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Variational formulas on arbitrary Riemann
surfaces under pinching deformation

By

Masahiko TANIGUCHI

Introduction.

The method of orthogonal decomposition plays a crucial role in the theory of
abelian differentials on Riemann surfaces. Actually, we have found its new applica-
tion in deriving variational formulas on Riemann surfaces under quasiconformal
deformation (cf. [1] and [3]). The argument consists of two steps. Namely, we
show first certain continuity (or distortion) with respect to Dirichlet norm of the
given family of differentials, by using inner orthogonality of the family, and
secondly we derive variational formulas by using another orthogonality of the family
to the linear operator considered in each formula.

The first step was generalized to the case of deformation by pinching a finite
number of loops (cf. [5, § 3], where certain continuity of square integrable harmonic
differentials was treated. See also [7, Theorem 1]). The purpose of this paper is
to generalize the second step to the case of pinching deformation and to give as-
sociated variational formulas for basic differentials such as period reproducers and
Green’s functions.

For this purpose, we give in §1 the definition of pinching deformation and a
general fundamental variational formula (Theorem 1). (This formula reduces to a
trivial one in case of quasiconformal deformation, but has some applications, cf. [8]
which also contains a refinement of it.) By applications of Theorem 1, we have in
§2 certain variational formulas for basic differentials (Theorems 2, 3 and 4). The
proofs are given in §§4 and 5. The decisive parts of the proofs are Lemmas 5, 8 and
9, which can be considered as fruits of the method of orthogonal decomposition,
though the proofs need certain investigation on differentials associated with pinching
loops. We give in § 3 the order estimate and metrical continuity of such differentials
(Theorems 5 and 6, respectively). We note that Theorem 6 can be considered as a
corollary of the proof of [5, Theorem 3] after applying the inverse operation of the
so-called variation by reopening nodes of Schiffer-Spencer’s type, and that using this
operation we can also characterize the conformal topology. Appendix includes one
of such characterization (cf. [7, Theorem 3]).
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508 Masahiko Taniguchi

§1. A general variational formula.

Let R, be an arbitrary Riemann surface with a finite number of nodes { Djti-1
(cf. [5, 81, 1°)]. Recall, in particular, that the universal covering surface of any

component of R{,=Ro—j0 {pj} is conformally equivalent to the unit disk). For
=1

every j, we fix a neighbourhood U; of p; on R, such that each component, say U; ,
(k=1,2), of U;—{p,} is conformally equivalent to D, = {0 < |z| <1} by a conformal
mapping, say z; 4(p). Also we suppose that {U;}}., are mutually disjoint.

For every t>0, let f; be a quasiconformal mapping of R} onto another union
R} of Riemann surfaces with the complex dilatation g,. Further we assume that

a) the support of u, is contained in R,— U, where U= EJ U;, and
b) there is a bounded (—1, 1)-form # on R} such that *~'

lim, o ||(/t)— 2]l = 0,

where ||+|| is the L~-norm on R§. For r=0, we denote by f, the identical mapping
of R} onto itself.

Next for every fixed £>0 and s; with 0<s;<1/2 (j=1, +-+, n), let R, , (with s=
(s, =+, 8,)) be the Riemann surface obtained from R; by deleting two punctured
disks zj,,”'({0<|z|<s;}) (k=1, 2) and identifying the borders B;,, =
Zjne ({1z]| =s;}) by the mapping

Zj 20" (15°55/2,1,/(P))

for every j, where z; , ,=z; ;of 7' (which maps U;, ,=f(U; ) conformally onto D)
and 7; is a constant with |7;|=1. We denote by C; , , the loop on R, , correspond-
ing to {B; ...} i-1 and equipped with the same orientation as that of B;,,,. The
parameter s=(s,, ***, §,) can be considered as pinching parameters for these loops
{C;.;.+ 3-1, and we can construct a canonical pinching mappings f; , of R, to R, as

follows. Let J,, be the natural embedding of R}’; =R, ,— jL:Jl Cjisinto R, V=

2 "
zj,k_l( {0< IZI < 1/2})’ Vi - kyl Vj’k, V= ~L=J; Vj’ and Zjkt,s :Zi.k.tojt,s to Ui.k,t.s =
Jis M (Uj ), and we set j

f;,s-l(p) = Jl,s_lo.ft(p) on R(/)_ V’ and

= Zj,k,t,s-l((l _2sj)'zj,k(p) + Sj'(Zj,k(P)/ | Z',k(P) D)
on V;, (j=1,-,nk=1,2).

And finally we set f; ((C;,,) =p; for every j. Then note that f;; maps R}’; and
Vit =J0s (f(V; ) homeomorphically onto Rf and V; ,, respectively, for every j
and k. These mappings {f,} are defined in a special manner on V. But the
variational formula stated below does not depend on such special choice of f; , on
V, but only on s, f; and U. Also note that we have obtained the following com-

mutative diagram of mappings (, where i means the natural embedding).
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RO*__. R(’)(f Uj,k

A l l
f‘l J f; Z] k
v
Js Ri«—— U4, > D,
\ Ly Zik,t
Jt s Jt,s

R ’7 Zj,k,!,s

t,s € l— Rt,s <——'i Uj,k,t,s

Here in case that some s; =0, we regard that C;, , collapses to a node P; ; ; of

R, , corresponding to p;. Hence, in particular, Ri’o = R}, f; 0 is coincident with /7"
on R}, and J, , is the identical mapping of R}.

Remark. From the construction, R, , converges to R, in the finitely augmented
Teichmiiller space T(R¥) as (¢, s) tends to (0, 0), where we set R* = Ry« + with fixed
positive #* and s¥ (j=1, -+, n), or more percisely, {f; } is an admissible family
of marking-preserving deformations of R, , to R, (cf. [5, §1, 1°)]).

Now suppose that a given meromorphic abelian differential ¢, , on R, , varies
continuously with respect to (¢, s) and remains bounded in norm near pinching loops.
Then, if the periods of ¢, , along pinching loops vanish constantly, we have certain
variational formula for ¢, by essentially the same argument as in the case of
quasiconformal deformation (cf. [1], [3]). More precisely, we can show the following

Theorem 1. For every t>0 and s; in [0, 1/2) (j=1, ++-, n), let ¢, , be a mer-
omorphic abelian differential on R, ; (with Ry, = R,) such that
1) ¢, converges to ¢, metrically on KU (UN R¢—V), which means that

limy (0150 ”¢t,s°f;,s—l_¢0,0“KU(UnR{,—V) =0,

where (and in the sequel) |(t, s)|=1t+ ji} s;, @of is the pull-back of ¢ by f, ||+||g is
=1

the Dirichlet norm on a Borel set E, and K is a closed subset of Ry— U such that p,=
0 outside K for every t,

2) S @:,s=0 for every j and (t, 5), and
Jatys

3) there is a positive constant M such that

et lly,p, -nir,g <M forevery jand (1, s),

where U, .= U; ., ,UC;, JU;,,, With U;,,=U,) for every j and (t, s), and in
general, N(R) is the set of all nodes of a Riemann surface R with nodes.

Next let +J» be a meromorphic abelian differential on R, such that
A) |Wllxvwngy is finite, and

B) the (1, D)forms @ o Ay and @, =@, of, ' A*y (120, 5;€[0, 1/2); j=1,
-+, n) are absolutely integrable on R}.
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Then it holds that

SS%“’M N "SS%%-O'M\W+o(!<t,s)|)

as |(t, s)| tends to 0.

Here and in the sequel, a differential on a surface R with nodes means one on
R—N(R).
To prove Theorem 1, we begin with the following

Lemma 1. Given r with 0<r<1/4, and let f(z) be a holomorphic function on
W= {r*<|z| <1} such that

i) SI . f(2)dz=0, i.e. f(z)dz is exact, and
i) || 7@ ady <

where z= x—+iy and A is a positive constant independent of r.
Then it holds that

max(j,| =) If(z) I <34.

Proof. Set f(z)=ru0a,2 + 3.1 b,z™" on W, then i) implies that b, =0.
Hence it holds that

(max,1-p | f(2) )
< roola,| or" 33522 b, | or7")?
< S (r-0(2n+2)+ 4+ 2r)"+ - 2(2n—2) « 4+ (2r)"~%)
= S-16-(1—(2r))2< 308,

where we set

oo la,|? <1>2"+2 o |b,]2 2\2-2n
S=>W-0—2—— a2 — 14— (2 .
2o 2 \2 +>3 22n—-2(r)

On the otherghand, since 2r?<1/2, we have

A—16r%.8S< 30, |a_,,|2 [<_1_)2"+2_(2,.z)2n+2]

2n+2 \2
o |bal? 9p2)2-2n _ L)z—zn
+ 32 Ll s (1))
_ . 2 2
- (1/2”) SS(272<I1|<1/2) If(z)l dxdy< A2,
which implies the assertion. q.e.d.

Next fix j and k arbitrarily and set ¢, g0z, %(z) = ay(z)dz and ¢, ;0z; 4,7 (z) =
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a; (z)dz for every ¢t and s. Recall that g, (z) and ay(z) are holomorphic on D,=
{s<|z| <1} and D, respectively. Denote the mapping z;; , .°f;, "oz, by F; (2),
ie.

F,(2) = (1—=2s5;)+z+5;2/| 2| on D.
Then we have the following

Lemma 2. i) a,(F,(z)) are uniformly bounded on E,= {0<|z|<1/2} for
every (t, s) with a sufficiently small |(t, s)|.
il) a, (F,(z)) converges to ayz) locally uniformly on D, as |(t, s)| tends to 0.

Proof. First, when 5,0, z;, , ! can be extended to a conformal mapping of
U;,.onto {s3<|z| <1}, and we may regard that g, (z) is a holomorphic function
on {s3<|z|<1}. Then by the assumptions 2) and 3) in Theorem 1 and by Lemma
1, we see that sup,i-,; | a,,(2)| <3+ M2 for every (z, 5) with 0<s;<1/4.

On the other hand, by 1) in Theorem 1, we can see that a, (z) converges to ay(2)
uniformly on, say {|z]| =3/4} as |(¢, s)| tends to 0. Hence the assertion i) follows
from the maximal principle.

Next by the above assertion i) and the assumption 1) in Theorem 1, it holds that
a,,{(z) converges to ay(z) locally uniformly on D, as |(¢, s)| tends to 0. Since Fy
converges to the identical mapping locally uniformly on D,, we can show the asser-
tion ii) by using i) and Cauchy’s integral formula. q.e.d.

Proof of Theorem 1. For every (¢, s), write
¢t.s°ft,s_l = a;,s(w)dw + a{.,s(w)dw

with a generic local parameter w on Rg. Then since ¢, ; is a meromorphic differ-
ential on R, it holds that a}  (w)-s, (W) =ai’{(w), where u, (w)dw/dw is the
complex dilatation of f; ;”!.  Hence it holds that

SSR(, Pt = SS% ail(w)dw N\ *

=t a 0dmnry.
EUY
Since #, (w)dw/dw=u, on K, it holds that
' } SS at sy, dW/\*sb—SS Yooty N*¢r
K K

<lledle-1lle 1,077 — ool

Here [|#||.=0(t) by the assumption b) on {x}, [|v/||« is finite by A), and ||g, ,of;,,*
—@o.0llx converges to 0 as |(#, s)| tends to 0 by 1). Hence we conclude that

SSK af oo aty AR Ny = SSK Poor s A*+o(| (1, 9)]) -
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And by B) and b) (on {g,}), we have

* [ atemudnnry = e[ goranmptoe o).

Next by a simple computation, we can see that

F2@ (=2 Fu@) = =5 (Z) 1

lz|/ |z|

hence |(F, ):| = s;/(2|z|) on z; (V; ) = D,. So by Lemma 2-i) we have
lai,(2) 2, (2)| = | ails(2) |
=4, (F,(2)* (F,):(2) | = 5;- 8 - | 2|

on every z; 4(¥;,) with a suitable constant # for every (¢, 5) with a sufficiently small
| (2, $)]. Hence by Lemma 2-ii) and Lebesgue’s convergence theorem, we have

dz/\dz,

tim,o(Ufs)- (| atoemidznty = {{ | a2 b@) e !
j

where *y=b(z)dz, for |b(z)| is bounded on every V;,, as is seen by A). Since
both ay(z) and b(z) have removable singularities at the origin, the integral on the
right hand side is equal to 0 by Cauchy’s theorem, i.e. we conclude that

**) {1, at.ccmadmAry = o1t D).

Thus the assertion follows from (*) and (**). g.e.d.

Remark. From the above proof, we can see that B) in Theorem 1 may be
replaced by the following weaker condition
B) @,,/Av and every o, , are absolutely integrable on R,—U.

§2. Variational formulas for basic differentials.

A simple closed curve d on an arbitrary Riemann surface S is called essentially
trivial if d is dividing and a component of S—d is a parabolic part (i.e. a subregion of
type SOyp) of S. Two essentially non-trivial curves d, and d, are called equivalent
if either d, = +-d,, or they are disjoint and bound a parabolic part (, i.e. there is a
parabolic part G such that the interior of G is G and the relative boundary of G is

lzJ d; as a points set in S). A set {d;} ©.,(K >0) of mutually disjoint simple closed
j=1

curves is called free if no subset of {d;} ., bounds a parabolic part, and is called
essentially free if there is a free subset {d;}%., of {d;}%_, such that every dj is
either essentially trivial or equivalent to one of {d;}%_,.

Next we recall definitions of basic differentials on a Riemann surface R with (a
finite number of) nodes.
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i) Period reproducers (cf. [5, §1,2°))): For every l-cycle d on R'=R—N(R),
we denote by a(d, R) the period reproducer for d on R. And we set 6(d, R)=
a(d, R)+i-*a(d, R).

ii) Green’s functions (cf. [7, §1]). When a point or a puncture g is given on
a component S of R’ which admits Green’s functions (i.e. S& O;), then Green’s func-
tion g(p; ¢) on R with the pole g is, by definition, equal to usual Green’s function on
SU {g} with the pole g and vanishes identically on R'-S. When two points or punc-
tures ¢, and g, are given on a component S of R’ belonging to Og, then (indefinite)
Green’s function g(p; g, ¢;) on R with the ordered pair of poles ¢, and g, is, by
definition, equal to a harmonic function g(p;q;, ¢,) on S— {q,, ¢,} defined in
[5, 81, 1°)] and vanishes identically on R'—S. Recall that such a function
g(p; g, ¢,) on S is determined only up to additive constants.

In both cases, we set

#(q, R) = dg(+; q)+i-*dg(-;q), and
(a1, 4,3 R) = dg(+; qy, @) +i-*dg(~; 1, q;) , respectively.

Now returning to the situation in §1, we say that R, is essentially free if so is
the set {C; ; +}%.; on Ry . for some (, hence every) positive ¢* and s¥ (j=1, ++-, n).
And in this section, we always assume that R, is essentially free. (A reason for this
restriction will be found in §3, Example.) Also, for every j, we denote by C; the
simple closed curve —8V;, on Ry, and say that C; is essentially trivial if so is C; s
(which is freely homotopic to f« «"(C;)). Similarly, we say that two curves C;, and
C;, are equivalent if so are C; ;» » and C;, » +, and that a subset of {C;}}.. is free
if so is the corresponding subset of {C;  +}7.1. Recall that the assumption on R,
implies the existence of a maximal free subset of {C;}%., (i.e. a free subset such that
every C; is either essentially trivial or equivalent to one of elements).

In the sequel of this paper, we assume that every C; with 1< j<m is essentially
non-trivial, while every C; with m~+1<j<n is essentially trivial, and that {C;} 7,
(H<m) is a maximal free subset of {C;}}...

To state variational formulas, we should define differentials associated to some
of pinching loops. For every j with 1< j<m, a differential ¢(C;, R,) is defined as
follows. First let {S,} <3V be a set of components of R} uniquely determined by
the conditions; (i) S,_, and S, are connected by a single node, say p;, of R, for every
k with 1<k <N, (ii) S,€ 0, for every k with 1<k<N—1, and (iii) {p;}+-1 cor-
responds to the set of all C, equivalent to C;. Then since C; is essentially non-
trivial, we can see either that S, = Sy, or that S, == S, and none of S, and Sy belongs
to Os. We denote by g,, and g, , the punctures of S corresponding to p, and p,,,
respectively, for every k except for g,, and gy, which are undefined. Here we may
assume that the puncture of R; bounded by —C; is one of {g;,}#-1. Now when
none of S, and Sy belongs to Og, then we set

1
2xi

¢(Cj’ Ry = '(¢(q1v.1’ Ro)_¢(qo,2a Ry)) on S;USy.
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If not, then S,=.S, and we set

#(C;

Qo> Ro) on S, = Sy.
On every other S, (k=1, ---, N—1), we set

(C;

R qk,2§Ro) on S,.

N
Finally, setting ¢(C;,R)) =0 on R{— U S;, we have a holomorphic differential
k=0
#(C;, Ry) on R,.
We call this ¢(C;, Ry) the associated differential for C; on R, Note that

S ¢(CJ,-, Ry)=1 for every j and that, if C; and C;, are equivalent, then ¢(C;,, R))=

¢( i Ro) of =—¢(C;,, Ry).

Now we will state several variational formulas for basic differentials, where
and in the sequel, we use the same notation for a 1-cycle on R} and the correspond-
ing one on any R, ,. Also, denoting by {Cju}#i¥9” the set of all C, equivalent
to C;, we set

. N
s(j) = II s
k=1
and regard that log (1/s(j)) = 4+ oo and 1/log(1/s(j)) =0 when s(j)=0. (Recall that
H
{Ci} = ,~l=Jl {C;w}t8)
Theorem 2. Let d and d’ be 1-cycles on R, then it holds that
[ o R={ @ R)
d’ d’

= toReSSR, 6(d, Ry)-u A*6(d', Ry)
H
Bty G RO 3(Cs R+l D

as | (¢, s)| tends to 0, where and in the sequel, we set

e )l = 1, S>'+2m

Remark. Write 6 = a(w)dw, u#= p(w)dw/dw and 6’ = b(w)dw with a generic
local parameter w=u--iv on R;, and we have

RCSSR,ﬂwu A*O — ZSSR,Re [a(w) - 1(w) - b(w)] dudy ,

which is sometimes written as 2-ReSS 06 .
Ry
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Recalling that S o(d, R)=||a(d, R)||% is equal to the extremal length A(d, R) of
d

the homology class of d on R’ by Accola’s theorem, we have by Theorem 2 the fol-
lowing

Corollary 1. For every 1-cycle d on R, it holds that
l(d, Rt,s) —2 (d’ RO)
=t-ReSs 6(d, R)- uA*6(d, Ry)
RY

B ey L #Co RO+l 1D

as |(t, s)| tends to 0.

Next fix a point ¢ on a component S of R}, and assume that S€O; and that
geS—U. For every (1, s), we set g, (p)=g(p, q:,), where ¢, ;=1 ;7(q) (, hence
doo=¢q). Then it is seen that g, == O for every f and 5. Also for every j with 1<
J<H, we set

Gi{p) =2g(p.qnv,)—8(P: 2 on S,

where gy, and g, are the same as in the definition of ¢(C;, R,) (, hence G; may
vanish identically on S). Then we have the following

Theorem 3. Let d be a 1-cycle on Ri— {q}, and suppose that there is a neigh-
bourhood U, of q on R§ such that #, =0 on U, for every t. Then it holds that

S *dgt,s_S *dgo,o
d d

= t-ReSSR, —i-¢(q, Ry)+uN\*6(d, R,)
~ By 6] 2 € R+l D
as |(t, s)| tends to 0.

Finally, fix two distinct points ¢ and ¢’ on a component S of Rf. And we
also assume that S€E O, and that ¢, ¢’S—U. Then we have the following

Theorem 4. Suppose that there are neighbourhoods U, and U, respectively, of
g and q’ in S such that p, =0 on U,U Uy for every t. Then it holds that

81.(f1,s7q") — &0,0q")
— —@2o-Re(| i-0(q R)-un-8(¢" R)

_i‘l 1

2 2 iog Wisyy FH@ 0@+ olllte )b
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as |(¢, )| tends to O.
The proofs of Theorems will be given in §5 and 6.

Remark. When g =g’ in Theorem 4, the right hand side of the formula gives
that for so-called Robin’s constants.

In all Theorems, if we set s =0, then all formulas reduce to well-known ones
under quasiconformal deformation (cf. [1] and [3]).

The case that =0 and n =1 can be considered as a natural generalization of
Schiffer-Spencer’s variation, and choosing a suitable U, we can derive a sharper
formulas (see [7] and [8, §2]).

§3. Properties of associated differentials.

We can define the associated differential ¢(C;, R, ) on every R, for every es-
sentially non-trivial C; (i.e. j=1, --+, m) as follows; when o(C;, R;,;) = 0, then we set

¢(Cj~ Rt,s) = HU(Cj, Rt.s)”;? S'a(cjs Rt,s) .
When o(C;, R, ) = 0, then since C; is essentially non-trivial, C; should be equivalent
to some other loop, say C;, on R, with s;; =0. And we set ¢(C;, R, ;) = ¢(Cj, R;,)
or=—¢(Cy, R, ) so that g #(C;, R;,) =1, where ¢(Cjs, R, ;) is defined in the same
c;

manner as in the definition of #(C;, Ry in §2. First we show the following

Theorem 5. There is a constant C depending only on U and R, such that it
holds that

2

T

Hlog (1/5(/)) + € 2 1#(Cy. R I, > -2-+log (1/5(/)

for every j and (t, s) with a sufficiently small |(t, s)|.
Hence in particular, it holds that

lle(C;, Rt.s)”R;’s = m‘}‘ o(lI( I

as | (¢, s)| tends to O.

Proof. Fix j and (t, s), and assume that o(C;, R, ) = 0, for otherwise the as-
sertion clearly holds.
Let {Si}2-0 and {g, ;}+¥o ;21 be as in the definition of ¢(C;, R,). Let Sy, be

N
the component of R, (C;) =R, ,— U Vs corresponding to S, where Vi ¢, =
k=1

VimatsUCitmes U Vi .t and oy,  be the reproducing differential on S, fora
loop d, freely homotopic to the border of S, , which corresponds to g - minf, 4>
for every k. We define a holomorphic differential e, , on R, (C;) by setting @, ;=
(P S - PN 11T PN 4., O EVETY Sy, o except for the case (E) that S, , coincides
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with Sy, . and admits Green’s functions; in that case, we set| @, | = |0y ¢ ;+i%0g |/
||°o,t,s”?90_,.s+ I oN,t.s+i*oN,t,s|/”O'N,t,s||25'o.,’s on Sy, ,=Sy. so that Sd0|at,s| >1,
and S la; | >1.

dy
Next letting
B(z)=1/Q2x-z) on {0<]|z|<I1/2}, and

= ((12z)+(1/log 2))/z on {1)2<Z[z|<1},
we denote by g, the pull-back of the differential A(z)dz onto all components of
Ul C)= U Uyt Finally set

or,s = o, (W) |dw| = e, | +|B:.| on R,

where we regard that a, , and g, , are equal to O on R, ,—R, (C;) and R, .— U, (C)),
respectively.

Then p, (w)|dw]| is an admissible density for the homology class of C; on R} ..
In fact, let a 1-cycle ¢’ on R} ; homologous to C; be given. If ¢’ contains an arc I
connecting a point of R, —R; (C;) and one of R, ,—U, (C;), then it holds that

1
g Op,s = Su (1/1og 2)£2 1. And if not, ¢’ is a union of curves contained in
4 2 r
R; (C;) and ones in U, (C;). If the latter contains a non-trivial curve ¢{ on U, (C)),

then it holds that S L Pt = S 1Bil =1, If not, the 1-cycle c;= ¢ N R, (C)) is ho-

mologous to C; on R;,. And then we can find a component, say §, of R, (C))
such that S 04, = S s |a;,| >1. Thus we conclude that o, , is admissible.
¢ ¢’n

Hence by Accola’s theorem, we have

1o(Cy R Mg, = V|| 1007 dudy,

¢

where w =u-}iv, and a simple computation gives that
2f,. o0 dudy < Nl 1, e 180, -8,
+ 2lles, 17, e nv, cent1Bsllz, (chav, gcp)

<

2 . z
+log (12 +s(/M + 165 N+ (Ve log 2.4 3l ey
2z log2 ’

T

Here note that Ha,_sllfgk,',s is equal to 2/11"#".8”25»,:.: except for the above case (E); in
that case, ”at,sllzso,,,, < 4('Ioo,t,s”%o.l,,—l_”UN,t,sl|§o’,_s)/”ao,t,s||-25'o’,’$' HGN,t,s”?S'o',,S' Since

N
Si,1,s converges to the corresponding component S, o, of R(C;)=Ri—U Vi,
k=1

UV, ,2) for every k in the sense of the conformal topology, o, ; ; converges to o, ¢,
(which does not vanish identically on S, ,,) strongly metrically ([5, proposition 4]).
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And since metrical convergence implies convergence of periods (cf. Remark in §5),
we can see that ”a:,sllzs,,,,,s are bounded near (0, 0) for every k. (The case (E) can
be treated by the same argument.) Hence we can conclude that ||, J[I% r(Cs) Are
bounded near (0, 0).

Thus we can find a constant C depending only on R, and U such that, for
every (¢, s) with a sufficiently small (z, s), it holds that

16(Cs, Ry, < 2+log (1/s(7)+C .

Finally, considering |¢(C;, R; )| on U; (C;), we can see that (1/2)-]|¢(C;,
R, )||%:, is not less than the sum (1/2z)-2-log (1/s(j)) of the moduli of Ujipy 1, (h=1,
s+, N). q.e.d.

Next we can show the following

Theorem 6. For every j, ¢(C;, R, ) converges to ¢(C;, Ry) strongly metrically
(with respect to {f; }) as |(t, s)| tends to 0, i.e. for every neighborhood W of N(R,),
it holds that

1im|(t,s)l->o ||¢(Cj’ Rl,s)oﬁ,s—l_qs(cj’ Ro)”Ro—W =0.
Corollary 2. For every j and 1-cycle d on R}, it holds that

limion | 8(C5 R = [ 8(C, R

Example. Without freeness of R,, the associated differentials do not neces-
sarily converge. Here we give a simple example.

Let R, ;. be the triply connected region {z€C: a<|z|<1/c, |z—3|>b} for
every sufficiently small non-negative @, band ¢. Set C,={|z|=1}, C,={|z—3|=
1} and C;={|z|=5}. Then we can regard that R, , . converges to some R, with
three nodes in the sense of the conformal topology as a+b+c tends to 0. Note
that one of component of R,— N(R,) is conformally equivalent to Sy=C— {0, 3}.

Now consider ¢(Cy, R, ;) = ||0(Cs, R, 5.)l|725,.+0(Cs, R, 5,). When a tends to
0 first and then b and ¢ tend to 0, ¢(Cs, R, ;,) converges to ¢(C;, R,) which corre-

sponds to (1/2zi)- dZ3 on S,. On the other hand, when b tends to O first and
Z_

then a and ¢ tend to 0, ¢(Cs, R, ;) converges to ¢(C;, R,) which corresponds to
(1/27)) % on s,
z

Proof of Theorem 6 is essentially the same as that of [7, proposition 3], but for
the sake of convenience we give an outline of it.

Fix j in the sequel of this section. We may assume that {Cj¢} ¢ be the
set of all C,, equivalent to C; such that 5,>0. Then for every (¢, s) and k (<K),
we can consider the characteristic ring domain W, , of ¢(C;, R;,,) (which is equal
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to #(Cjw Ri,) or —8(Cjwwy, Ry,)) for Cigy on R, (cf. [4,§2]). Let C(j(k), 1, 5) be
the center trajectory of Wy, for every k. Then we can construct another

ES
Riemann surface R} ; with nodes from R, ; as follows; first cut R, ;along U C(j(k),
k=1
t, s) and patch a once punctured disk along each border so that ¢(C;, R; /) restricted
KS
on R, ,— U C(j(k), t, s) can be extended to a holomorphic differential, say ¢, on
k=1

the resulting surface(s). Next fill two punctures corresponding to the same C(j(k),
t,s) by a single point, we obtain a Riemann surface R}, with nodes (which is
homeomorphic to R, with s’ obtained from s by replacing every s;¢) (k=1, -+, K))
by 0). Then we can see that ¢ should be coincident with the associated differential
#(C;, R} ;) for C; on R} , which is defined again in the same manner as ¢(C;, Ry).

Now fix a neighbourhood W of N(R,) arbitrarily. Here for every (¢, s) with a
sufficiently small [(z, s)[, it holds that Wy, , , contains Cj ;. that is, f; o (W;w.i,5)
contains pju (k=1, -+, K,), where p; is the node of R, corresponding to Cjc.
(The assertion can be shown by the same argument as in the proof of [7, Theorem
3], i.e. by applying [6, Proposition 2] to a height function u such that du=Im
#(C;, R;,)) On zjgy 5, ({e<|2|<1/2}) (h=1, 2) with a sufficiently small positive .)
Since we can regard Wy, , as a neighbourhood of C(j(k), t, s) also in R%,
(k=1, -+, K), we may regard that f, ;"/(R¢) is a subsurface of R}, such that each
component of R} ;—f; ;"}(R¢) is conformally equivalent to a once punctured disk.
Hence similarly as in the proof of [7, Proposition 2], we can construct an admissible
family {(h;,; R}, R}t i¢r,91<n Of deformations of R}, (with the natural markings)
to Ry, where 7 is sufficiently small, such that, for every (¢, s), it holds that

) fi.=h, on f,"(R—W), and

2) h,,"'is conformal on V'—N(R,) with a suitably fixed neighbourhood V" of
{p;w} -1

Hence we conclude by [7, Theorem 1] (which remains valid for any admissible
family with a vector valued parameter) and the following Proposition that

limy¢, 9150 ]|¢(C,~, R’.S)oht,s_l_qs(cj’ RO)”RO—W =0,
which implies that

liml(t.s)l-ko ”¢(Cp Rt,s)of;.s_l_¢(cj’ Ro)”Ro-W =0.
And since W is arbitrary, we have the assertion of Theorem 6.

Proposition. Let {(f,: R,, Ry} be an admissible family of marking-preserving
deformations with a vector valued parameter u, and two punctures q, and q, be given
on a component S of Ry—N(R,). Suppose that S and the component of R,—N(R,)
containing f,”(S) belong to O, and that there is a neighbourhood V of {q,, q,} on
Ry—N(R,) such that f,™" is conformal on V for every u.

Then ¢(f,7(q), £, %(q); R,) converges to ¢(qy, q,; Ry) strongly metrically with
respect to {f,} as the norm of u tends to 0.
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Proof of this Proposition is given by the same argument as in that of [5,
Theorem 3], if we know that

limsupy, ;5o [|8(f, 740, £.742) 5 R)llgy- 7.~ 100 < +00 ,

which, in turn, can be seen as in the proof of {7, Lemma 2] by using the following
Lemma 3 instead of [7, Lemma 1].

Lemma 3. Let R and R be Riemann surfaces belonging to Og.  Fix two points
g, and g, on R and a real number E so large that each component of the open set
D.={pER:|g(p)| >E} is simply connected and relatively compact in RU {q,, q,},
where g(p)=g(p; 4, 4) is (an indefinite) Green’s function on R (cf. §2). Then there
is an absolute constant A, such that for every K-quasiconformal mapping f from Dy
into R, it holds that

~ . ~ ~\112
SUP - s(og) & mfpeiz-f(by) 8 < 2z/||o(d, S)”§

where g(p) = g(p:f(q), f(g)) is (an indefinite) Green’s function on R, S= R—f({pe
R; |g(p)| =E-+KAy}) and d is the dividing cycle on S corresponding to the relative

boundary component f({g = E+KAg}) of S on R.

Proof. First, by [6, Proposition 2], we can show (cf. the proof of [7, Lemma
1]) that there is an absolute constant 4, such that

sup nf

peR-f(Dy) g=i pefUg2E+K Ag)) g=a, and

lnfpeR—f(DE) &= Suppef((gS—(E+KAo))) §=2a,.
for every K-quasiconformal mapping f from D; into R.

On the other hand, since RE O, we can see that the modulus of § is equal to
1/|lo(d, 8)||%. And since D={p& R; a,<g<ay} is contained in $, this modulus is
not less than the modulus (@,—a,)/2z of D, which implies the assertion. q.e.d.

Remark. We can see by [6, Theorem 1] that the modulus of Wy, , , tends to
+oo as [(#, 5)| tends to O for every k. Also existence of a family {(#; R} ., R)}
implies convergence of R  to R, in the sense of the conformal topology.

Moreover, we can show that, in general, two conditions such as above implies
convergence of R, ; to R, in the sense of the conformal topology (cf. [7, Theorem 3]).
We will give such a kind of characterization of the conformal topology in Appendix.

8§4. Proof of Theorem 2.

Let X, .= (x;,;:1,s) be the HXx H matrix with the (i, j)-th component x; ;;, .=
S #(C;, R, ) and Y, ;= (y;;,,) be the H-dimensional vector with the j-th component

Vists= SC' o(d, R, ) for every (¢, s). By Corollary 2, x; ;;;,, converges to X; ;;00=

J
S #(C;, R,) for every i and j as [ (7, s)| tends to 0. And since every C; corresponds
Ci
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to a node of Ry, X;jio0=0;; (Kronecker’s delta). Hence x; ;;;,=0;;+o(l) as
|(z, s)| tends to 0. In particular, X; , is non-singular for every (¢, s) with a suffi-
ciently small [(¢, 5)|, hence there is a unique solution A4, ;= (a;;;,,) of the equation
Y, =X, A4, namely,

H
[, 0@ R =B sCurD (=1 m),
Cj k=1 Cj

for every such (7, s). In the sequel, we consider only such (¢, s). Also we note the
following

Lemma 4. For every j, it holds that

D a5, = O(l0(Cj, Ry lg; ) and
2) jit,s = |o(Cj, Ry I, - qus(C,-, Ry +o(ll(z, )I)
= O(l(z, I

as |(¢, s)| tends to 0.

H
Proof. First note that a;;; = y;:,,+ 0(:.2 | ¥jie.s1) as | (¢, s)| tends to 0. And
. =1
since

D Paa= |, 0(Cp R = I10(C; Ry #(C, R,

which is O(]|(¢, 5)||) as | (¢, s)] tends to O by Corollary 2 and Theorem 5, we con-
clude the assertion 2) again by Corollary 2.

Next to show 1), fix an integer j, in [1, H]. When o(C;,, R, ;) =0, then x;_ ;;;
and y;., =0, hence by Cramer’s rule, we see that ajy:t,s=0. When
joo Ri) 0, then a rough estimation gives that |x; ;.. | < |o(Ci, Ry, )llgy /
l1o(Cjy R R, for everyi. And theabove *)implies that y;;; ;= O(||o(C;, R, )| R?,s)
for every i. Hence again by Cramer’s rule, we can show that a;;, = O(||o(C;,,
R Ri,,)' q.e.d.

joi

a(C;

0’

Now for every (¢, s) as above, we set
H
Pt,s = 0(da Rt.s) - jz;; a;’:t.s°¢(cj’ Rt.s) .

Then from the definition, we can see that S @:,s=0 for every j, i.e. {p, .}
Citys

H
satisfies the condition 2) in Theorem 1. Since 6(d, R, ) and 3] a;;; - ¢(C;j, R; )
im

converges to 6(d, R,) and 0, respectively, strongly metrically (with respect to {f; })
by [5, Proposition 4] and by Lemma 4 and Theorem 6, ¢, , converges to ¢, , = 6(d, R,)
strongly metrically as |(, s)| tends to 0. In particular, {p,} satisfies also the
condition 1) in Theorem 1. And since ||o(d, Rt,s)”if.s converges to |lo(d, Ry)||%,
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H
(which can be shown as before by [5, Proposition 4] and Remark in §5) and X3 |a;;; ,|
i=1

1I6(C; Re. Iz, = O(1) by Lemma 4-1), llg, llz; ,=O(1) as | (1, 5)| tends to 0, which
implies that {g, } satisfies the condition 3) in Theorem 1.
Next we set = 0(d’, Ry), then it is clear that ||yr||z<+oo and @ Ay is

absolutely integrable on Rj. And as in the proof of Theorem 1, we can see that
| 0z; 57 | /|dzANdz| < L-|s;]/]z] on z;(V;p) = {0<|z]|<1/2}

for every j, k and (¢, 5) with a sufficiently small |(z, s)|, where L is a suitable con-
stant and o, =@, ;of; "' A*y. In particular, @, is absolutely integrable on V.
Since @, is clearly absolutely integrable on R{—V, we conclude the absolute
integrability of ®,, on the whole R;. Thus we have shown that v satisfies the
conditions A) and B) in Theorem 1 (cf. Remark in §1).

Now apply Theorem 1 to these {p; } and v», and we have

Sgkl wt’s =1 SSR’ 0(d’ Ro)'ﬂ/\*a(d,, R0)+0([(t, S)l)
0 0
as [(¢, s)| tends to 0. Also we can show that

) S ,¢I,s_S ,%,o:ReSS , @5

d d R},

for every (¢, s). Hence we conclude by Lemma 4-2) and Corollary 2 that

[, o Ro—{ o R

d’ d’

= g ai;t,s'sd, ¢(CJ" Rt.s) + t.ReSSR' 0(d: RO)'ﬂA*a(d,9 Ru) + O(I(t, S) |)

H
— S 110(C, Ry, | #(Cs RO 0(Cy. R,
t+eRe[[ 0, R)-n*o@, RY+ o1l 91D
0
as | (¢, s)| tends to 0. Thus the desired formula follows by Theorem 5 and Corol-

lary 2.
Finally, the equation #) follows from the following

Lemma 5. For every (¢, s), it holds that

g [, Regns = {[ RegiofitA%e(@, R), and
d’ Ry

2} [[ @ —mdAc@, R) =0
L)

In fact, by this lemma, we have
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S ,Pts — S , Po,0
d d

- SS Reg, ,of,, " A¥o(d, R) — SS Re gooA*o(d’, R)
R} Ro
= SS , Re (91,01, — Po,0) Alm ¥+ Sg , Im (¢,,;0f;,s " —@00) A Re v
Ry Ro
=re(| @ront—monty=re|| pof A%
RY Ry

Proof of Lemma 5. For every positive 0 (<1/2), define a Dirichlet function
es(p) on R{ by setting

es(p)=1 on R{—V, and
= max{l—(log 2-|z;4(p)|)/log 26,0} on V;,
for every j and k. Then
Fy(@r,) = e5@1,0fy, s+ Hy oofy 7' - deg
is a square integrable closed differential on Rg for every (¢, s), where H, (p) is a
holomorphic function on ;Q(U it.s—Cjs) such that dH, =g, , (cf. [5, §2, 3°))).

Moreover, since Im Fy(p,,)—1I;, (*o(d’, R;,)) belongs to I',(R,) (cf. [5, §1,2°)
from the definition, and since *o(d’, R) =1 ,"s(*a(d’ , R;,;)) by [5, Lemmas 4 and 7
-i)], where I, _is defined in [5, §2, 3°)], it holds that Im Fy(p, )—*o(d’, R)) €T o(Ry).
Hence we have

2) (Im (Fy(@:,)—Po,0) » *o(d’, Ro))R3 =0

Also since Re ¢, , and *a(d’, R,,,) belong to I',(R,,, R, which is orthogonal to
*I'v(R;,.» Ry), we have by [5, Lemma 7-ii)]

(Re Ps,s5 U(d,, Rt,s))R;,s(= Sd Re ¢t.s)
= (Hft,s([ft,s(Re ¢f'3)) ’ _*(Hft,;(lf:,;(*a(d” Rt.s)))) )R;'s .
Hence by [5, Lemma 5] we have

1) | Regn. =, Re), =41, (o R,
= (If,,,(Re ?,5)s a(d’, Ro))lz{, = (Fs(Re ¢,,,), o(d’, Ro))R{, .

On the other hand, by Lemma 2, we can shoose {H, } so that H, of; ~' are
uniformly bounded on every V;, Hence as before, letting  become 0, we can
show the assertions 1) and 2) from 1’) and 2’), respectively, by Lebesque’s con-
vergence theorem. q.e.d.
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§5. Proofs of Theorems 3 and 4.

First fix an integer jin [1, H], and let {R} ;} and {#, } be as in the proof of
Theorem 6. Then since S€0;, the component S, of R} ,—N(R} ) containing
h,,"(S) also admits Green’s functions for every (z, s) (for which 4, ; can be defined).
Hence when ¢(C;, Ry) = (1/27i)-(#(q,, S)—¢(gz, S)) on S with suitable punctures
g, and g, on R; (, but not necessarily on S), ¢(C;, R} ;) should be equal to (1/2xi)
<(B(h,7Hq0)s St )— (e, TN (@)s Se, ) on Sy . We set G, (p)=g(p, hy,s"(9))—2 (D>
hys"Xg,) on S; .. Then G;, coh, ™ converges to G; locally uniformly on S ([7,
Corollary 1]). Also we can show the following generalization of [7, §4 (13)].

Lemma 6. For every (¢, s) such as above, it holds that

I, et = —I1o(C Rl Gpoh, @)

Proof. 1f o(C;, R;) =0 on the component T, of R} containing f; ,7%(S),
then we can see that both sides are equal to 0.

Suppose that ¢ (C;, R; ;) & 0 on T; ,, and take suitable compact regular trajectory
C(j, t, ) of ¢(C;, R,,) freely homotopic to C; on T, ,—f, ,;"*(q). (For example,
take one of {C(j(k), t, s)},~, appeared in the proof of Theorem 6.) Since *o (C;,
R, ) is exact on T; ,—C(J, t, s), there is a harmonic function u;, ,on T, —C(/j, t, 5)
such that du;, ;=*a(C;, R, ) and u;, , coincides with a Dirichlet potential on T, ,
outside some compact neighbourhood of C(j, ¢, s). Note that u;,, is a constant
on each border of T, ,—C(J, ¢, s). Denote these two borders by d, and d, so that
d, has the same orientation as C; and let u;, ;= M, on d, (k=1,2). Then we can
see that M;—M,= —1.

Now apply [7, Lemma 4] to u; , , and *dg, ; on each component of T, ,— {g;,
>M} UC(/, t, s) with a sufficiently large M, and we have

- SC; *dgt,s + 2”' uj,t,so.ft,s_l(q)
= (*U(Cj’ Rt,s)’ dgt,s)T,,s(M) P

where T, (M)= T, ,—{g;,=>M}. Next apply the same lemma to g, and —o(C;
R, ) on T, (M), and we have

(*o (Cj’ R, ), dgt,s)T,.s(M) =0.
Since u;, , coinsides with (—1/2z)-||o (C;, R;,s)H?e;,;G;,:,, on the component of
R, ,— Ll_jC( Jj(k), t, s)—C(J, t, s) containing f; ;“X(q) (= h, ,"'(q)), we have the asser-
tion. - q.e.d.
As in §4, there is a unique solution B, ;= (b; ;; ) of the equation Z; ,= X, ;- B; ,,

where Z, , is the H-dimensional vector with the j-th component z,-;,,s=s

*dg t,5
namely, i

C
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H
S *dgt's = 2 bk;"s.g ¢(Ck, Rt,s) (j = 13 °t H)
Cj k=1 cj

for every (¢, s) with a sufficiently small |(¢, s)|. And similarly as in the proof of
Lemma 4, we can show the following

Lemma 7. For every j, it holds that
1) bjit,s = O(lo(Cj, R )llg; ) » and
2) by = —llo(C;, R DIz, - Gi(q) + oIt )ID) = O(It, 9)I)
as |(t, s)| tends to 0.

Now for every (¢, s) with a sufficiently small |(z, s)|, we set
H
Prs = — i'¢(f;,s—l(q)’ Rt.s) - ng biit.:'¢(ci’ ‘Rl,s) s

then we can see from the definition that {p, } satisfies the condition 2) in Theorem
1. Also we know that, under the assumption as in Theorem 3, ¢(f; ,"%(g), R,,,)
converges to ¢(q, Ry) (= @,,0) strongly metrically with respect to {f; } ([7, Theorem

H
1]). Since >3 b+ 8(C;, Ry ) converges to 0 by Lemma 7 and Theorem 6, ¢,
j=1

satisfies also the condition 1) in Theorem 1. And we know that ||(f,, %(q),
R, )lly;,;,, are uniformly bounded for every j ([7, Lemma 2]). Hence as in §4, we
can see by Lemma 7-1) that {g, } satisfies the condition 3) in Theorem 1.

Proof of Theorem 3. Set = 0(d, R,), then by the same argument as in §4, we
can show that v satisfies the conditions A) and B) in Theorem 1. Applying
Theorem 1 to the above {g, } and v, we have

b ] o= reff, 1o Ry-unro@ RY ol D)
0 0
as |(¢, s)| tends to 0. Also we can show the equation

S Re ¢t,s - S Re ¢0,0 = Re SS wt.s
d d RY

from Lemma 8 below. Hence we conclude the desired formula similarly as in §4,
by using Lemma 7-2), Corollary 2, and Theorem 5 q.e.d.

Lemma 8. For every (¢, s), it holds that

D[ Reen—[ Reqo= ] Re(@.cf,'—pdAto@ ), and
0

) [§, 1m @rofi —gad Aot B) = 0.
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Proof. Let el(p) and F; be as in the proof of Lemma 5. Then from the
definition, Im (Fy(9;,) —o,0) ETo(R,). Hence 2’) in the proof of Lemma 5 (with d’
=d) is valid.

Next recall that there is a (smooth) closed differential @ on R{ such that *a(d, R;)
—a&T (R, and the support of @ is compact in Ry= R§— T U U, (cf. the proof of
[5, Lemma 4]). Then we can see that

*U (d, ﬁt,s)_aof;,sereo(kt,s) ’

where R, ,=f, ,"(R,). Since Re ¢, , EI'(R,,), we have

[, Reu = —Re g *@of ),

= —(RC got,sof;.s_l! *a)ﬁo = —(FS(RC ¢t,s)’ *a)R6 .

Hence we have

s Re ¢, — S Re @5,
d d
= —(Re (F5(91,9)—%0,0)> *a)R{,

= (Re (F, 5(?’:,.;.)‘%,0)’ o(d, Ro))R{, .

Thus the assertions follows by the same argument as in the proof of Lemma 5.
q.e.d.

Remark. By using @ as in the proof of Lemma 8, we can show rather directly
the fact that metrical convergence implies convergence of periods (cf. [4, Corollary

3)D.

Proof of Theorem 4. Set y»= —i-¢(q’, R,), then similarly as before, we can
see that - satisfies the conditions A) and B) in Theorem 1. Hence applying Theo-
rem 1 to the above {g, } and this v», we have

g [ RO [ S%—i-ds(q, R)- uAX(—i+ g’y RY) +o(|(t, 5)])

as |(t, 5)| tends to 0. Next since G;,, ,oh; "'(q") converges to G;(g”) ([7, Corollary
17), we conclude by Lemma 7-2) and Lemma 9 below that

Re SS g 27(80,0@") 81, /1, (@)

H
— SIo(C Rk, G @) Craohes @)+ oI, 9

as [(¢, s)| tends to 0. Hence the desired formula follows by Theorem 5. g.e.d.

Lemma 9. For every t, it holds that
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D ([ Re@ion e =0, and
0

) ], s AR, 0
= 275(g0 O(q ) gt s(f; s—l(q ))) + 2 b; it s'Gj t, soht s_l(q )

Proof. Let eg(p) and Fy be as in §4. Then since 7,,, = Re (Fs(@;,;)—o,0) be-
longs to I'(R,) and is harmonic on Uy, we can apply [7, Lemma 4] (which remains
valid for any pair of 4 and o satisfying all conditions in the lemma except that they
need to be smooth not everywhere but only on a neighbourhood of 8D) to A(p)=
g(p, ¢') and @ =7, , on S(M)=S— {g(p, ¢')= M} with a sufficiently large M, and

obtain that SS 20sA\dg(+, ¢)= —SS M-z, ,=0. Sinceg(p,q’)=00onR,—
S(m) as(m)

S, letting M become oo, we have
1) sgy Re(F8(¢t,s)_¢o,o)/\dg(-, 7)=0.
0

Next note that for any fixed >0, we can take such an admissible family {#, }
that f, ;"' =h, ;" on the support of e,(p) for every (¢, s) with a sufficiently small
|, 5)| (, by choosing W so that e;(p) =0 on W in the proof of Theorem 6). And
set

- 1 & -
Vi,s = 8o—€5°(81,s°f1,s - 2 bjit,s*Gje,s0hy,s .
2r j=1
Then clearly v, , is a continuous Dirichlet potential on R and harmonic on U,.
Since dG;; oh, ;' = —2x+Im ¢(C;, R, )oh, ! on the support of ey(p), we have
dvy,—TIm (Fs(@y,0)—Po,0) = Ey,s*des

with a suitable constant E, , for every (¢, s) as above. Hence w, (p)=E, +(1—
es(p)) is a continuous Dirichlet potential on Rj such that w,,=0 on U, and
Im (Fy(9;,0)—Po,0) = dv;,,+dw, .. Apply [7, Lemma 4] (generalized as above) to A=
VW, and @ =*dg(-, ¢’) on S(M) with a sufficiently large M, and we have

SSS(M) Im (Flpr.)— oo A\ *de (- 4') = SS%S(M) h*dg(+, ¢") =2 v, (q) .

Hence letting M become + oo, we have

O I R IS O
= 27:(g0(q ) gt sof; s_l(q )) + 2 b; it,s® J,t,soht,s(q,) .

Thus the assertions 1) and 2) follows from 1’) and 2’) similarly as before. q.e.d.

Appendix. A characterization of the conformal topology.
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Let a Riemann surface R* (with no nodes) be given, and consider the finitely
augmented Teichmiiller space T(R*) of R* (cf.[5,§1,1°)]). Fix a point R, in
T (R¥)—T(R*) once for all, and denote by D(R,) the deformation space of R, in
T(R*), namely, the subset of 7'(R*) consisting of all points R such that there is a
marking-preserving deformation of R to R,. Next fix a marking-preserving defor-
mation (f*; R*, Ry of R* (with the identical mapping as the marking) to R,.
And, letting N(Ry) = {p;} %1, we set CF=(f*)"!(p;) with suitable orientation for
every j. Recall that {C¥} %, is a homotopically independent system of simple
closed curves on R*, .,

Now we choose a finite set {g,}:”, of auxiliary points on R*— _UIC;!‘ so that

ot

n

each component of R"‘—‘Ul C¥ is either a non-parabolic part or a parabolic part
=

containing (exactly) one point of {g,}:%;. And we consider the finitely augmented
Teichmiiller space T(R**) of R** = R*— CJ {q:}, and the deformation space D(Ry)
k=1
of Ryx= R,— U {f*(¢,)}. Then there is a natural projection, say =, called the
k=1

forgetful mapping from D(Ry) onto D(R,), and R,& T(R¥) converges to R, (as n
tends to 4 oo) if and only if R,& D(R,) for every sufficiently large n and a suitable
lift R¥ of R, (i.e. =(R¥)=R,) converges to Ry in T(R¥*). More precisely, if R,
converges to R,, then there is an admissible sequence {(f,; R,, Ry} =1 of deforma-

N A
tions of R, to R, and R¥ =R,— U {f, }(f*(q,))} considered as a point in T (R**)
k=1

converges to Ry; the converse clearly holds.

So we will give a characterization of sequences in T(R*¥) converging to Ry
For this purpose, fix RE D(Rp) and C¥ arbitrarily. Here we may assume that C¥
corresponds to none of nodes of R. Then by the assumption on auxiliary points,
we can define a holomorphic differential on R, which is again called the associated
differential for C¥ considered as a loop on R, as follows; when o(C¥, R) = 0, then
we set

#(CY, R) = |lo(C}, B)lIz*+6(C¥, R).

When o(C¥, R) =0, then C¥ is a dividing curve on a component of R’ = R—N(R).
N/

Let W, and W, be the components of R'— U C*, whose boundary contains C¥ and
=1

—C¥, respectively. Here {C*} /7, is the set of all C¥ (considered as loops on R)

corresponding to none of nodes of R (hence contains C¥). If both of W, and W,

contain auxiliary points, say ¢, and g,, respectively, then we set

1

i

*#(q1, 425 R) .

$(C¥ R = 5

If only one of W, and W, contains an auxiliary point, say g & W, then we can see
that ¢(q, R) &= 0, and we set



Variational formulas on Riemann surfaces 529

¢(CY, R) = ;B

Then we can consider, on the component of R’ containing C¥, the characteristic
ring domain W(C¥, R) of ¢(C¥, R) for C¥, and we denote by m(C¥, R) and
C(C¥, R) the modulus and the center trajectory, respectively, of W(C¥, R), where
m(C¥, R)=0 in case that W(C¥, R)=¢. Also setting m(C¥, R) = + oo for every
C¥ not contained in {C*};/,, we can define m(C¥, R) for every j (and every
RE D(Ry)). Here we note the following

Lemma Al. Let {C*} /., be as above. If m(C*%, R)>2 for every j', then
{C(C*,, R}Y_, are mutually disjoint.
J J

Proof. Suppose that there are two curves ¢, and ¢, in {C(C*,, R)} such that
¢,Nc,=¢. Then there is a component D, of W(c,, R)—¢, such that, for every
curve 7 in D, freely homotopic to ¢, (in W(c,, R)), c,N 7 consists of at least two
points. Also it is clear that 7 does not contained in W(c,, R) for every r such as
above.

Now consider 6 = ¢(c,, R) on W(c,, R), then ”0”%”(02. »=2+m(c;, R), and it holds

that S ( 18| > m(c,, R) for every r as above. Hence, recalling the definition of
Y0W(c,,R)

the extremal length, we have

2 m(c,, R)? m(c,, R)
> L =X, D)= N - M D)
m(c;, R) T 2

which is a contradiction. g.e.d.

In particular, when m(C%,, R) > 2 for every j’, then we can construct a marked
Riemann surface R* with nodes from R, by cuttmg R along U C(C , R), attaching
a once punctured disk to each border of R— U C(C R), and fill two punctures

corresponding to the same C* by a single pomt for everyj’. Such an R¥ does not
determined uniquely, but will be fixed arbitrarily for every R& D(Ry). Then we
have the following

Theorem A2. In D(Ry), R, converges to Ry if and only if

i) lim,,4wm(C;, R,) =400 for every j, and

ii) (R, (which is defined for every sufficiently large n) converges to Ry in the
sense of the Teichmiiller topology.

Proof. First suppose that i) and ii) holds. In particular, there is a sequence
of quasiconformal mapping f, from (R,)*—N((R,)}) onto Rx—N(Ry) for every n
such that the maximal dilatation of f, converges to 0 as n tends to 4-co. Then we
can show similarly as in the proof of [2, Lemma 1] that for every neighbourhood

N/
W of N(R,), there is an N, such that f,”'(W) contains (R,)}*—(R,— U C(C*, R,))
§'=1
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for every n>>N,. Hence we can construct an admissible sequence of deformations
of R, to Ry by reforming {f,}.

Conversely, suppose that R, converges to Ry in D(Ry). Then by the same
argument as in ‘the proof of the ‘only if” part of [7, Theorem 3], we can show that
i) and ii) holds. q.e.d.
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