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The spectrum
of periodic generalized diffusion operators

By

Matsuyo TOMISAKI

1 .  Introduction.

Some properties of the spectrum of periodic diffusion operators on the real
line were recently studied by N. Ikeda, K. Kawazu and Y. Ogura [3], [5]. As was
shown there, the spectrum has the same structure as that o f Hill's operators.
Namely, it is expressed as a  countable union of closed intervals [ii;», n > 0
with a  sequence — c c  < f i v)< / t p < 1 42)<  < 4 ) < / 4 2 ) <  t  c o . But periodic
generalized diffusion operators present a little different spectrum. M.G. Krein [6]
proved that, for a class of periodic generalized diffusion operators, the spectrum
is expressed either a s  U o[it (n2 ) ,  gill+ 1 ]  in terms of an infinite sequence as above,

01 [A (. 2 ) 4 1 2  i ]or as U in terms of a finite sequence — D o  < A (02) < < A p <

<,uVl i <14,3 ) <00 ; in particular, if the operator is associated with a periodic discrete
measure, that is, if the operator is reduced to a  periodic second order difference
operator, then the spectrum has the latter expression. These observations suggest
that the spectrum periodic generalized diffusion operators has a structure similar
to that of Hill's operators or that of periodic second order difference operators
according as the support of associated measure intersects a bounded interval with
an infinite set or with a finite set. O u r first aim is to show that this is valid for a
class of periodic generalized diffusion operators containing Krein's operators as
well as periodic diffusion operators.

The results for periodic diffusion operators by N. Ikeda, K. Kawazu and Y.
Ogura also tell us that the spectrum consists only of the continuous spectrum and
the point spectrum is empty as long as the operators are treated on the real line.
On the other hand, if we deal with the operators on the half line, both the continuous
spectrum and the point spectrum are nonempty in most cases. E.A. Coddington
and N. Levinson have already pointed out in the book [I] that, for a boundary value
problem of second order differential operator, the spectrum depends on the boundary
condition, and the continuous spectrum and the point spectrum are nonempty.
Further, W. Ledermann and G.E.H. Reuter [7] studied a class of birth and death
processes and also obtained the analogous results for their generators which are
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second order difference operators. Their works interest us the problem how boun-
dary conditions affect the spectrum . Our second aim is to clarify it for a class of
our operators restricted to the half line [0, co) with sticky elastic boundary con-
ditions at O.

O ur to o l is  a n  eigenfunction expansion, known a s  Weyl-Stone-Titchmarsh-
Kodaira theory [10]. W e have also to recall the spectral theory o f generalized
diffusion operators due to  K . Itô and  H .P. McKean [4], [9]. Their arguments
enable u s  to generalize Weyl-Stone-Titchmarsh-Kodaira theory developed for
second order differential operators to our general case.

In Section 2 we will describe precise definitions and state our main re su lts . The
first theorem is related to the discriminant. We will see there that the discriminant
has a finite number of zeros if and only if it is associated with a periodic difference
operator. In Theorem 2 we will give the precise formulas of spectral measure den-
sity functions of our operators on the real line and in Theorem 3 their asymptotic
behaviors near the points ,uV ) mentioned above. Theorems 4, 5 and 6 are devoted
to  our second aim . The continuous spectrum of operators restricted to the half
line is independent o f  boundary conditions, but the spectral measure density
functions are naturally affected by them (Theorem 4). The asymptotic behaviors
of the density functions near the points ,u;» can not be also independent of boundary
conditions (Theorem 5). Neither can the point spectrum (Theorem 6). We will
prove Theorem 1 in Section 3, Theorems 2 and 3 in Section 4, and Theorems 4, 5
and 6 in Section 5, respectively. Some typical examples will be given in Section 6.

The author would like to thank Professors Y. Ogura, S. Watanabe and S. Kotani
for their valuable suggestions.

2. Definitions and main results.

2 . 1 .  Let s, m  and k  be real valued functions on the real line R satisfying the
following conditions:

(2 .1 ) s is continuous increasing,

(2 .2 ) m is non-trivial right continuous nondecreasing,

(2 .3 ) a )  k  is right continuous nondecreasing, or

b )  k  is right continuous, dk  is absolutely continuous with respect to  dm

and the Radon-Nikodym density is bounded,

where dm and dk  stand for the measures induced by m  and k , respectively. We
may assume s(0)=m(0)----k(0)=0 without loss of generality. We denote by D(3)
the class of functions u e L 2(R , m ) such that there exists the derivative u+(x), of
bounded variation on compact intervals of R, and for some hu L 2(R, m)

(2.4)I  h (x )d m (x ) u±(b)—u+(a)—  I u (x )dk (x ) , a, b E R  ,
a+ a+
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where u+(x) is the right derivative of u(x) with respect to s(x), that is,

u ÷ (x ) =  ii m  u(x+h)—u(x)
1, 4• 13 s(x+ h)— s(x)'

(b.of(x)d e(x) fo r  a> b .

Then the m ap 6 :  u(ED(0))1—• h u is  c a lle d  a  generalized diffusion operator on
R (cf. [4]). 6  is obviously reduced to a second order difference operator if m  satisfies

(2.5) -(Supp (dn i)n  (0, 111 = N< 0 0 ,

and k satisfies (2.3.b).

W e now  assume th a t 6  is periodic with period 1, tha t is, 6(u(• +1))(x)—
(0u)(x+1), x E R , for every u such that both u  and u(• +1) belong to D (0 ).  In
the same way as in [3], we can see that this property is equivalent to the following:

(2 .6) There is a positive p  such that for every x, y E R
s(x+1)— s(y+1) = ,o(s(x)— s(y))
m(x+1)— m(y+1) = p - 1 (m(x)—m(y)) ,
k(x+1)— k(y+1) = ,o'(k(x)— k(y)) .

63 is called a periodic generalized diffusion operator provided (2.1), (2.2), (2.3) and
(2.6) are satisfied.

We next consider the restriction of 63 to  the half line [0, 00) with the
sticky elastic boundary condition at 0. Let r' be the collection of triplets (T i,  12 , 13)
such that r1=r2=r3-1=0 or 7-1 1 2 = 1 ,  r 3 E R .  For each r r2, r 3) e F
we define the measure n A d x ) — r l a c o ) ( d x ) + 2 ' ( O , - ) ( x ) d m ( x )  and denote by D (6 1 ) the
set of all functions uEL 2(R + ,  m )  having the property that the derivative u±(x)
exists and is of bounded variation on compact intervals of R + , and satisfying (2.4)
for some hu EL 2(R + , ni7 )  and for every a, bE R + a s  well as the following bound-
ary condition (2.7).

(2.7) r1h.(0) = r2 0 - (0)—r3 u(0) .

6 1' is the map u(E D(W));---> hu .

2.2. Let çoi (x, 2), xE R , A EC, j= 1 , 2 be the solutions of the integral equa-
tions

a+
soi(x, (s(x)— s(Y ))94Y , 2 )( --- A dm(Y )+dk(Y ))o+

x+
50 3(x, 2 ) (s(x)— s(Y))TAY, 2)(-2dm(y)+dk(y)).0+

and the integral is read as

6 +
f(x )d e(x ) fo r  a< b ,

( ,b]
f(x )de(x )—S a+

(2.8)
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Note that the Wronskian of sp, and ço2 is equal to 1:

(2.9) 94x, 
2
)S4(x, 2)502(x, 2 )  = 1

We define the functions 4 and D by

(2.10) 4(2) Pi( 1 , 2 )4 - psol(1, A ) ,  D (2 )  = 4 2(2 )— .

4 2 )  is called the discriminant following the terminologies in the theory of Hill's
operator. We also define the following sets:

{ E R : D (2 )0 }  , S* = {A G R : D(2)<0},

S, P E R :  (1, 2) = , S2 = {2 eR: 992(1, A) = .

Now the following assertion is well known in the case of Hill's operators.
Further, the result corresponding to the case of that s(x)=x, k(x)._=.0 and p =1  is
obtained by M.G. Krein [6].

Theorem 1. Assume (2.5) with some N N. Then there exists a finite sequence
_ c o  = "t (0" ‹  i t (0" < / w) < l e <  •,, < < 1 4" < „. < t t v) i < 4 > < f i g) .  s u c h  t h a t

(2.12)

4(2)>2\/ P i f  2  0 4 ,1),  / t reys ,)  and n is zero or even,
4 (A )<-2 / if  2  G  ), 4 )), and n is odd,
42 ) = 2-V—p if  A = /4 0 ER , n is zero or even, and i=1, 2,

42)—  — 2.\/—p i f  2 =  14,0 ER , n is odd, and i=1, 2.

In the other cases, there exists an infinite sequence —00=14' ) G,42 ) </4 1) <,u (? ) <•
< 4 . )  / i v ) <„, t which satisfies (2.12).

The following notations are used frequently.

I = if-PIGN: uW ) <,d,,2 1,
2 -1 = =  — 0 0 , 20 =
22J+k = m in N i

le) : 2,1<,14 ) < n E N I, j>  0, k = 1, 2 .

Clearly l < I < 00 and 21s are defined for j G [— 1, 21] n Z. It follows from
Theorem 1 that 1<N  and 22,— 00 in the case of (2.5); 221+1< 00 or lim1 + .2 1 =/= 00
in the other cases. Namely

(2.13) S U [22;, 22;1-1]i=0
in the case of (2.5),

(2.11)

(2.14)
I - 1

S = U [ 221, 2 21+11U [22/, 00), o r  U 22J+il1=0 .J=0
otherwise.

2 .3 .  A s was mentioned in  § 1, Weyl-Stone-Titchmarsh-Kodaira's theorem
[10; Chapter 5] combined with the spectral theory of generalized diffusion operators
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due to K. Itô and H.P. McKean [4; § 4.11] is still effective for our operators. We
summalize it.

For 2E  C\R, there exit the limits f 1(2), j=1, 2:

f1(2) = —lim ço i (x, 2)15o2 (x, =  —lim çoiE(x, 71)/pt(x, ,
(2.15)

f 2 (2)  = —lim ço,(x, 2)/p2(x, —lim çoif(x, 2)1(p-
2
1-(x, 2) .

cott

We set

f l i (
2

)  1 I UP) — f1(2))
f12(2) f n ( 2) f 2 ( 2)1(f2(2)— f1(2))
.fn(2) = 2).12(A)1 U (2) — A(2))

Define a i k (u), j, k =1, 2 on R by

(2.16) a i k (u2)—  i k (u ,) =-- f i k (u+N/ —1v)du ,
r g ,

u1< u2 , j ,  k =  1, 2 ,

and denote the induced Stieltjes measures on R  by d ap ,. The matrix valued
measure [dai k ]; ,4 _1 ,2 is the spectral measure of O . Weyl-Stone-Titchmarsh-Kodaira
theory in this case tells us that for g E L 2(R, m),

g (x )= R  ç' /x, u)(
R  sak (y, u)g(y)drn(y))da i k (u) .

We now set

0 11(u) = 2 1 20, , 0 22 (u) = 2P IPiF (1 , n)I
0 12(u) =  21 (u) = P PI (1, n) — PAL 11)

1+
ro (n )  = 5°3- (x, 14)993_k(x, u)dm(x) , j ,  k  = 1, 2 ,

o+
1+ 1+ 1+ 2

T (u) = I 971(x, u)dm(x) u)dm(x)— çoi (x, u)P2(x, u)dm(x)) .
o+ o+ 0+

The following theorem gives us the spectrum of G.

Theorem 2. The spectrum of (8 is continuous and coincides with S. The spectral
measures da i k , j, k = 1, 2 are  absolutely continuous with respect to  the Lebesgue
measure in  S . T h e  densities p i k  are  continuous in the interior o f  S . M ore
precisely they are given by

(-1)n (j+k) 0 ik(u)12xV  I D(u)I,(2.17) Pik(u) = -(-1)i÷kT i k (u)/27VVW (u),
u;,2)<u<41+1, n> 0 ,
u E  g \S *  .

The following is immediate from the first assertion of Theorem 2 combined
with Theorem 1.
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Corollary. The sp e c tru m  o f 63 is  b ound ed  if  and o n ly  i f  the set Supp(dm)n
0, is finite.

Next we study the asymptotic behaviors of ,oi ,  near the points /V .  Note that
/41 )  §  impliesp s 1 n S , (see the proof of Theorem 3 in § 4).

Theorem 3 .  L et ,u=,u (P E R \S , n >0 , i=1 , 2. T hen  it ho ld s as u-->p, uES '
that for j, k =1 , 2

(2.18) Pi/A) =  C  jk lu -  /218-ik + 0 ( 1 1 1 -  81k+1)

w here C ik=C ik (P)  and 8.0 =3 .0 (u) are given  by

( - 1 ) ( n + i ) ( i ÷ " 0  0(1014 7rP1 4 V  I
 4 '  Cu) 1,c ; kw

PI 4 7 JAP)127, ./  I d ( i t )  ,

aik(u) = { 
—1/2 , ,w$S3_JUS3_k,

(2.19)
1Pii(x, 2) = 2T i(x , 2) - 0- 12—  rOvAx, 2)

ifr(x, 2)  =  {(r12—r3»1(x, 2 )d- r292(x, 2)1/ { I r12 —r3 I 2 + r2}.

Then there exist the limits

117(2) = lim 1,4(x, 2)11,b (x , 2) = lim 14 4
- (x, 2)11k1+(x, 2)

for 2 E C\R . Obviously it holds by (2.15) that

(2.20) IOW =  {(r r Ofi(2)— r2} fr2fi(2)+ r12—  r3} r 12— r3
 12+

 r2}

Define the function e l  on R by

(2.21)
1

0701
2
)--- C (U

1
)  =  - lim

u 2  

902 /77 (,1+  - 1 v)du , u,<u, .
r  v 4 .0 u ,

We denote by d a l  the induced Stieltjes measure on R, which is the spectral
measure of 6V. Weyl-Stone-Titchmarsh-Kodaira theory leads us to the spectral
representation

g(x) u )(
R+ 

*T(y, u)g(y )e(dy ))dal(u)

for g E P (R + , my).
Now let / / , X); be the spectrum, the continuous spectrum, the point spec-

trum of 637, respectively. Notice that the residual spectrum of OP is empty.
We are first concerned with the continuous spectrum.

itEE S 3_ jU  S ,

ILE  S 3_ jU 53_k  ,

1/2,U  S 3 _ k

2 .4 .  For each r  = ( r1 , r2. r 3 )E r  we define the functions 14(x, 2 ) , x E ll + ,
2 E C ,j= 1 , 2 :
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Theorem 4. 1) =S  f o r every T e r .  2) The spectral measure dal is abso-
lutely continuous with respect to the Lebesgue measure in S. T h e  density function 1,1

is positive continuous in S , the interior of S , and for r— (r1, r 2, r 3)E r  it is given by

(2.22)

i9'2(I, .\/ D(u)l 
P 1 ( 1 1 ) —  22r-({*1(1, 11) —  r2,61(012 12+r2 ID(u) I /4}

Wii(u) .VT (U ) 
Pl(U) {{(riti— r011 (0 —  r27112 MI 2 +  r271 (u)}

W e next observe the asymptotic behavior of pl(u) as u E g  tends to  
A .

 I t
should be noted that for each j e [ - 1 ,  21] n z there exists the limit

lirn A (A) = A  ,
x÷kbxeR\s

and A is given by

--1
— Oopi-2(x, 0 )ds(x ))  , i f  j =  —1, or (2.5) holds and j =  2/,

(4 (A1)/2 - 501(1 , 2 i))19)2(1 , 2 ;) , if 2 i s2
+ 0 0 , i f  j  is even and 2; e 5 2
— 00 i f  j  is odd and S2

where a=inf{x>0: m(x)>0)- and —c - 1  is understood to be 00 for c=0 (see the
proof of Theorem 6 in § 5). We put

r12 J- Fr2Ai— r 3 (e [ — ..,

for r=(r i , r2, r 3) E r  and j  E [— 1, 2/]c Z , where 0. co =0 • (— 00)=0.

Theorem 5 . Let 2= k i <c>0 , j n Z  and r=(r i , r 2 , rD e  r .  Then

(2.23) pl'(u) = C  ju - 2 r+O ( Iu - 2 1 8 +1) as u  --> 2, uG § ,

where C and S are constants depending on A and r  given as follows:

C = I s (2 ) 1112 / 1,(2) , 5 = -1 /2 , if  A S  and r2 = 0 ;

C  = P l " W11(2 x I Z r (2) a = 1/2,i f '  2 E S 2 and 7-2 =1;
C lip2 (1, 2)1 I r p114 if (2)1 1 1 2 , = —1/2 ,i f  2 € E S 2 and 1-1

;  =0 ;

C = p 1!4 lp2 (1, A) I I 4 '(A)1 1121x tiFf( 1 , 2) -  7-
2 4(2)12)-2 , 5 = 1 / 2

i f  2 $ S 2 and 2-1, *0

Finally we turn to the point spectrum . As is clear from Theorem 4 with (2.13)
and (2.14),

V ifcR \S— U G .i,r e f ,
j=0
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where G1 =(2 2 1 _1, 22 1), j O. Noting that A 2 1 _1 4 A 2 1 for every j [0, n z (see
the proof of Theorem 6 in  § 5 below), we have more precise result. For each
j  n z we set

61 =  (A21-1- 4 )/ ( 2 21- 2 21-1),

where c/o° =0 in the case of c*O.

Theorem 6 . L et je[0, n n Z and r=(r i , r2 , r3)e r .
1) Assume A2 1 _1<A 2 1 . Then V'pn G. consists of a single point prov ided r_ 1 <0 <
z ; , and is empty in the other cases.
2) Let A 2 1 _1 >A 2 1 . I f  r i >e;  and rl ;_i<0<rli, then V;(1G ;  consists of two points.
I f  o<r,<e ;  and  4 ;<0 <z -1; _ i ,  then vp n G;  is em pty . In the other cases, E lp n G.;

consists of a single point.

In  the proof of above theorem we will also find that — co <A _,<A o < 00.
Hence we get immediately

Corollary. Let 27 be the principal eigenvalue of  OY, that is, 27 =min V .  Then
27 belongs to V; if rl1<0<z - Z, and to V; otherwise.

Further, Theorems 1, 4 and 6 assert

Corollary. The spectrum of Or is bounded if  and only if  the set Supp(dm) n
0, 1] is finite.

3 . Properties of the discriminant.

In this section we prove Theorem 1. We sometimes denote

ço;(x, 2) = ap ; (x, 2)102 , 9 .7 (x , 2 ) = 82çoi (x, 2)1822, e tc .

First we note the following equalities which are proved in the same way as in
[2; § 2.3] or [8: § 2.1]. For ae R  and j= 1, 2

C a+
(3.1) Wi(ci, 2 )  =  )  {501,x(a)S02,x(x) - 502,x(a)Pi,x(x)}50 ;,x(x)dm(x),0+

a+
(3.2) l'(a, 2 )  = {Soi,x(a)502,x(x)— PZ.),(a)501,,,(x)IP;,x(x)dm(x),o+

.
a +

(3.3) 97(a, 2 ) = 2  j  {5° 1 )Sa )P2 X(X)—(P2,n(a)P1,X(X)} din(X)
0+

XS {so ,x(x)502,x(Y)—  Wax» i.x(Y )}  0 f,x(Y)dm(Y)
0+

a+
(3.4) P .;" ( c l ,  2 )  = 2 {§9 i,x(a)P2,x(x) - - 54,),(a)çoi,x(x))- dm(x)0+

X
 X  +

{ 501.2,(x)502,x(y)-502,x(x)501,x(y)}50;,x(y)chn(Y),
0+
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where çoi ,,,(.) =5o; (•, 2) and ço;a(•)=54( • , 2).
By means of these equalities we can repeat the standard argument for Hill's

operator to get some properties of the discriminant AA) (cf. [2; Chapters 1-3], [8;
Chapter 2]). We list up them without proof.

Lemma 3.1. 1 )  4 (2) is an entire function. 2) There exists a real number A ,
such that 4(2)>2V p for 2 <p 0 . 3) A ll roots of the equation 42(2 )-4 p =0  are real
and lie in the interval (po ,  0 0 ).  4 ) If  4 (g )=2 V  p  and tl'(,a)-_<_0 f or some
then 4'(2)<O for all 2 >it  such that 4 (e )>-2 .\/  p , e e C a, 2 ]. Similarly, if 4 0 0 =

p  and 4'(,u) 0 for som e A G R , then 4' (2 )>0  f or all 2>ii such that zi(e)<
2\/ p, e e(,a, 2].

We next give a  remark on the zeros of the function ço2 (1, 2), 2 e C .  In the
following we set /=(0, 1), and /„,=Supp(dm)11/.

Lemma 3 .2 . 541, •) is a positive constant if 4 , - 4 .  941, •) has k  zeros — 00<
e i <e 2 <•••<ek <00  if 0 „,=k , a countable infinite number of zeros — co <e i <e 2 <•••
<e n < ••• t 0 0  otherwise.

Pro o f . 1) Assume 4 , - 0 .  Then (2.8) with x e i [0 , 1 ] is reduced to

V 2(x , 2) = s(x )+ 1 ÷ (s(x) — s(Y))50 2(Y, 2 )dk(Y ) •o+

Therefore ço2(1, 2) is independent of A and the condition (2.3) yields yo2 (1, 2 )>
s(1)>0.

2) Let I„, *  0 .  Fix a  real number a  such that çoi (x, a) and ço,(x, a) are positive
increasing for x (0, c o ) .  W e  put

SA) = 502(x, a) , 82 (x ) =  4 01(x, a) — (P1( 1 , a)/502(1 , a))S02(x, a),

G(x, y) = G(y , =  g l (x)g,(y), y .

Note that g1(0)=g 2(1)=0, and g 1[g2] is increasing [resp. decreasing] on Ï. Define
the operator G by

G f (x )= G (x , y )f (y )dm (y ), x G Ï , f  E L 2 (I, m ).

For everyf EL 2(/, m ), Gf(0)=Gf(1)=0 and Gf(x) is continuous in x Er. Further
Gf(x) satisfies the following

r x+
(3 .5 ) Gi(x) s ( x )  g2(Y)/(Y)dm(Y) —

)  ( s ( x ) — s(Y ))f(Y )dm(Y )o+
x+

(s(x)— s(y))Gf(y)(— adm(y)+dk(y)), x e.T .
0+

We will prove that Gf(x )=0 m — a.e. x EI implies f (x )=O  m — a.e. x E.T . Fix an
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a E l  and put b = su p lx : 0<x <a, m (x )<m (a)}  , c=inf lx : a<x <1, m (a)<m (x )} .
Note that Gf(b)=Gf(c)=0, that is,

b+ 1+ b+ 1+
g ,(b )  j g i f dm +g i (b) g 2 fdm  = g 2 (c) g i fdm +g,(c) ‘f g , f d rn  =  O.

0+ b+ 0+ b+

It is trivial that Gf(a)=0 provided b = c .  Let b< c. S ince g,(b)g,(c)<g,(c)g,(b), we
b+ 1-F

get g i f d m = i  g 2f dm =0, and hence
o+ b+

b+ 1+
Gf(a) = g2 (a) 0 +  g i fdm + g 1( a )  0 +  g,fdm  = O.

a  being arbitrary, we obtain Gf(x) -17 0  on Ï. Differentiating both hand sides of
(3.5) with respect to s(x), we see that f (x )=0 m — a.e. x I.

Obviously G induces a positive symmetric operator Ô of the Hilbert-Schmidt
type from L2(I, m) into itself. F rom  the above observation Ô has exactly k  positive
eigenvalues with multiplicity if I „ ,= k ,  a  countable infinite number of positive
eigenvalues, which have no point of accumulation except 0, otherwise.

We next verify that there is a one to one correspondence between zeros 2 of
9.2 (1 , •)  and eigenvalues j9 of 6, and the correspondence is given by 2=a+1/9.
Assume w

2
(1, 2) = O. S in c e  ço2(1, a)> 0 ,  we have 2 * a .  By the definition of

the operator G  and by (2.8), we get that Glo,,x (x) —  ço2,x(x)/(2— a), x E Ï ,  where
ço,,,(x).= 42),(x , 2). This means that 1 1(2 a) is  an eigenvalue of O . Conversely,
let 19 be an eigenvalue of Ô and f  an eigenfunction correspopnding to it. It should
be noted that f  has a  continuous version f  on /  satisfying Gf(x) —  f (x ), x E I .

By virtue of (3.5), h(x). f ( x ) 1  g , f d m  satisfies the integral equation

Ii(x) s ( x ) + : ÷
+ (s(x)— s(y))h(y)(— (ce+11,8)dm(y)+dk(y)) .

This integral equation has the unique solution. By (2.8) the solution is identical
with 502(x, a+11,67). It follows from h(1)=0 that 502 (1, a+ ih9)=o, i.e. a+1119 is a
zero of 502(1, •).

If ço,(1, 2)=0, then by (2 .9 ) Pi(I, 2)54(1, 2)=1, and hence by (3.1),

(3.6) p ( l ,  2) = ço,(1, 2) ço(x, 2)dm(x)*0 ,
o+

from which zeros of w
2
(1, 2) are simple. Thus we get the assertion of the lemma.

q.e.d.

Now we are ready to give

Proof of  Theorem 1. We first note that 1im _00 4(2)=- cc and 0<lim , ;  _0.502 (1, 2)
c o .  Also by (2.9), (3.1), (3.2) and (3.6)
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1+
502(1, 2)4'(2) = — 1 { 1 02(1 ; 2 )501(x, 2 )— (5 ( 1 , 2)— p.9, 1 (1, 2 ))502(x, 2)12)- 2 din(X)

0+

+(p ( 2 )14)
o +

 ço(x, 2)dm(x)<0 , if 14(2)1  < 2.\ /  P ;

9q 1 , 2 )4 (2) = (94(l , 2)+ ) 503(x, 2)dm(x)>0 , i f  ço
2
(1, 2) = O.

o+

If Supp(dm) n 0, 1] contains a countable infinite subset, then the assertion of the
theorem follows immediately from Lemmas 3.1 and 3 .2 .  When m(x) satisfies (2.5)
for some N N, by means of (2.8) we get easily that

(-1)N (d N Id AN)y o i (1, 2) 0 , ( d k Id 2k)çoi (1, 2) = O,

( - 1 )N (d N  Ic12/v)90A L  2) >0 ; (d kid 2/950-A L  2 )  = O,

for j =  1, 2 and k > N .  Hence 4(2) is a polynomial of degree N .  (This fact has
already shown by M.G. Krein [6] for the case that s(x )=x , k (x ) 0  and 0 =1.)
Therefore the assertion of the theorem follows from Lemmas 3.1 and 3.2 in this
case, too. q.e.d.

Finally we observe how the points of Si and S , defined by (2.11) are distributed.
By using (3.1) and (3.2) we see that if I 4(2)I <2.\/ p , th e n  ç (1 , 2 )4 '(2 )>0 . Since
by (3.7) wi'(1, •) is a polynomial of degree N  in the case of (2.5), Lemma 3.1 coupled
with limx l —ç9t(1, 2)= Do tells us the following result, which is also well known in
the case where 3  is reduced to a Hill's operator (cf. [2; Theorem 3.1.1]).

Lemma 3 .3 .  S ,U  S ,C R \S * . S 1 fl (— oc, 2 0]  consists of  a single point and
n 20] is  em p ty . 94(1, 2) and W2(1, 2 ) > O. Fo r each  j= 1, 2, s i n

k41), fi n  consists of a single point for 1<n< N — 1 if (2.5) holds, for n G N  otherwise.
n [22 , _ 1 ,  0 . . ) = 0  if  (2.5) holds. Further, w hen (2.5) is satisfied, S, n [22 ,_,, is

empty or a one-point set according to l e Supp(dm) or 1 Supp(dm).

4 .  Spectrum of periodic generalized diffusion operators on the real line.

The aim of this section is to prove Theorems 2 and 3.
By the same argument as the standard one for Hill's equations, the equation

r2-41(2)r±p = 0

has two distinct solutions r 1(2), j= 1, 2 with 0<  I
 r 2 ( 2 ) I I  r 2(2) I for 2 E C\S  (cf. [5;

§ 2]). We note that the functions ri (2) are both analytic in C \ S .  For 2 E 5 , we
put r i (2)=Iim 1.,,r ; (2+ y ) ,  j=  1, 2 conventionally. It is easy to see that the
analytic continued Do(2) satisfies

{  (-1) n I D(2)1112, /41><2</42),
urnDI/2(2+V— 1 y) =
•40 — 1 (— 1) l 1  D ( 2) P(,.2)< 2 < 41 )

(3.7)

This implies
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(4.1) lim r ; (2+  — 1v) =  ( 4 (2 ) - F \,/ —1 (— 1 ) l ' D ( 2 ) I )/2 ,
v40

(2 ) (1 ) •f i n  < 2 <ttn+i, 2-

Further we note that for 2 E R  with 4(2)>2VP[4(2)<

(4.2)r ( 2 )  =  { 9 1 ( 1 , 2)+ PPif  (1, 2) (— D(2))- 12 >0

[resp. r3 (2) = 194 1 ,  2 )+ .0 50-1(1, 2)+( - 1) ' /D(2)}/2<O]12<0] .

If 2 E R and çoi(1, 2 )1;02(1 , 2)=0, then by (2.9)

(4.3) D(A) = (P(l, 2)— pço -2' (1, 2))2 0

and hence

(4.4)
r2(2) = 54 1 , 2 ), r1 ( 2 ) =  P551( 1 , , if 1T1( 1 , 2)1 1P50-2E(1, 2 )1.

We can also easily show the equalities in  [5; (2.10)] in our case, and so we get by
(2.15)

r 1(2)— p1(1, 2) Psoi(1, 2 ) 
(4 '5)f i ( 2 ) P2(1, 2 ) — r ;(2 ) — P P (l, 2 )

Since /Is are analytic in  C\S, both f i 's can be analytically continued through
RVS U S2), which we denote by f i  again.

Proof of Theorem 2. It follows by the same method as [5; Lemma 2.3] that
the spectrum of 3  is continuous and coincides with S .  Also, by [5; (2.14)], which
is valid in our case,

lim Yotii1(u+ .\/-1 y) = 502(1, u) lim f r , (u +  --- Y)—r i ( u +  —
1 0}v4.0

and the limit is uniform in u on each compact set in S .  It follows from (2.16),
(4.1) and the fact ( — l ) ç 2 ( 1 ,  u)>0, ,11(.2 ) <u<i4 1+1 that P11(0=19)2( 1 , u)l/rVI D(u) I
for u e S* . Similarly the other formulas pp , with u E S*  follow.

Let ,ueS\S* , i.e. it---441 ) =,14,2 ) fo r some n E N .  Then soif (1, it)=w2(1, ,u)=
S(A)=0 and

(4.6) ri(g) = 91( 1 , it) = =  (-1 ) nr01/2, j  = 1, 2 .

Then it follows from (3.3) and (3.4) that

zi"(A) = — 4 11) 7 (11) D A t t )  =  —801 00 .

This implies

(4.7) I D(u)1 1/22 ( p W ( a) ) 112 1u-- pi - 1- 0(04 - 4 ) , u —> p, u e S .

Further, by virtue of (3.1), it holds as u-->p, u E S * that

r1(2) = 2) , r2 ( 2 ) =  PpI(1, 2) , if 1P1(1 , 2)1 . 1PS0 1( 1 , 2 )1;

j  = 1, 2 .
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(4.8)
492(1 , u) = it)r11(,u)(u—,t0+0((u—A02)
P P , u) W1(1 , /2) +501(1 , it)F12(j1)(u— ,u)+ 0 ((u— A)2) ,

Also, by means of (3.2), as u— >,u, uES * ,

991- (1, u ) = — 4 ( 1 ,  AA/  22(1)(u—  10+ 102) ,
u) = 9;4(1, / )- 54 (1, ,u)7 12(2)(u— ,u)+0((u— ,u) 2) ,

whence the formulas pp , with u e \ S *  follow. q.e.d.

Proof of  Theorem 3. First we note that if ,u = i 4 1 S 1  (1 S2, then (3.1), (3.2) and
(4.6) imply 4r(u)=0 and 4 ) = 4 ) , i.e. ,uG § .  Hence 4 ) G,§ implies u» S n S2*

Let ii= i4 S1fl S2 and 141 ) < iz;,2 ) < 00. Note that (2.9) implies in general

(p (l , 2)—pg4(1, 2))2 = D(2)-4pçoif (1, 2)541, 2) .

Hence we have 9,(1, 11)— ,ct)* 0  in this case . We also note that

d (u )* 0  ,
I D(u)I 112 = 2p 114 I 4'01)1 0 1 u— I.L1 112 + 0(1 u — 1 312) ,

as u —> tt, u . Then (2.18) is clear in this case.
L e t  =1.41) e SAS, and ,a(.1 ) .<  (112 <  0 0  . Then (4.6) and (4.10) follow. Hence

by (2.17) and (4.9) we get (2.18) again.
Let ,u=,10ES 2\SI and ,u41 ) <,u;,2 ) < c o . In this case, we have also (4.6) and

(4.10). Hence (2.18) follows from (2.17) and (4.8). q.e.d.

5 .  Spectrum of periodic generalized diffusion operators with sticky elastic boundary
conditions.

In this section we show Theorems 4, 5 and 6. In the following we fix a triplet
= (r i , r2, r3) E r .  Let us put

AI =  {2 e R :  12 - r3)0 1 , 2 )d-r2P*r(1, 2) 0 }
= {2 E r21/4(1, 2)+(1 -r2)Pikr(1, ;(2)} j  = 1, 2 .

It is easy to see that Al= AT U Al. Further we note

Lemma 5.1. 1) A/cR\S * . 2 )  r p =A A S .

Pro o f . 1) Let 2 E 41/. If 9,'(1,2)(p2(1, 2)=0, then 2 belongs to R\S * by (4.3).
Assume pt(1, 2 )* 0. Then the real pair -(7-12— r3 , 7-21 solves the equation

(5.1) 12 - r 3) -s1,1(1 , r 2P*I+ (1 , 2)

r2PPi( 1 , 2 )+(7- 12 — T3)r2(P1(1 , 2 ) — Pç4( 1 ,
- ( r la -  r 02502(1 , 2) = o .

(4.9)

(4.10)
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Therefore the discriminant is nonnegative:

Go (l , 2)—p4(1, 2))2+4pçot(1, 2)p
2
(1, 2 )> 0 .

The left hand side coincides with D(2) by means of (2.9), which yields 2ER\S * .
2 )  First of all we note that V ;c R \ S .  Indeed, if  2 E S , then by means of [5;
(2.9), (2.10)] a non-trivial linear combination of w1(x, 2) and ço,(x, 2) is written as
prn .feV-101X(1 f iX )p i(X )+  e ov,(x))- , where a and 9  are real numbers and pi (x)
and p2 (x ) are periodic with period 1. Hence there are no linear combinations of
çoi (x, 2) and ço,(x, 2) belonging to L 2(R + , rn'). Consequently 2 EZ7,.

We now also get by (2.20) that

—f1(2)—r12 +r3

(5.2) r 1( Ir32—r31 I fl( 2 ) I 2) 
fi(2)-FrIA— r3 12(17-32—r31 2+1) 

y m  2 , i f  r 2 =  1  ,

904 hY(2) =  Ymf,(2) , if 7-2 = 0 .

Suppose that 72 - 1 .  Then, by (2.21) and (5.2), V; coincides with the set of all
poles 2 of the function (A(2)+7 12-70 - 1  in R \ S . Incidentally, let 2 e  /PAS. Then
by (4.5)

0 1 ,  1)—r1(2) =  2 ) ( A ( 2 ) +  7-12— r3) ,

from which 2E V; provided ç22(1, 2 )* 0. But if  2(l, 2 )=0  and ço1(1, 2 ) =P50 -21-(1, 2 ),
then r1(2)=921(1, 2) and

(f,(2)+r,2—r 3)(ço,(1, 2)— pço1(1, A)) =  0 .

This gives 2 E 4  (4.3) asserts that 2 E S  i f  p 1(1, 2)—pço -
2
1- (1, 2)=941, 2)= 0.

Therefore we have A T \ S c  .  Tracing along the above argument reversely, we
have the converse inclusion. Thus the conclusion follows in this case.

Suppose next that 72 = 0 .  Then V; coincides with the set of all poles of the
function A (2) in R \ S . Let 2 eAT \s . Then w2(1, 2)=0 by (5.1) and r1(2)= W(1, 2).
Hence r2(2)=541, 2)4:r 1(2) by (4.4) and D (2 )> 0 . This implies 2E . The con-
verse inclusion is seen similarly. q.e.d.

Now we give

Proof of Theorem 4. 1 )  Let 2 E S * . Then .r1(2 )EC\R and 541, 2)e R\{0)-
by (4.3). Hence, by (5.2) lim 0 9m /77(2+ v ) * 0 ,  which ensures S * C Z Y . The
spectrum being closed, it then follows that S C X'''. This combined with the inclu-
sion Vp c  R\S proves S c .

Suppose next that 2e R \ S . Then we can find a neighborhood U(2) of 2 such
that r, is analytic in U(2) and r ,(e )E R  for e-E U(2) n R .  Hence either 2 is a pole
of HI or else lim 0 Yot h1(e+v-1v)=0, e E(2—e, 2+e), for some e > 0 .  This
means 2 Er re..

9m h/(2) =  9m 1
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2 )  Note that substitution of (4.5) into (2.20) implies

P (A) =  ( 112-13)(soi(1, 2)—r i(A))+ r 2992(1, 2)
{r 2 ( 1(I, A )— r1(2))— (r1A — r3)92(1, 2)1 { I 7-12— r 3 1 2 + r 2}

Hence, if uERVIV U S2), then we have

(5.3) lim Yefrt 111 (u+ V  — 1y) = lirn  p 2 (1, u) 9frpt r i (u+ V —1y) 
0 1V4(1, u) —  r2ri(u+ —  1 v)1 2 •

The limit in (5.3) is uniform in u on each compact interval in S .
Now the formula (2.22) with u  S*  follows from (2.21), (4.1) and the fact that

( - 1 ) 02(1 , u)>0 for 4 2 ) < u < ,14,121.
We next note that if  ,uE § \S * ,  i .e . ,u=14,1 ) =AV ) f o r  some n E  N , then

591-(1, ,a)= ço,(1 , 1.0= tl'(,a)=0. Further (5.1), (5.2) and (5.3) hold and A O= .0 ) 4 -
0((u—,u)2) as u--->,u, uE S * . Hence

94 1 , u)i D(u)
= 2(p3 (p)) 112 (—  O n  PP  12 )Y1 1104u —  ti)2 + 0 ( I u-- 1 3) ,

(Vri(1, 14) — 724042)2 + r 2 I D(u) 1/4
5cq(1, A){(r1ft — r2)T r2  12(11)} 2 + r2PT(P)}  (u—  102 + 0(1u —  tt 13)

as u—>/i, u E S * . These imply (2.22) for ue,§ \S * . q .e .d .

Proof of Theorem 5. Let ,u=2 ; < CO and j  E [0, 2/] (1 Z .  Then (4.10) follows.
We divide the proof into four cases.
1) Let 21E S2 and 1 2 - 0 .  Then (4.6) holds with an appropriate n E N .  Further
by (2.25), (4.8) and (4.10)

p ' (11) + 19 (1 , 11)1 P1"4 1 2T. (u )  u  i t  1 3/2+ 0 ( 1 u  f i 15/2)
7r5eq (1 A ) 1(u)(14 — A1)2+ ()( I I )

as u-->p, uE,§. This proves (2.23) in this case.
2) Let 2 E S2 and 1 2 = 1 .  Then Ikr(1, 4Ctt)12= O. H ence b y  (4.8) and (4.10)
it follows that

P.?(1 )
p114 I 4' (a)1112y i i (u ) I u 1312 + 0 (1  u  gl512 )

I 1 ‘ "
,0112 I 4 ' WI 114 It I + ° (111-  f i r)

as u—>it, tl E g ' .  This proves (2.23) in this case.
3 )  Assume that A;  Er S2 and . 4 = 0 .  In this case it holds that

*1(1, u ) - 4(u)/2 = 0 (  I u — i t  ) u—>u E S .

Hence by (2.22) and (4.10)

1S0
2
(1 , it ) I P1 1 4 I Z I' ( l i )1 1 / 2 1U— ote 1112 + 0 (1U— it 13 / 2 )

7rP1/2 14 ' (11)1 U — Al l ± ° (114 - 1 1  12)
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as u-->,a, uES and (2.23) follows.
4 ) Assume that AJ EE S2 and 4 * 0 .  Then 7 );(1, p ) —r24(i1)/2 O. Hence by (4.10)
the numerator and the denominator in (2.22) are respectively equal to

502(1 , A) I P1/4 I .41'(g) u— it 11/2+ 0(lu—,a1 3/2) , and

r(*1( 1 , r24(g)/2)2+ 0( I u— it  )

as uE g. This implies (2.23). q.e.d.

In order to prove Theorem 6 we need to see that /7s are tractable on RVS U S2).

Lemma 5 .2 .  For each 2 ERV S U S2) and j=1, 2

•

(5.4)f (2)( - 4 1 + 1  I
 r 3

-
1 (2 ) I r  {5 01(x, 2 )+./;(2 )502(x, 2 )12dm(x) •/D(2) o+

Proo f . Let 2eR\S2 and 4(2)>2 / 7—o . Then it follows from (4.2) and (4.5)
that

(5.5) fi(2 ) =  {—s01(
1 , a)+ p (1,(1, 2)+( - 1)1N / D(2)112502 (1, 2) .

Hence

f(2 )= [(-1 )l fr3 .- ; (2)T(1, 2)+r J (2 )Pror (1, 2)1
—.1)(2)V Doo(l, 2)11502(1, 2) \ /D (2 ).

By (3.1) and (3.2) the right hand side of the last equality coincides with that of (5.4).
In the case of that 1 R\S2 and 4(1)< - 2A/ P , (5.4) also follows in the

same way as above. q.e.d.

We now proceed to

Proof of Theorem 6. First of all we note that r2 =0 yields z.L_I=Tif ;
A2i and r 2 =1 imply 1-11 _1 <z-11 ; if A2i_i> A2i and r 2 =1, then 4 1 _1 r7

2 1 according
to

We divide the proof into six cases. In the following we denote by e i  the
unique element of S2 n [22 1 _1, 22 i ] if it is not empty.
1 ) Let 22 1 _1 < e i < 22 ;  < co  and r 1(Œ1) = ç'1(1, e i )  for some j  E n n N .  Then
r2(e ; ) = pg4(1, e 1)* ço 1(1, e i ). The second expression in (4.5) coupled with (4.4)
yields

(5.6) 11m  f1(2 ) = PSot( 1 , e ;)1{991(1 , e 1)—  W ( l ,  e ;)} ŒR •
k+t i ,), R\s

In view of (4.2)

(5.7) lim f 1(2) = A 2 ; _i e R  ,
À 25- 1

(5.8) lim A(2) = A 2 J E R
xtx2i
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It then follows from Lemma 5.2 that A(2) is continuous increasing on G1 ( ,2 21-1, 2 21)
and -  co< .  Hence the equation r 2A(2)-kr 12- r 3 =0, AEG;  has the
unique solution ulif and only if i ; _ 1 <0<r 1

2 ; , from which

(5.9) AT n {41'
,

4;_i<0<rif
otherwise.

2) Let 2 2 1 _1 <e i <A 2 i < 00 and r2(e1)=5o1 (1, e i )  for some j  ED, i] n N . Also
suppose .61(22 _,)=2V  p . Then by (3.1) and Lemma 3.3

992 (1, 2)<0 f o r  2E[22 ; _1, f 1) ,

W2(1 , 2) > 0f o r  2 E( 1, 22 11.

Further r1(e1)=p4 (1 , e1)<921(1, e i ). Hence it follows from the first expression in
(4.5) that

(5.10) lim A (2) = + co ,  limf,(2) = - oo.
Att.,

(5.10) is valid for the case 41(12 1 _1)-= - 2 / ,  t o o .  On the other hand, in view of
(4.2),

(5.11) lim f ,(2 )  = lim  f2(2) = A 2 1 _1 ER  ,
X  X 2 J -

lim f i (2 ) = lim  f2 (2) = A 2 / R .
I t t ? '21 X t X 2j

By virtue of (4.4) and the second expression in (4.5)

lim  f 2(2) = pipt (1, f .01 fçoi (1, e 1)- pv1(1, j ) } R .
x+er xeR\s

Thus Lemma 5.2 implies that -00<A 2 5 <A 2 1 _1<00  and e; > 0 .  The equation
r2f1(2) -kr12 - r3= 0 , AEG .; has two solutions 1;11, 142 provided r i >e ;  and
0<rl i , a unique solution i provided 1-1 >e 3 , (-1)k2-1 0, or 0 < r 1 <e 1 , (-1) k ek >0,
where k =2 j-1  or 2j, no solutions otherwise. Since AT n Gi = fe i l for 7-=(0, 0, 1)
in this case, putting

w e
 get

{41, 42}, i f  r i >e ;  and 1-1;_i<0<iii

(5.12) AT n G;  = ,
i f  7-1 >e 1 , (-1) k i l<0 , or 0 < n < e i  ,

(-1 ) 44 >0 , for k =2 j- 1  or 2j,

95, otherwise.

3) Let e1 =22 ; _1<A2 1 < oo for some j E [1, n N . We also assume 4(22 ; _1)=2 V -rd
It then follows from the assumption that ço

2
(1, 22 1 _1)=0  and

ri(221-1) = Vi(1, 22;-) = P4( 1, 221-) = P = 1, 2 .

Hence by using (5.5) and l'Hospital principle
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lirn f(A )l i r n  { — Ç(1, 2)+ ' (1, 2)— 4(2)21'(2)D(2) -112)- I2,ço(1, 2) .
"A2/-1

Note that çoi(l, 2 2 1_1)> 0 by (3.1) and 4 ( 2 2 1 - 0 4 ' ( 2 2 . ; - 1 ) > 0 .
 F u r th e r

D(2) 211(22;--1)1 (225-1)(2 —22;-1)+ 0 (2 — 22;-1) as 2  1 22;-1 •

Hence

(5.13) firn f 1 (2) = —00.
x442,1 _,

This is also true for the case 41(22 1 _,)= p . Clealy (5.8) holds in this case,
too. Therefore Lemma 5.2 again gives us th a t — 00<A 2 1 _1<A 21 < 00 • T h e re  is
the unique solution iJ of the equation r2A(2) -Pr12 — r3= 0 , 2 G o n ly  for rip_ 1 <0
< r l i . Hence (5.9) follows.
4) Let 22 1 _1<2 2 ; =e 1 < 00 for some j e [1, l] fl N .  Then in the same way as in 3)
we have —00 <A 2 J _I <A 2 i = 00 and (5.9).
5) We note by (4.2) and (4.5) that for 2<2 0

fr(1) = 2)/441, 2) + 2 P/502(1, 2)( 4 (2)+VD(2)) •

By virtue of (2.9) and b y  the fact 9,1(x, 2)=47)1(x, 0 ) for A E R  and 0 <x =
inf fx : x>0, m(x)>01, it follows that

V2(1, 2)/S01(1, 2) = 2)ds(x) --> TT2(x, 0)ds(x) a s  2 —  00 .

Therefore

Ern fi(# 0  = -  00.
A.;

Since 941, 2,) is positive, it follows from the first expression of f,(2) in (4.5) that

lim ji(2) = A 0 < 0 .
xtxo

By means of Lemma 5.2, — 00 <A_ 1<A o< 00 and the equation r 2 ji(2) -Fr,2 - 7-3 =0,
2 e G0 =( — co, 2 ) has a unique solution :).4 if and only if r/ 1 <O<T1

0'. Consequently
(5.9) with j=0  follows.
6 )  Suppose the condition (2.5). T h e n  w e  have b y  (4.2) and (4.5) th a t  for
2 > 221-1=1.1 (N )

fi(2) 2)/s41, 2)+2/972(1, 2)(4(2)+(-1)N vD (2)),

J(2)P P I  ( 1 , 2 )14'2(l ,  2 )± 2 P1502(1 , 2)(4(2)+( - 1)N  N./ D(2)) •

In the same way as in 5),

p2(1, 2)/501(1, 2) —›  Fçoi- 2 (x, 0)ds(x) a s  2 f 00

from which lim, t _f,(2)=A v e R .  W e should notice that r =00 in the case of
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r1 >0, and also that 61 = 0 .  On the other hand, since the function g(x). - g); (x+1, 2)
solves the equation

x+
g (x ) = g(0)+g -1-(0)s(x)+ (s(x)- s(y))g(y)(- 2dm(y)+ dk (y)) ,

o+

we have

991(x+ 1 , 2) = 50j(1, 2 )501(x, 2) + P 0 ( 1 , 2 )P2(x, 2), j  = 1, 2 .

Then the substitution of x = -1  gives us

Pi( - 1 , 2 ) =  PAL 2 ) , 5 02(- 1 , 2)  =  - PAL 2 )/P •

Consequently, by (2.9)

502(1 , 2 )/P4(1 , 2) = - 992(- 1 , 2 )/501(- 1 , 2) pr2(x, 2)ds(x)
-1

çoT2(x, 0)ds(x) a s  2 t 00,

where b= sup {x: x < 0, m ( x ) <0 } . If 1 Supp (dm), then b <0  and
0 -1

(5.14) limf,(2) = 90,72(x , 0 )ds(x )) -=B21C R  •
A.to.

If 1 G Supp (dm), then ço2(1, 2) 0 for 2>22 1 _1 by Lemma 3.3. Since (5.7) with
j= /  holds, we deduce from Lemma 5.2 that -0 0 < A 21 _1 <A 21 < 00 and the equation
r2A(2) ±7-

1
2 - r 3 =0 , 2 G G  (1-  .2 21-1, ° ° )  has a unique solution VT if and only if

rlt - i < 0 < T 1 1 .  Thus (5.9) with j= /  follows.
I f  1 EE Supp (dm ) and e1 = 221 _1 ,  then (5.13) with 1= 1  follows. Therefore

- 0 0 = 4 _ 1 <A 21 <00 and we get (5.9) with j=/ .
In the case of that 1 S u pp (dm), 2 2 1 _1 <e 1 and r1 (e 1)=5,o1(1, e 1), both (5.6) and

(5.7) are valid for j = / .  So -  oo<A 21 _,<A 2 / < 00 and (5.9) follows with j=/ .
Finally let 1 Supp (dm), 

2 2 1 - 1 < e ,
 and r2 (e,)=ço1(1, e1). Then (5.10) and (5.11)

holds with j = / .  Noting that (5.14) and -0 0 < A 21 <0<B 21 < 00, we see by Lemma
5.2 that - oo<A 2/ <A 2/ _,< 00 and the equation r 2f

1
(2)-kr i 2-7- 3 = 0 , A EG, has two

solutions vii, vla in the case of r i >0 and tir_ i <O, a unique solution vT in the case
of r,>0 and 71_, > 0, or r,=0 and ( - 1 )Yk >0 with k =2 1 -1  or 21, no solutions in
the other cases. Also note that AT () GI= {e1} - b i l l  for r=(0, 0, 1). Therefore
(5.12) with j=4  is obtained.

Since Vp n G.= AT n G. by virtue of Lemma 5.1, we complete the proof. q.e.d.

6 .  Examples of periodic generalized diffusion operator.

In this section we give two examples. The first one is a second order differential
operator with constant coefficients and the second one is  a  periodic difference
operator.
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Example 1. Let b and k  be real numbers, and set

=

Then p= e b  and

ds(x )= ex clx  , dm (x )= e -
bxdx , dk(x)=-- —ke - hdx

The solutions p i (x, 2), J==1, 2  of (2.8) are given by

Sol (x, 2) = -((b+a(2)) exp (—a(2)x/2)—(b—a(2)) exp (a(2)x12)1e4 1 2 12a(2) ,

94x , A) = fexP(a(2)x/2) —exp( —a(2)42)} e m la(2)

for 2* 2 °  =b 214—k, where ô(A) is the square root of the discriminant of the equa-
tion

e2--be+2+k  =0 .

For 2=2° we have

çai (x, 20 )  =  eb-212(1—bx12), ço,(x, 2 0 ) = x e 4 1 2

Now if we take analytically continued version of a(2) such that a(2)12=(2 °  —2)112

for 2< 2 °  , then

J(2) =__ e tv2(e 8(x)/2+e -6(w2)

D(2) = e b(e
8(x)12._e -soa2)2 7

r(2 )e x p  { ( b + ( - 1)16(2))/21,1 =  1, 2 ,

fi(2) (b—a(2))/2

Thus

S = [2 0, co ) ,  2 0 = 2 °  =  b 2/4— k .

When 0  is considered on R , the spectral measure density functions are as follows.

on (u) 1 1 2 7 r. u - 2 0 , o n (u) = (u+k)127rV u _2 0 ,

P12(u) = P21(u) b l 4 rV u - 2 0 , u>20

For 0 1 , r - ( r i , r2, r3)cr we get

pl(u)= V u---2 017r{r2(u - 20)+(r 1ud-  r2 b/2 - 7.
3)21 , u>20 ,

7
?; r12 0+ r 2 b/2—r3 ,

_ f if r > 0 ,
, i f  z 0

Example 2. Given 0<p, e<00, we put for x E R
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1 (pz —1)I(p —1) , i f  p *1
1 x,i f  p=-1 ,

Ef (P+1)(P k —1)e l(P- 1 )P1- X[k,k1-1)(x) i f  p * 1
m(x) I k E Z

2ekx[k,k+1)(x) i f  p =1 ,
kez

Then the operator Ou(x)= du(x )/dm (x ) is nothing more than the periodic
difference operator

eu(k) = {u+(k)— u - (k))- I {m(k)—m(k — 1)1,
k e Z  .

u±(k) = { u(k± l) — u(k))- I {s(k+1)—s(k))- ,

Now we get easily

99 1(x, 2) = 1 , 5 0 2(x, 2) = s(x) , 0 5 x 5 1

41(2) = p+1— pm °2, m ° :_-=-(p+1)OEIP.

Set cos 0(u)= 4(u)12V  P and sin 0(u) = D(u) I12-V  P •  Then in the same way
as in [5; (2.10)] we have for 0 x<1, k E Z  and uE R ,

u) = pkI2 {sin (k +1)0(u)+V P(m °u-1) sin k0(u)
m° us(x) sin kO(u))- /sin 0(u) ,

P2(x+k, u) p o - W2[sin k0(u)— {p(m°u-1) sin k0(u)
+ V T ) sin (k-1)0(u))-s(x)Psin 0(u) .

Moreover,

S — , 20— (V P —1)2Ipm ° , 2 1p  + 1 ) 2 1 ,0m 0.

If (13 is considered on R, then for 20 <u <

PIA )  = 1/7TV I D(u) I P22(u) p m ° u / x V  I D(u) I
P12(u) P21(u) {t41—m ° u)-1} 127r V I D(01 •

Next we consider 0 1 , r=( r i , r 2 ,  r s ) E T  on R+ . Then

A  =  =  — 1  ,  A o  =  V P  — 1 , Al =  - -V T -o —1;

P7(u) = I D(u) /27r {OPAL u)—r24(u)/2)2 + r2 I D ( u )
 I /41, Ao< u< Ai ;

• =- {4, 4 - i f  0< r,<pm°/2, z-T<O<TZ,' ,
• = i f  0<r 1<pm°12, 2-7 or 7.

1 = 0 ,
or r 1 >pm°/2, r >0,

• = {241 i f  0< r 1<pm°/2, rt<0, or 7-1 = 0 ,
il< 0< rl, or r 1 pm°/2, z-l<0 ,

• =  (5o t h e r w i s e .
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