‘JYCR\S =,-Q)G" N TEF B
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where G;=(%;_;, 4;), j=0. Noting that A4,; ,=4,; for every j[0, [N Z (see
the proof of Theorem 6 in § 5 below), we have more precise result. For each
Jj€l0, 11N Z we set

€; = (Ayjo1— A3))|Roj—2p5-1)
where ¢/co=0 in the case of ¢==0.

Theorem 6. Letj€[0, /1N Z and r=(ry, 15, ri)ET.
1) Assume Ay; ,<A,;. Then YN G; consists of a single point provided 3;_,<0<
t¥;, and is empty in the other cases.
2) Let Ay;y>4,;. If r\>¢; and t};_,<0<z};, then =} G; consists of two points.
If 0<r,<e; and t};<0<7};_,, then ZYNG; is empty. In the other cases, Z}N G;
consists of a single point.

In the proof of above theorem we will also find that —oo <A4_;<A4,< oo,
Hence we get immediately

Corollary. Let A be the principal eigenvalue of &, that is, ’=min 3. Then
A" belongs to =} if ¥, <0<}, and to =} otherwise.

Further, Theorems 1, 4 and 6 assert

Corollary. The spectrum of &" is bounded if and only if the set Supp(dm)N
(0, 1] is finite.

3. Properties of the discriminant.

In this section we prove Theorem 1. We sometimes denote
Pi(x, ) = 0pi(x, [0, @ (x, X) = Pp/x, 2)[02%, etc.

First we note the following equalities which are proved in the same way as in
[2; 8§2.3] or [8: §2.1]. ForacsR and j=1,2

6D 2@ )= | pu@p) P @p )
6D 97 @D = | ot @r) 1@ X))
G 9@ D=2 {e@e @ —r@p@dn()

x{ 1012900~ 90a 20N 0PN
G4 95 @ =2 o1 @)1 @ dm(x)

X (. P @A)~ 2A @A, A)AM()
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where 9;,(-)=¢,(+, 2) and ¢} (+)=9] (-, 2).

By means of these equalities we can repeat the standard argument for Hill’s
operator to get some properties of the discriminant 4(2) (cf. [2; Chapters 1-3], [8;
Chapter 2]). We list up them without proof.

Lemma 3.1. 1) 4(2) is an entire function. 2) There exists a real number p,
such that 4)>2+/p for 2<u, 3) All roots of the equation 4(2)—40=0 are real
and lie in the interval (1, o). 4) If w)=2\/p and 4'(#)<0 for some rER,
then 4'(2)<0 for all 2>u such that A(&)>—2\/p0, EE(n, 2. Similarly, if 4(u)=
—2v/ 0 and 4'(1)>0 for some nER, then 4'(3)>0 for all 2>y such that 4(&)<
2V o, EE(n, 1)

We next give a remark on the zeros of the function ¢,(1, 2), A&C. In the
following we set I=(0, 1), and I,,=Supp(dm) N I.

Lemma 3.2. ¢,(1, +) is a positive constant if I,=¢. @1, <) has k zeros —oo<
E<E,< << oo if §I,=k, a countable infinite number of zeros — oo <& <E<++-
<E, <.+ } oo otherwise.

Proof. 1) Assume I,,=¢. Then (2.8) with x&I=J0, 1] is reduced to

2o, ) = s+ (IR0, Dk()

Therefore ¢,(1, 2) is independent of 2 and the condition (2.3) yields ¢,(1, ) >
s(1)>0.

2) Let I,+¢. Fix a real number a such that ¢,(x, @) and ¢,(x, @) are positive
increasing for x&(0, ). We put

&%) = @x, @), gy(x) = oy(x, @)—(9y(1, @)/o,(1, )py(x, @),
G(x, y) = Gy, x) = g1(0)g(y), x<Zy.

Note that g,(0)=g,(1)=0, and g,[g,] is increasing [resp. decreasing] on I. Define
the operator G by

@@ = | Gl fO)mG),  xel, feI m).

For every f € L¥I, m), Gf(0)=Gf(1)=0 and Gf(x) is continuous in x&I. Further
Gf(x) satisfies the following

@3 6 =@ | a0~ (e—sOIan(y)

+{ 6NN —adni)+akY,  xel.

We will prove that Gf(x)=0 m—a.e. x&I implies f(x)=0 m—a.e. x&I. Fix an



540 Matsuyo Tomisaki

a€l and put b=sup{x: 0<x<a, m(x)<m(a)}, c=inf{x: a<x<1, m(@)<m(x)}.
Note that Gf(b)=Gf{c)=0, that is,

b 1
b+ 0 b

&®) | sufim+,6) | gusim = 40) ||~ gufime,0) " gufim=0.

It is trivial that Gf(a)=0 provided b=c. Let b<<c. Since g,(b)g,(c)<gi(c)g,(b), we
b+ 1+

get S & fdmzs g,fdm=0, and hence
o+ b+

b+ 1+
6f@) = @ | gufim+ @ |~ gutidm —o0.
a being arbitrary, we obtain Gf(x)=0 on I. Differentiating both hand sides of
(3.5) with respect to s(x), we see that f(x)=0 m—a.e. x&1I.

Obviously G induces a positive symmetric operator G of the Hilbert-Schmidt
type from L%(I, m) into itself. From the above observation G has exactly k positive
eigenvalues with multiplicity if #7,=k, a countable infinite number of positive
eigenvalues, which have no point of accumulation except 0, otherwise.

We next verify that there is a one to one correspondence between zeros 4 of
@,(1, ) and eigenvalues B of G, and the correspondence is given by A=a+1/4.
Assume @,(1, )=0. Since ¢,(1, @)>0, we have A2z=a. By the definition of
the operator G and by (2.8), we get that Gg,,(x) =@, \(x)/(A—a), x&I, where
2, \(X)=9,(x, ). This means that 1/(2—a) is an eigenvalue of G. Conversely,
let A be an eigenvalue of G and f an eigenfunction correspopnding to it. It should
be noted that f has a continuous version f on I satisfying Gf(x)=4f(x), xI.

By virtue of (3.5), A(x)=4 f(x)/S g.fdm satisfies the integral equation
I

x+
M) = 5+ (=GN —(a+1/p)dm(»)+dk(»)) -
This integral equation has the unique solution. By (2.8) the solution is identical
with @,(x, a+1/8). It follows from A(1)=0 that ¢,(1, a+1/8)=0, i.e. a+1/8 is a
zero of @,(1, *).
If @,(1, 2)=0, then by (2.9) ¢,(1, D3 (1, )=1, and hence by (3.1),

1+

39 21, ) = oL, ) | o, Dm0,

from which zeros of ¢,(1, 2) are simple. Thus we get the assertion of the lemma.
q.e.d.

Now we are ready to give

Proof of Theorem 1. We first note that lim,,_.. 4(2)=co0 and 0<lim,; _..¢,(1, 2)
< oo, Also by (2.9), (3.1), (3.2) and (3.6)
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1+
o1, )4'(2) = —SM{%(I, Dey(x, )—(ei(1, A)—pei (1, D)ey(x, 2)[2}*dm(x)

H(D@)/4) Sl+¢§(x, DAmx)<0, if 4D <2 B

0+

PH(1, DA = L, D+0) [ ¢ix, Dm(x)>0, it (1, H=0.

If Supp(dm)N (0, 1] contains a countable infinite subset, then the assertion of the
theorem follows immediately from Lemmas 3.1 and 3.2. When m(x) satisfies (2.5)
for some N €N, by means of (2.8) we get easily that

(—=DM@"|dM)p 1, =0, (@4dF)e(l, 2) =0,

@7 (— 1Y (@Jd)gt (1, >0, (@Hd)gi(, 2) =0,

for j=1,2 and k>N. Hence 4(2) is a polynomial of degree N. (This fact has
already shown by M.G. Krein [6] for the case that s(x)=x, k(x)=0 and p=1.)
Therefore the assertion of the theorem follows from Lemmas 3.1 and 3.2 in this
case, too. q.e.d.

Finally we observe how the points of S; and S, defined by (2.11) are distributed.
By using (3.1) and (3.2) we see that if |4(2)| <24/ 0o, then @i (1, 2)4'(2)>0. Since
by (3.7) ¢i (1, +) is a polynomial of degree N in the case of (2.5), Lemma 3.1 coupled
with lim,, _.¢7(1, 2)=oo tells us the following result, which is also well known in
the case where & is reduced to a Hill’s operator (cf. [2; Theorem 3.1.1)).

Lemma 3.3. S,US,CR\Six. S;N(—o0, A] consists of a single point and
SN (—o0, &] is empty. @i(l, 2)<0 and @1, 4) >0. For each j=1,2, S;N
[, 42 consists of a single point for 1 <n< N—1 if (2.5) holds, for n& N otherwise.
SiN[Ay_y, 00)=¢ if (2.5) holds. Further, when (2.5) is satisfied, S, [2y_;, o) is
empty or a one-point set according to 1 €Supp(dm) or 1€ Supp (dm).

4. Spectrum of periodic generalized diffusion operators on the real line.

The aim of this section is to prove Theorems 2 and 3.
By the same argument as the standard one for Hill’s equations, the equation

r?—4@Qr+o =0

has two distinct solutions r j(2), j=1, 2 with 0<|r,(2)| < |r,(2)| for 2&C\S (cf. [5;
§2]). We note that the functions r;(2) are both analytic in C\S. For 1€ S, we
put 7 (A)=lim,,,r,(A++/—17), j=1, 2 conventionally. It is easy to see that the
analytic continued D'?(2) satisfies

(=1 D@)|*, <A< 4,

lim D24~/ —=Tv) =4~
n DRV =T) {\/—1(—1)"+‘|D(z)|‘/2, #O<A<uid.

This implies
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4.1) 1}31 riA+vV=1v) = @)+ =1(=1)"**TDR))/2,
uP<a<plly, j=1,2.
Further we note that for A& R with 4Q2)>2+/ o [4Q)<—2v 0],
“4.2) ri?) = {p(1, H+pp: (1, H+(—1Yv/ D)} /2>0
[resp. 7,2) = {ei(1, D+opz (1, H+(—1Y*/DR)}/2<0].
If 2€ R and ¢} (1, A)g,(1, )=0, then by (2.9)
“4.3) D(2) = (p/(1, H—opz (1, ))*=0,
and hence

rl(l) = ¢1(1a l) ’ rz(l) = p¢;(1’ 'l) ? lf |¢l(1’ Z)l S |p¢§(1, A)l H
A =e(l, 8, n@)=re;:(l,2), if |, )|=>]ee:i(1, .

We can also easily show the equalities in [5; (2.10)] in our case, and so we get by
(2.15)

4.4

ri)—ey(1, 2) ot (1, 2)
@ &= 21, T rM—peei(l, )

j=1,2.
Since r;’s are analytic in C\S, both f;’s can be analytically continued through
R\(S US,), which we denote by f; again.

Proof of Theorem 2. 1t follows by the same method as [5; Lemma 2.3] that
the spectrum of @ is continuous and coincides with S. Also, by [5; (2.14)], which
is valid in our case,

13?3 I fr(ut/—1v) = o1, u) 11?03 1/9m {rju+/—=1v)—r(u++/ =1},

and the limit is uniform in « on each compact set in Sy. It follows from (2.16),
(4.1) and the fact (—1)"p,(1, u)>0, 2P <u<pll, that o W)= |eXl, w)|/z/]D(u)|
for uc Sy. Similarly the other formulas o, with u& Sy follow.

Let n=S\Sy, i.e. u=aP=u® for some nEN. Then ¢i(l, ©)=gy (1, #)=
4'(#)=0 and

(4.6) riw) = @1, ) = pei(l, 1) = (=10, j=1,2.
Then it follows from (3.3) and (3.4) that
A'(p) = —4w)¥ (), D"(u)= —8o¥(n).
This implies
@7 | D(u) |2 = 2(0¥ (W) *|lu—p| +O(u—n)),  u—>u, uESy.

Further, by virtue of (3.1), it holds as u—g, u& Sy that
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o1, u) = o1, &)+o,(1, ¥ (W) (u—n)+0(u—2)),
o1, u) = o,(1, ¥ (W) (u—u)+O0(u—ry) .

Also, by means of (3.2), as u—u, uE Sy,

o1 (1, u) = —@3 (1, ¥ p(e)u—u)+0(u—r)),
o3 (1, u) = o3 (1, &)—o: (1, ¥ (W) (u—n)+0(u—~r)?),

whence the formulas o, with ueS\S* follow. q.e.d.

4.8)

4.9)

Proof of Theorem 3. First we note that if u=4{’ €S, N Sz, then (3.1), (3.2) and
(4.6) imply 4'(#)=0 and 2P=pP, i.e. peS8. Hence u) & S implies #$)&S, N S,
Let u=u &S, N S, and uP<uP<oo. Note that (2.9) implies in general

(p(1, )—ppi(1, ) = D()—409i (1, Dey(1, 2).

Hence we have ¢,(1, #)—p@3 (1, #)=£0 in this case. We also note that

4(W)=*0,

4.10
¢19 | D) |2 = 20| 4 () |'* |u—pe |+ O(Ju—1]%2) ,

asu—u, ucS. Then (2.18) is clear in this case.

Let u=p€S\S, and £P<u<oco. Then (4.6) and (4.10) follow. Hence
by (2.17) and (4.9) we get (2.18) again.

Let u=4€S,\S; and u{V<uP<oco. In this case, we have also (4.6) and
(4.10). Hence (2.18) follows from (2.17) and (4.8). q.e.d.

5. Spectrum of periodic generalized diffusion operators with sticky elastic boundary
conditions.

In this section we show Theorems 4, 5 and 6. In the following we fix a triplet
7=(ry 72 r3) EI'. Let us put

A" = {2eR: (rA—r)¥i(1, H+royi*(l, ) =0},
AY = QA% 12, DHA—rdoyt* (L, ) =r @}, j=1,2.
It is easy to see that AY=A7U A}. Further we note
Lemma 5.1. 1) A"CR\Sy. 2) Z}=4N\S.

Proof. 1) Let i A". 1If ¢f (1,A)@,(1, )=0, then 2 belongs to R\Syx by (4.3).
Assume @7 (1, )@,(1, 2)=0. Then the real pair {r;A—r;, 7.} solves the equation

(5.1 (rA—ra A0, D+revi*(, 2)
= 12091 (1, D)+ (rA—rarel, D—opi(l, 2)
—(rA—r’e(1, 1) = 0.
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Therefore the discriminant is nonnegative:

(¢1(19 l)_pgo;(l' Z))z—|—4p¢f(1, x)?"z(la '1)20 .

The left hand side coincides with D(2) by means of (2.9), which yields 1€ R\ S.
2) First of all we note that }C R\S. Indeed, if A€ S, then by means of [5;
(2.9), (2.10)] a non-trivial linear combination of ¢,(x, 2) and ¢,(x, ) is written as
o"?{e”"1az(14-Bx)p,(x)+e~ ¥ ~Tazp,(x)}, where @ and A are real numbers and p,(x)
and p,(x) are periodic with period 1. Hence there are no linear combinations of
@i(x, 2) and @,(x, 2) belonging to LYR,, m"). Consequently 2e£=J.

We now also get by (2.20) that

Ik Q) =Im— L
_‘fl(l)_rll +73
52 _ nlrd=rs*— [ AR)[?) md,  if =1
2 Ifl(l)'f‘n/l_?‘slz(l7‘1/1—7'3|2—|-1)/ ’ b ’
Im BY(2) = Im (), if 7,=0.

Suppose that 7,=1. Then, by (2.21) and (5.2), =} coincides with the set of all
poles 2 of the function (fi(2)47r,A—7;)"'in R\S. Incidentally, let A& A}\S. Then
by (4.5)

YA, H—r ) = —e(l, H(iD+ri—7) =0,

from which 2=} provided ¢,(1, 2)==0. But if ¢,(1, )=0 and ¢,(1, A)F=pe5(1, 2),
then r,(2)=e¢,(1, 2) and

(i) +r2—r)e (1, D—op:(1, ) =0.

This gives 2&€X}. (4.3) asserts that 2 S if ¢,(1, )—pe:(l, 1) =g\1, )=0.
Therefore we have A]\SCZX). Tracing along the above argument reversely, we
have the converse inclusion. Thus the conclusion follows in this case.

Suppose next that 7,=0. Then =} coincides with the set of all poles of the
function f,(2) in R\S. Let 2 A1\S. Then ¢,(1, 2)=0 by (5.1) and r,(})=p¢; (1, 2).
Hence ry(2)=¢,(1, 2)=r,(2) by (4.4) and D(2)>0. This implies 2&X}. The con-
verse inclusion is seen similarly. q.e.d.

Now we give

Proof of Theorem 4. 1) Let A€S,. Then ry(A)€C\R and ¢,1, )= R\ {0}
by (4.3). Hence, by (5.2) lim,o Jm B(2++/—1v)=0, which ensures S, C=". The
spectrum being closed, it then follows that S C=". This combined with the inclu-
sion =¥ R\S proves S C =Y.

Suppose next that A& R\S. Then we can find a neighborhood U(?) of 2 such
that r, is analytic in U(2) and r(§)e R for §€U(A)N R. Hence either 2 is a pole
of hY or else lim,,q I B (E++/—1v)=0, £€(2—¢, 2+¢), for some ¢>0. This
means A3,
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2) Note that substitution of (4.5) into (2.20) implies

H(2) = (rA—r3)(e(1, )—r (D) +7.9(1, 2) .
(e, D=r@)=rd=19pl, DHAIrd=rs[* 472}

Hence, if ue R\(4"U S,), then we have

5.3 lim 2 -/ =T) = lim 2o ) It/ =10
(5.3) i (u+v/=1v) ulgl|1,/,‘{(1,u)—7'2rl(u+\/—1v)|z

The limit in (5.3) is uniform in u on each compact interval in Sk.

Now the formula (2.22) with u€ S, follows from (2.21), (4.1) and the fact that
(—=1)"p,(1, u)>0 for P <<u<<uld,.

We next note that if #&S\Sy, ie a=uaP=n2 for some n&N, then
o1 (1, W=y (1, p)=4'(¢)=0. Further (5.1), (5.2) and (5.3) hold and 4(u)=4(x)+
O((u—u)?) as u—p, uSy. Hence

le(1, ) [/ D(u)|
= 2p¥ ()" (—1)"e(1, &)¥ () u—2)*+O0(|u--2%
A, W=7, 427+ 1, | D(u)| /4
= {ol(1l, ){(rie—7)¥ w(W)— 1 (W} 10T (W)} u— 1)+ O(u—1 %),
as u—u, u€Sy. These imply (2.22) for uEﬁ\S*. q.e.d.

Proof of Theorem 5. Let p=2;<co and j&[0, 2I]JNZ. Then (4.10) follows.
We divide the proof into four cases.
1) Let 2;€S8, and 7,=0. Then (4.6) holds with an appropriate n€N. Further
by (2.25), (4.8) and (4.10)

o) = loi(1, 2)] 04| 4' (1) | V20 (1) | u— 22 |2+ O(| u— 1 |5)
7pi(1, ¥ () u—nf+O0(|u—n?

as u—u, uS. This proves (2.23) in this case.
2) Let2;€S8,and r,=1. Then (1, #)—4(#)/2=0. Hence by (4.8) and (4.10)
it follows that ’

b

() = 1905 W12 4 (@) |V¥ () |u—p2 |+ O u—1 )
zo"?| 4 (p)| lu—p|+O(|u—2l?)

?

as u—u, ucS. This proves (2.23) in this case.
3) Assume that 2;& S, and zY=0. In this case it holds that

vI(1, u)—4w)/2 = O(|lu—ul), u—p, ues.
Hence by (2.22) and (4.10)

0¥(u) = | @1, /.L)|p1/4|Af(ﬂ)|1/2|u_uIl/z_l_o(lu_ﬂlalz)
o' 4 (p)| lu—u|+O(|u—r|?

b
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as u—p, u€ S and (2.23) follows.
4) Assume that 2;& S, and z}#=0. Then ?{(1, #)—r,4(#)/2+=0. Hence by (4.10)
the numerator and the denominator in (2.22) are respectively equal to

le1, )| 0] 4 () |2 |u—p|*+O(lu—2|¥), and
a(Yi(1, #)— 7, 4()/2P+O(lu—nl)
as u—u, ueS. This implies (2.23). q.e.d.
In order to prove Theorem 6 we need to see that f;’s are tractable on R\(S U S,).

Lemma 5.2. For each A& R\(S U S,) and j=1, 2

G i =S o ) p e, D).

Proof. Let 2€R\S, and 4(2)>2+/p. Then it follows from (4.2) and (4.5)
that

(5.5 £ = {—o,(1, H+0gi (1, D-+(—1)/DR)} 221, 2) .
Hence

Fi) = (1Y {rs_ ;Dei(l, D+ri(Rep:'(1, D}
—f{)VDRPiL, M1, )V D(Q) -
By (3.1) and (3.2) the right hand side of the last equality coincides with that of (5.4).

In the case of that 2&R\S, and 4(A)<—2v/p, (5.4) also follows in the
same way as above. q.e.d.

We now proceed to

Proof of Theorem 6. First of all we note that 7,=0 yields 7};_,=7};; 4,;.,<
Ayj and 7,=1imply 7};_,1<<7};; if A;;_;>4,; and 7,=1, then 7};_1=r}; according
to r,=e;.

We divide the proof into six cases. In the following we denote by &; the
unique element of S, N [4,;;, 4;;] if it is not empty.
1) Let 2; ,<&;<2;<oco and r(§)=g(l, £;) for some jE[1, /INN. Then
r(&) =003 (1, £ o1, &;). The second expression in (4.5) coupled with (4.4)
yields

(5.6) lim  fi(2) = ppi(1, )/ {ei(1, €)—ppi(l, £} ER.
A-rfj,)\ER\S
In view of (4.2)
.7 lim f;(Q) = 4,;.,€ER,
)‘“‘2]-1
(5.8) lim fi(2) = 4,;ER.

)\1)‘2]
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It then follows from Lemma 5.2 that £,(3) is continuous increasing on G;=(4;;_;, 4;;)
and —oo<A,; ;<A,;<<co. Hence the equation r,f;(2)+7r,A—7;=0, AEG; has the
unique solution v} if and only if z¥;_;<0<<};, from which

{V}}’ TZ;‘—1<0<1'12'; >

5.9 AING; =
G9) ino; {95, otherwise.

2) Let 4, ,<§;<X;<oco and rf)=e(1, &) for some jeE([l, /[JNN. Also
suppose 4(4;;_;)=2v/ 0. Then by (3.1) and Lemma 3.3

Qz(l, l)<0 fOl' xe[lzj-la 51) 5
¢z(1, l)>0 fOl' XE(EJ', ij] .

Further r (§,)=p¢3 (1, £;)<e(1, £;). Hence it follows from the first expression in
(4.5) that

(5.10) limf,(A) = 400, limfi() = —oo.
)\15} A{ﬁ,

(5.10) is valid for the case 4(4,;_,)=—2v/p, too. On the other hand, in view of
4.2),

(5.11) lim f,() = lim f,(A) = 4,;,€R,
AdA }‘”‘2 1

2§-1 i -
lim f,() = lim f,() = 4,ER.
Aszl At 2

A
5
By virtue of (4.4) and the second expression in (4.5)

lim  f£,(2) = ppi(1, €)/{p(l, £)—0pi (1, £ ER.
A>EAER\S
Thus Lemma 5.2 implies that —oo<A,;<<4,; ;<<co and ¢;>0. The equation
7./i{()+72—7;=0, A&G; has two solutions v};, v}, provided r,>¢; and <
0<};, a unique solution v} provided r,>¢;, (—1)*}<0, or 0< 7, <¢;, (—1)*}>0,
where k=2j—1 or 2j, no solutions otherwise. Since A]NG;={¢;} for r=(0, 0, 1)
in this case, putting »{-*P=¢;, we get

{0, vk, if 7r,>e¢; and 7¥;,<0<7};,

(5.12) AING; = vk it ri>e), (—1)'5<0, or 0<7,<e¢,
(—=D*zt>0, for k=2j—1 or 2j,
@, otherwise.

3) Let &;=2,;.,<X;<co for somejE[l, [NN. We also assume 4(4,;_;)=2v/ 0.
It then follows from the assumption that @,(1, 4,;_,)=0 and

ri(lzj-1) = o1, zzi—l) = pp3 (1, 22}—1) =V, i=1,2.

Hence by using (5.5) and I’'Hospital principle
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lim fi() = lim {—gi(l, D+ogi (1, H—ADL @D 4/204(1, D).

¥A5-1 27 -1

Note that @5(1, 4,;-,)>0 by (3.1) and 4(,;_,)4'(%;;_;)>0. Further

D(2) = 24(12,;’—1)41(12}—1)(1—Xzi-l)'*_o(l_121’-1) as A ;.
Hence

(5.13) lim f(x) = —oo.

AdAy,

This is also true for the case 4(%,;_;)=—2v/ p. Clealy (5.8) holds in this case,
too. Therefore Lemma 5.2 again gives us that —oo<<A,; ;<A4,;<<oo. There is
the unique solution ¥ of the equation 7,£;(2)+7,2—73;=0, A& G; only for 7};_,<0
<};. Hence (5.9) follows.

4) Let 2;_,<2,;=&;<oo for some j&[1, [INN. Then in the same way as in 3)
we have —oo<A,;_;<A4,;=o0 and (5.9).

5) We note by (4.2) and (4.5) that for 2<4,

[ = —oi(1, Hel, D+20/p(1, D(4A)++/DR)) -

By virtue of (2.9) and by the fact ¢,(x, )=¢,(x, 0) for AER and 0<x<a=
inf {x: x>0, m(x)>0}, it follows that

1 a
oL, D, D) = | o7%x, Ddstx) > | o7 0ds) a5 2| —oo.
Therefore
lim f}(2) = A_;=>—oo.
A -
Since @,(1, ;) is positive, it follows from the first expression of f,(2) in (4.5) that

lim £,(2) = A,<oo.
A2

By means of Lemma 5.2, — o0 < A_,<A4,< oo and the equation 7,f,(3)+7,2—7r;=0,
A€ Gy=(— o0, 2;) has a unique solution »} if and only if z¥;<<0<zj. Consequently
(5.9) with j=0 follows.

6) Suppose the condition (2.5). Then we have by (4.2) and (4.5) that for
>0 =n

Q) = —o(1, D/e,(1, D+20/2,(1, Y(AA)+(—DVV D)) »
5 = —pes(1, D]g(1, )+2p/e,(1, (AQ)+(—D¥/ D)) -
In the same way as in 5),

21, D, D - [ ox, 0dsm) a2t oo,

from which lim,;..f;(})=4, €R. We should notice that z§;=co in the case of
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7,>0, and also that ,=0. On the other hand, since the function g(x)=g¢,(x41, 2)
solves the equation

g(x) = g(0)+g *(O)S(x)+g: (s(x)—s(¥)g(¥)(—2dm(y)+dk(y)) ,

we have

¢j(x+1’ l) = ¢j(l, X)¢1(x, l)—|—p¢}'(1, 'l)¢2(xa l) B J =1, 2.

Then the substitution of x=—1 gives us

?1(_19 )= ¢;—(l: 2, ¢2('—'1a ) = _?72(1’ l)/p .

Consequently, by (2.9)
0
Pl Dlopi(l, D) = —pl—1, Dip(—1. ) = | _¢7x, Dds()
0
[ o 0ds) a5 2t e,
b
where b=sup {x: x<<0, m(x)<<O}. If 1€ Supp(dm), then b<<0 and
. 0 -1
(5.14) lim £,(2) — (S o7, 0)ds(x)> =B,cR.
At b

If 1 =Supp(dm), then ¢,(1, )0 for 2>24,,_, by Lemma 3.3. Since (5.7) with
Jj=1holds, we deduce from Lemma 5.2 that —oco<<A,,_,<A,<cco and the equation
rfi)+72—7,=0, 2&G,=(%,_,;, =) has a unique solution »} if and only if
t3,.1<0<7},. Thus (5.9) with j=1 follows.

If 1&Supp(dm) and &,=2,_,, then (5.13) with j=/ follows. Therefore
—oo=4A,_,<A,<oco and we get (5.9) with j=I.

In the case of that 1€ Supp(dm), 2,,_,<<&, and r,(§)=e,(1, &), both (5.6) and
(5.7) are valid for j=I So —oo<<A,,_,<<A,<<oo and (5.9) follows with j=I.

Finally let 1€ Supp(dm), 4,,_,<<&, and r,(§)=¢,(1, &,). Then (5.10) and (5.11)
holds with j=I. Noting that (5.14) and — co<<A4,<0<B,<< oo, we see by Lemma
5.2 that —oco << A4, <<A4,,_;<<oo and the equation 7,f,(3)+7,A—7,=0, 2&G, has two
solutions »};, ¥, in the case of 7,>0 and ¢},_,<<0, a unique solution »} in the case
of 7,>0 and 7},_, >0, or 7,=0 and (—1)*¥z}>0 with k=2/—1 or 2/, no solutions in
the other cases. Also note that AN G,={¢} = {vI} for r=(0, 0, 1). Therefore
(5.12) with j=Iis obtained.

Since =} N G;=AYN G, by virtue of Lemma 5.1, we complete the proof. g.e.d.

6. Examples of periodic generalized diffusion operator.

In this section we give two examples. The first one is a second order differential
operator with constant coefficients and the second one is a periodic difference
operator.
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Example 1. Let b and k be real numbers, and set
® = d*/dx*—bd|dx+k .
Then p=e® and
ds(x) = e*dx, dm(x) = e ¥dx, dk(x)= —ke *dx.

The solutions ¢,(x, 2), j=1, 2 of (2.8) are given by

1%, &) = {(b+8(2)) exp (—(2)x/2)—(b—5(3) exp (3(2)x/2)} e*%/25(2) ,

(%, 3) = {exp (5(A)x/2)—exp (—3(R)x/2)} e**5(2) ,

for 25 2°=b*/4—k, where 8(2) is the square root of the discriminant of the equa-
tion

E—beL24+k=0.
For 2=2° we have
oi(x, 2°) = (1 —bx[2), @y(x, 2°) = xe*2,

Now if we take analytically continued version of 8(2) such that 8(2)/2=(2°—2)
for 2<2°, then

A(QR) = eME(dMN2y g=dN1z) |
D(}) = eb(ebM2—_ =32y
rid) = exp {(b+(=1Yo()/2}, j=1,2,
S = (b—08(2))/2.
Thus
S=1[2, ), 2,=2°="04—k.
When @ is considered on R, the spectral measure density functions are as follows.
pu(u) = 1227/u—12,,  ox() = (+k)22/u—2,,
o) = py(u) = bldn\/u—2,, u>2.

For ®, r=(r, 15 r) €I we get
o'(u) = \/u—lo/ 7 {r(u—2)+(r+rb/2—75)}, u>2,
73 = NAot1b2—1y,

2,_{%}, it 73>0,
e, if 71<0.

Example 2. Given 0<p, £< oo, we put for xER
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()_{(ps_l)/(p_1)9 if p*ls
s = x, if p=1,

© { SHE+DE —DEe— D (), I oI,
mix) = €z
IEZZHCZHJH)(-X) s if =1,

Then the operator Gu(x)=du*(x)/dm(x) is nothing more than the periodic
difference operator

Bu(k) = {u*(k)—u~ (K} /{m(k)—m(k—1)},
ur(k) = {u(k£1)—u(k)} [{s(kx1)—s(k)},
Now we get easily

px, =1, @ )=s(x), 0<x<1,
42 = p+1—pm°2, m°=(o+1é/p.

keZ.

Set cos 8(u)=4(u)/2\/ o and sin 6(u)=+/[D()[/2v/ p. Then in the same way
as in [5; (2.10)] we have for 0<x<1, k& Z and ueR,

oi(x+k, u) = p**{sin (k+1)6(u)++/ o (m°u—1) sin k6(u)
—+/ p m°us(x) sin kO(u)} [sin O() ,

@ (x+k, u) = p*V[sin kO(u)— {o(m°u—1) sin k6(u)
++/ o sin (k—1)0(u)} s(x)]/sin 6(u) .

Moreover,
S=1[% &, %= o—1om®, &= 0o+1)/om°.
If @ is considered on R, then for ,<u<4,
pu() = 1/z\/[D)|, Puu) = om°ulz/Dw)|,
o) = pu(u) = {o(1—m°u)—1}2z\/ D) -
Next we consider &, r=(r,, 75, 7)€ on R,. Then
A=A, =—1, Ay=+p—1, A4 =—Vp—1;

0"(W) = V1D | 22 {1, 1) — 7, dW) /247, | D) | 4}, 2g<u<i;
ST= {3,  if 0<r<om®/2, 71<0<1),

7= {} if 0<r,<om®/2,t}=0,0rr; =0,
7Y,<0<1, or r;=>pm°[2, 73>0,
2} = {l} if 0<r,<em®/2,7t}<0,0r7, =0,

1<0< 1y, or r,=>pm°/2, 71<0,
}=¢ otherwise.
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