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§1. Introduction.

Let {M,};., be a sequence of positive numbers. We set E{M,}=
{f(x)eC=(R"); VK: compact in R!,3C, R>0,Yacs Z!, sup !(%) fIZSCR™"'M,,}.
ue

We call this the ultradifferentiable space of class {M,} (=the ul.d. space of class
{M,}). A typical ul.d. class is a Gevrey class, i.e., M,=n!"(v=1). When v=1,
it is the real analytic class.

In the study of the spaces of the admissible data in the Cauchy problems, we
were led to introduce some ul.d. classes wider than any Gevrey class. (See W.
Matsumoto [29], [30] and [32].) In a systematic treatment of the problems in a ul.d.
class, a theory of pseudo-differential operators (=ps.d.op’s) of ul.d. class is required.
However, it is not yet well investigated except the case of the Gevrey classes.

The theory of ps.d.op’s of C~ class has been well studied. (See J.J. Kohn and
L. Nirenberg [20], L. Hormander [14], H. Kumano-go [26] and [27], etc.) Since their
formulations are slightly different each other, we mean, in this paper, Kumano-go’s
theory [27] by the theory of ps.s.op’s of C* class. Hereafter, we shall try to con-
struct a theory of ps.d.op’s of general ul.d. class corresponding to that of C* class.
We are mainly interested in the ul.d. classes wider than any Gevrey class because
that of Gevrey classes has been well investigated. (SeeL. Boutet de Monvel and
P. Krée[7], L. Boutet de Monvel [6], L.R. Volevi¢ [41], L. Hormander [15], F. Treves
[40], S. Hashimoto, T. Matsuzawa and Y. Morimoto [13], M.D. Bronstein [§], K.
Taniguchi [37], [38] and [39], G. Métivier [33], M.S. Baouendi and C. Goulaouic
[4], M.S. Baouendi, C. Goulaouic and G. Métivier [5], C. Iwasaki [16], K. Kataoka
[17] and [18], T. Aoki [1], [2] and [3], L. Zanghirati [42], L. Cattabrige and L.
Zanghirati [43], L. Rodino and L. Zanghirati [44], etc.)

A typical difference between the Gevrey classes and the ul.d. classes wider than
any Gevrey class is characterized by the separativity condition:

©) IH>1, VneZ,, (M,)"<HM)"".
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Every Gevrey class satisfies Condition (S) but any ul.d. class wider than all Gevrey
classes does not. (See W. Matsumoto [31] and Paragraph 2.4.) L.R. Volevi¢ [41]
tried to widen the Gevrey classes to the general class {M,} assuming Condition (S).

By saying that Zop,-(x, ) is a formal symbol, we mean that this is a formal

sum of asymptotic expansion of symbol. We denote temporarily the space of ps.
d.op’s of class [M,] with the indices p and & in Hérmander’s sense by S[M,]
(=8,:[M,]), the space of those symbols by S[M,] (=S,s[M,]), and the space of
formal symbols of the same class by S[M,] (=8,;[M,]). The more precise nota-
tion and the definitions of them will be given in Paragraphs 3.2 and 4.1. Under
Condition (S), we can construct a true symbol from a formal symbol in the sense of
class [M,]. By virtue of this, in case of the ul.d. class with (S), the relation of
asymptotic expansion gives a onto-homomorphism of star algebra from S,;[M,] to
Ses[M,] modulo symbols of strong regularizers of class [M,y,_»]. (Here, we say
that an operator A is a strong regularizer of class [M,] when A is continuous from
E'{M,} to £{M,}.) Therefore, the investigation of the operations in S[M,] is
reduced to that in S[M,]. In S[M,], the elementary operations, for example the
operator product and the formal adjoint, they consist of the arithmetical opera-
tions and the derivation, which have the local property and then which are rather
easily handled.

On the other hand, without Condition (S), it seems impossible to construct a
true symbol from a formal symbol in the sense of class [M,]. Namely, we cannot
reduce the investigation of the operations in S[M,] to that in S[M,]. We must
consider them directly in S[M,] (namely in S[M,]). As in the case of C* class, we
shall start from the following formula. (See, for example, H. Kumano-go [27]
Theorem 1.7.)

*) o(Po0) = Os— e p(x, E4-mq(-+y, &) dy dn.

(PoQ is the operator product of P and Q, o(A4) is the symbol of the ps.d.op. 4 and
4, is (2z)~'dn.) Our consideration will become fairly complicated because the
integration has not the local property. In case of the theory of ps.d.op’s of ul.d.
class, we cannot still expect that o(PoQ) itself belongs to S[M,]. Namely, we
should consider some modulo class. (See Paragraph 5.2.) Therefore, we must
divide the above integral into the main part which belongs to S[M,] and the rest part
which does to the modulo class. Here,this division depends on &. Thus, we need
a cut-off function which depends on §&. On the other hand, it is indispensable to
assume the analyticity in & on the symbols, if we expect a theory which allows the
asymptotic expansions of symbols of arbitrary length. (See the begining of
Paragraph 4.1 and Paragraph 3.2.) After all, we might use a cut-off function of
analytic class! Relaxing the analyticity in £ to the pseudo-analyticity, we can barely
construct a theory of ps.d.op’s of general ul.d. class except the two points: Construc-
tion of parametrices of elliptic operators in S;s[M,] and Construction of true
symbols in S[M,] from formal symbols in S[M,]. This theory, on taking [M,] for
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the Gevrey classes, gives some better results than those known until now. (See
Paragraphs 5.3 and 5.6 and K. Taniguchi [39].)

In this paper, we shall make much of the consideration on the reasonableness
of the definitions and on not only affirmative results but also negative ones on the
expected properties.

The auther deeply thanks Professor K. Taniguchi. Their discussions con-
tributed to the framing of the ps.d. op’s of ul.d. classes and to the reseach for the
best possible results in §5.

§2. Notation, definitions and propositions of ultradifferentiable spaces.
2.1. Notation and definitions.

In the proofs in the following sections, we shall use the letters C and R for
constants depending only on the symbols of ps.d.op’s and the dimension / of x-space
and they may not be the same at each line. We set /;=[//2]+1 and /,=[//2(1—0d)]+1
0=<o<).

“K C C£” means that K is a compact subset of £ and 6K N92=¢. “K—82”
means that 2 is the union of the increasing sequence of the compact sets {K}.

Let Z, be {0,1,2,3,-+},and R,={a=R; a=0}. We denote the integral part

of kER by [k] and max{k, O} by k,. We set log, x=max{logx, 1} (x>0).

For a=(a!, - a'), a'=(a¥, -+, a") and ﬂ in Zl, we set |a|=a'total,
al

"— (gl 1/, ., 1 14 , l=alle.a 1, Di‘:

atd=(a+ta @ tal) al=a ( ) (6x1> (ax,)

—v=D=(2), pee & =02 ) (%, €), fin,an (%, ) = DD f(x, ») and
—_ ax , P(w = Py p (@,a”) y Ly » Y
EAYE o

g®FNE, 9)= <6‘6)( > g(&, 7). We always use a for the order of derivation on

x and B for that on & in order to emphasize the regularity of derivatives on x,
which is much more important than that on £ in the theory of ps.d.op’s of ul.d.
class. (However, this use is reverse against other papers.) We denote a/<a/’
k
(1=j<l) by e<a’. Fora,eZ} (I1<j<k), we set (z ) —alTl a; (Se,=a),
. i

i’k
and for meZ, and a€Z!, [nl]()=m!/a! (|| =m). Especially, we denote
I

(Z,):(Z) (a,=a’) and |:k:|=|:a:| 2) m, ke Z,, a=(k, m—k)).
We set f(&) = Ff1(E) = S ~V-ist f(x)dx (Fourier image of f(x)) and

FUf1x) =S ev=I=t {(&)dE [x-& =x,6,+ - +x,&, and d6=(2x)"'dE], then it holds
that F~'F=FF ~'=Identity on H(R') [or, more generally, on D32(R")]. For fin

S'(RY), fis defined by {f, o>={J, >, [p= S(R')]. We denote (i‘,f?)‘” by | €]
and (14| €[22 by <&>.
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Lemma 2.0.1. For peR, " ([, resp.) is extended analytically in a conic
neighbourhood of the real axes {{ =E+/—17; & nER’, |7| <LEH/6] (< |E|[6l,
resp.)} and it satisfies

| (KEXHY®) | S 21HIL2(6])IBICE =181
[(|€]9)®] §2I#I/2(61)Iﬁl|f|!‘-lﬁl , resp.).

We shall often use this lemma without notice.
When a(x, &) E(R?) satisfies

ImeR, 3c20,0<36< 1, Ve, g ZL, 3C(a, §)>0,
la)(x, £)| S CEOm Iy for (x,§)eRY,

we define the oscillatory integral of a(x, &) as follows;
.1 OS_SS e~ V=Irtg(x, £)dxdé

—lim SS e~V Tty (ex)z(eE)alx, E)dxde |

>0

where x belongs to $S(R') and satisfies x(0)=1. This is well-defined. On the
detailed properties of the oscillatory integrals, see H. Kumano-go [27], Chap. 1.

For a sequence of positive numbers {M,}, a positive constant R and a subset
2 of R, we set B{M,}(2)={f(x)=C=(8); there exists a positive constant C
depending on f{(x) such that

| fay(x)| SCR® M,  in @ forVacsZ.}.

and

D2 {M,} r = {fX)EDIAR");
|If”?M,,).REaEEZI”f(a)'I%z/(RldlMlul)z< oo}.

B{M,} (2) is a Banach space with the norm of the infimum of C in the definition
and 9,2{M,} ; is a Hilbert space with the natural inner product. We define the
ultradifferentiable spaces (=the ul.d. spaces) of class {M,} as follows;

B{M}(9)= ind lim BIM,}(9),

EAM}(QI=CAM,}(@)I= proj lim ind lim B{M,} «(K) ,

DM} (2)= ind lim ind lim B{M,} ,(K) N D(K) ,

E>Q R>oo
D,2{M,} = ind lim D 2{M } s .
R->o

Obviously, it holds that D{M,}(2)SB{M,}(2)SE{M ,}(Q). Especially, for
M,=n!" (v>0), they are called the Gevrey class of order ». When 2=R’, we
write simply B{M,}. E{M,} and D{M,}. We denote the strong dual space of a

topological vector space X by X’. The dual space of the ul.d. space of class {M,}
is called the space of ultradistributions of class {M,}. On the topologies of
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E{M }(2), D{M,}(2) and those dual spaces, see H. Komatsu [22]. As 9,2{M,}

is hilbertian, so is 9,7 {M,} . Applying H. Komatsu [21], we have D72{M,} =

proj lim 972{M,} , which is a Fréchet space. We shall characterize 9,2{M,}
R->o

and 9}2{M,} later on by the Fourier images.
Let 2 be a subset of R'1x R'>. We shall also use
BIM,, N} @)= {f()EC=(2); 3IC>0, Ve,€ 2 (i=1,2),
| flagap | SCRIH%IM , Ny, in 8},
and
B{M,, N,}(£2)= ind lim B{M,, N} x(2) .
R->

All propositions mentioned on B{M,}(2) in Paragraph 2.2 rest valid also on
B{M,,N,}(2) under corresponding assumptions on {M,} and {N,}.

2.2. Fundamental properties of ultradifferential spaces® and Assumption.

By Kolmogoroff’s theorem, we can rearrange {M,} to a logarithmicly convex
one for B{M,} and D{M,}. On E{M,}, we can also replace {M,} by a logari-
thmicly convex one when liminf (M,/n!)Y* >0, which is satisfied if £{M,} is

analytic or rather non-quasianalytic. (See S. Mandelbrojt [28] Chap. VI and
W. Rudin [36].)

In case of 9,2{M,}, owing to the Schwarz inequality we can replace {M,} by a
logarithmicly convex one.

Throughout this paper, we always assume the following;

Assumption. {M,} satisfies

(A) lim inf (M, /n})¥*>0 .

(By virtue of (A), we can assume that {M,} is logarithmicly convex. Moreover,
as a replacement of finite elements of {M,} does not change the ul.d. class, we can
also assume that {M,} is non-decreasing. Hereafter, under Assumption, we
always assume that {M,} is logarithmicly convex and non-decreasing.)

Remark. Under Assumption, £{M,} includes the real analytic functions.
Sometimes, we shall introduce supplementarily the following;

(B) >0, Vadyl, logM, M, [ MH=v/n.

Under (B), it holds that

(B), VR>1, 3deZ\{0}, Ynx1, M,/M;\>RM, \/M,.

On the other hand, (A) and (B) imply

1) S. Mandelbrojt [28] systematically investigated the fundamental properties of the ul.d. classes
from the point of view of the theory of real functions.
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(B)Z 3n0>0 ’ Vn g 0 > (Mn+n°+1/Mn+no)_(Mn+1/Mn) =1.
We have the following under Assumption.

Proposition 2.1. (Algebra, division, composition, etc.)

iy B{M,} and E{M,} are algebras over C and products of the elements in
E{M,} by the ones in D{M,} (of the elements in B{M,} by the ones in D,2{M,},
resp.) belong to D{M,} (to D,2{M,}, resp.).

ii) If {M,} satisfies the condition.

(R) Hz=1, n>»1, (M, /m)"<HM,/n)", (1=Vm=n),

E{M,} [B{M,}, resp.] is closed under the derivation by non-vanishing elements (by
uniformly non-vanishing elements, resp.).

iii) If {M,} satisfies the condition
(K) 3Hz=1, Yn>1, (M, /m)/"DSHM,n)/*D, 2<Vm<n),

E{M,} and B{M,} are closed under the composition, solving ordinary differential
equations and the implicit function theorem.

i) is easily seen. ii) was shown in W. Rudin [36] and iii) was done in
H. Komatsu [23], [24] and [25]. On the composition, we need a little more precise
form, which is implied in the proof of the above iii) by H. Komatsu [23].

Lemma 2.0.2. Let {M,} and {N,} are logarithmicly convex. We assume that
{N.,} satisfies Condition (L), introduced below and Ry=lim sup (N,/M)/*< oo and
that g(y)E C¥(2)) and f,(x)= CN(8,) satisfy

g =C R My O=|7r|=N, 2,CR"),
| fia(¥)| SCR* Ny, (1=|e¢|=N, 1<i<m, 2,CR').

If the range of (f)1<i<m is included in 2,, we have the following estimate.

22 I( Is{c‘ ==
( . ) g f)(w) = C,(ZR,R)IwIMlﬁl (lélaléN)a

where C'=mC,R,M,CR,/R’ and R'=HR,+mCR,.
We introduce the following conditions for k€ Z, ;

(L), iC>0, 3IH=1, VYa>l,

(M ili) (M i/ (n—J)H = CH"M ,y4/n!, (1=Vvj=n),
(A.D), IH=1, VYn>»1,

(M i/ M) < H(M , yy/n')" (1=Ym=n),
(A.C) dH=1, VYa>1,

M, [(mM,,_)=HM,/(nM,_,), (1=Vm=n).
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(A.]), means that 4,=(M,,,/n!)/* is almost increasing. In fact, if H=1, {4,}
is increasing. (A.C) means that A,=M,/n! is almost logarithmicly convex. In
fact, if H=1, {4,} is logarithmicly convex. (R) and (K) are equivalent to (A.I),
and (A.l),, respectively. (A.I), implies (L), and (A.C) with H=1 (i.e. {M,/nl}
is logarithmicly convex) implies (L), for every k in Z,. We shall assume (L), in
Theorem 5.3 and Corollary 5.4 for suitable k depending on the dimension / of x.

Throughout this paper, we use often cut-off functions. Therefore, we need
introduce the non-quasianalyticity condition:

(N.Q.A) i MM, <oo.

If and only if {M,} satisfies Condition (N.Q.A), £{M,}, B{M,} and D{M,} are
not quasianalytic and 9 {M,} contains non-zero elements.

Remark. Assumption follows from Condition (N.Q.A). (See W. Rudin [36].)

In the theory of ps.d.op’s of ul.d. class, we wish a cut-off function of analytic
class. Of course, it cannot exist. Therefore, we use a sequence of cut-off functions.

Lemma 2.0.3. We take a logarithmicly convex sequence of positive numbers
{L,} which satisfies Non-quasianalytic Condition (N.Q.A). There exist a sequence
of cut-off functions {y,(t)} and two positive constants C and R independent of k
and j, such that, for arbitrary k in Z,

| Divr()| < {CRjkj O=j=h),
"w’?() B CRjLi (J.EZ+)’
Ylt) =0 (¢t=Z0), =1 (1=1) and O=yr()<1.

2.3)

Proof. Let us take a non-negative function ¢ in @{L,} which satisfies
supppC {|¢t] =1} and gqs(t) dt=1 and the characteristic function ¥ of {r=1/2}.
We  set yr(f) = x(1)%p(41)%p(4kt)* - xp(4kt). Since Diyr(t) is expressed by

~————

k
(4kY 2(e)*B(41)* @' (Akt)x - %' (4kt)xp(4kt )%+ x(4kt) for j <k and by 4/ x(t)x¢;(4¢)
J k—j
*@(dkt)x+--x¢(4kt) for general j, the above properties are easily seen. Q.E.D.

Remark. The following inequality holds for k and j in Z; k' <e*j!.

2.3. Associated function and Fourier images of elements in D;2{M,} and in

QLzl{Mn}'
Under Assumption, {M,} satisfies lim(M,)Y"= oo and it can be assumed

that {M,} is logarithmicly convex. Therefore, setting a,=log M,, {(n, a,)} forms
a convex polygon with infinite sides. This is called the Newton polygon of {a,}.
Moreover, the following functions are well defined:
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T(r) = supr'/M, (r>0),
=0

2.4 H(t) = sup {nt—a,}.
2z

The former is called the associated function of {M,} and the latter is done the
trace function of {a,}. H(¢) is increasing, convex and piecewise linear, so it has
the right derivatives. We set

h(t) = <%>,H(t): the right derivative of H(z).

h(¢) is an increasing and diverging Z,-valued step function. The following rela-
tions hold;

T(r) = exp H(logr), {r(%)rT(r)}/T(r) = h(logr).

T(r) and H(z) are given as the maximums at n=Ah(log r) and at n=~A(t), respectively.
Then, the following equality holds;

(2.5) H(t) =t h(t)—ay (ER).

These facts above rest also valid if we replace 4(f) by the left derivative of H(¢).
We remark that 7(r) diverges more rapidly than any polynomial.
By virtue of Assumption, the following relations also hold;

2.6) M, = s1>10p Ty, a,= sup {nt—H(t)}.

Two supremums are given as the maximums at r in [M,/M,_,, M,,,/M,] and at ¢
in [@,—a,_;, ,+.1—a,), respectively. Then, the following holds;

2.7 ann(an+l_an)_H(an+1_an) .

If we set ai=a,,,—a, for n<x=n+1 and allow multivalues at » in Z, and if we
allow multivalues at the points of discontinuity for H(t), n=h(t) is the inverse
function of 1=a;.

We say that {#,} (T(r), resp.) is equivalent to {M,} (T(r), resp) when there
exists positive constants R;, R,, C; and C, such that C,R'M,< M, < C,R3M,( C,T(R,r)
< T(r)< C,T(Ry), resp.) If we change finite elements of {AM,} (T(r) on a bounded
set, resp.), it is equivalent to the original one. Therefore, in the conditions on
{M,} (on T(r), resp.), we may always remove the restriction n>1 (r>1, resp.).
We shall often use this fact without notice.

Let us set F[X]={f(&);f <X} and Liw(€)] = {g(£): measurable and
g(&w(&)eL¥R") }. The following proposition is easily obtained.

Proposition 2.2.

D) FID2{M,}] = ind lim LITKEH/R)].
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i)y F[D{M,}] = Prgi lim LATKER)T.

Remark. As T(r) diverges more rapidly than arbitrary polynomials, 9 2{M}
is strictly smaller than @52(R") and 9,2’ {M,} is strictly larger than 9,2 (R’).

2.4. Differentiability and separativity.
The ul.d. spaces are classified the differentiability and the separativity. We
denote a,=0(g(n)) or a,=o(g(n)) according as limsupa,/g(n)<oo or lim a,/g(n)=0.
n-»oo n>oo

Differentiability Condition will play an essential role when we shall consider in
Paragraph 4.3 whether P(x, D) in S™[M,]is a regularizer. It will also often appear
in order to make the statements of theorems simple.

Proposition 2.3. (Differentiability.)
The following statements are equivalent.

(D.0) B{M.,} is differentiable, that is,
fEeB{M,}=>VaeZ,, fn(x)EB{M,}.

(D.1) 3IH>1, Va>l, M, <H'M,.

(D2) 3H>1, Yn>l, (M, )V/oV<HM,)".

(D-3) log M, = O(r?).
0.4 log (M,1./1,) = O(r) .
(D.5) >0, Vr>l, T(r)=relesr.
(D.5) lim inf H(#)/12>0.

t->o
(D.6) lim inf A(£)/t>0 .

I dad

(D.7) VYmeZ,, 3H=Hm)>1, Yr»1, T(r)=r"T(r/H).
Remark. The following condition;

(D), 3H>1, Yn»l, M, M, /M:<H,

implies (D.1), but the converse is not always true.

We shall use the notation (D) on behalf of (D.j), 0=<j=7. The above pro-
position was shown in S. Mandelbrojt [28], Chap. VI except the equivalence between
(D.1) and (D.2). This equivalence and the assertion in the above remark are easily
seen.

Proposition 2.4. (Weak separativity.)
The following statements are equivalent.

(W.S.0) B{M.,}(R"*"2) is weakly separative. that is,
AN}V, >0), B{M,} (RS BIM,, N,} (R1xR").
(WS.1) 3H>1, H{NJ©N,>0), Vo, m>1l, M,,,<H""M,N,, .
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(W.S.2) VYm>0, lim(M,, , /M)"=1.
n-roo

(W.8.3) log M, = o(n?).

(W.s.4) log (M4,/M,) = o(n).
(W.S.5) V&0, 3r,>0, Yr=r, T(r)=rlosr,
(W.S.5) 1122 H)/t? = oo .

(WS.6) 3IH>1, Ym>0, Vr>»1, T(r)=r"T(/H).
Remark. The following condition:
W.S), imM, M, /M:i=1,

implies (W.S.1) but the converse is not always true. (This is easily seen.)
We shall denote (W.S.j), 0= j =<6, by (W.S).

Separativity Condition introduced below play an essential role when we shall
consider in Paragraph 4.3 whether P(x, D) in S§™[M,] is a strong regularizer. It
will also have an essential role when we shall consider the construction of true
symbols from formal symbols in sense of [M,] in §6.

Proposition 2.5. (Separativity.)
The following statements are equivalent.

(8.0) B{M,}(R"*2) is separative, that is,
BM } (R = BM,, M} (R'*) .
S.0) IH>1, Va,m>1, M,,,<H""MM,.
(S2) IH>1, Vasl, (M) <HM,).
(S3) IH>1, Va1, My, /My <HM, M, .
S4) IH>1, Vasl, M, /M,<HM,)"" .
(8.5) 3IH>1, Vn,m>1, Yk=n, M, ,<H""(M,.,M)YM,.
S.6) IH>1, Vr>l,  T()=T(r/HY.

We shall denote (S.j), 0= j=<6, by (S).

Proposition 2.6. Under Separativity Condition (S), the following equivalent
conditions are satisfied. However, the converse is not always true.

(87 >0, Yn>l, M,<n!".
(S.8) >0, Va>l, M, /M,=<n".
(S9) 3k>0, Vr>»1, T(r)=expr™.

Remark. By (S.7), each separative class is a subspace of a Gevrey class or a

Gevrey class itself.
Condition (S.1) is called “‘stability under ultradifferential operators” in H.
Komatsu [22], etc. On the other hand, L.R. Volevi¢ said that {M,} is “admissible”
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in [41] when it satisfies (S.1). The proofs of Propositions 2.4, 2.5 and 2.6 were given
in W. Matsumoto [31] except the equivalence between (S.2), (S.3), (S.4) and (S.5).
The equivalence not yet proved will be shown in Appendix B. In the propositions
in this paragraph, B{M,} can be replaced by £{M,} under Assumption. It can
be also replaced by 9 {M,} under (N.Q.A).

Now, we announce a proposition on inclusion.

Proposition 2.7.

) 9M}cB{MIcEM} and DM} CD2{M,}.

The inclusion maps are all continuous. Under Condition (N.Q.A), D{M,} is dense
in D,2{M,} and in E{M,}.

ii) Under the differentiability condition (D) the following holds;
Q{Mn} Cg)Lz{Mn} CQ{M"} C‘S,{Mn}
The inclusion maps are all continuous.

2.5. Carleson’s theorem.

The following proposition will be applied in Paragraph 3.2. It was also applied-
in L. Botet de Monvel and P. Krée [7] and L. Boutet de Monvel [6] when they con-
structed true symbols from formal symbols in sense of Gevrey classes.

Proposition 2.8. (L. Carleson [10])
Suppose Conditions (N.Q.A), (D) and the following

(C) aRogl, EICogo, Vr>>1,

@/z) S: log T(rs)/(1+s5) ds <log T(Ryr)+C, -

Take an arbitrary sequence (c,);-o which satisfies
le,| CR"™M, (n=0),
for some C>0 and R>0. Then, we can find a function g(t) in B{M } (R) such that

d )" .
(§)e@=c.. @z0.
Remark 1. Even if {M,} does not satisfy Condition (D) we can obtain the
same result replacing Condition (C) by

There exists a function 7(r) equivalent to T(r) such that 3R,=1, 3C,=0,
3e>0,

<) 2/x) S: log T(rs)/(145%) ds + {(14¢)/2} log log r < log T(Ry)+C,

>0,
and log T(e*)4-1/2+ {(14+¢)/2} logt is convex for t>1.
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Remark 2. The integral in Conditions (C) and (C’) converges if and only if
{M,} satisfies Non-quasianalyticity condition (N.Q.A).

2.6. Extension of {M,} on R,.

As we consider S,; on B{M,}, it is convenient to use non-integral numbers as
the index n, for example, n=k/(1—0) (k€ Z,,0<6<1). Although we can develop
a theory of ps.d.op’s using [k/(1—9)]: the integral part of k/(1—98), {Mpyq-s1t is
no longer logarithmicly convex, in general. In order to make clear the statements
of theorems, we extend {M,} to a logarithmicly convex positive continuous func-
tion M, (x&R,). Of course, extension is not unique. Therefore, we chose an
extension at the begining and we regard {M,} as the restriction of M, on Z,.

A typical extension is the logarithmicly linear interpolation:

M,=M)yM, ) (x=[x]+s and n<x<ntl).
The graph of (x, log M,) coincides with the Newton polygon of {log M,}. We

set a,=log M,. (E%c) a, coincides with a; introduced in Paragraph 2.3. Choos-
r

ing this, the properties mentioned up to now on {M,} rest valide replacing n by x.
Here, we must pay attension to the following; Let us take >0 and set T,(r)=
sup r"M,;, (r>0). Only the following relation holds good

YNOEYIGR

However, as the Newton polygon of {log M,s1.,} stay in the upper side of that
of {log M,,}, we have the relation:

T\(=r 210 .
If {M,} satisfies Differentiability Condition (D), it holds that
N(nNzTr*H)  (AH>1).

On the other hand, in many cases, there is another natural extension. For
example, M,=(x/e)** (x=1) gives a natural extension of (n/e)"”, which is equivalent
to {n!"} (the Gevrey class of order v). If we adopt an extension which is not the
logarithmicly linear interpolation,

T(r) = sup r*/M, (r>0) and H(t) = sup {xt—a,}
=0 =0

do not coincide with T(r) and H(t), respectively (a,=log M,). Nevertheless, under
Differentiability Condition (D), 7(r) and H(t) are equivalent to T(r) and H(z),
respectively. Under a natural extension, sometimes it becomes very easy to obtain
T(r) and H(t). After an extension, the relation between a, and H(¢) is completely
symmetric.

In this paper, we adopt always the logarithmicly linear interpolation. If
Condition (D) is satisfied, we can replace it by another arbitrary extension.
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We have the following lemma of the fractional derivatives.

Lemma 2.04. (1) If sup|fim(x)| < CR"™ M\, for |a|=n and =n+-1, the
Sollowing holds for 0=p=1;

SUD | Sl (x+) i@ |/ 17]* SV CR* Miai || = ) -

Q) I fw@®@|2=CR*'M,, for |a|=n and =n+1, the following holds for
O=u=1;
[IKE>* AON 2= C{UA DR My .

We shall often use this lemma without notice.

2.7. Examples of {M,}.

In order to make clear the meaning of the conditions, we give some typical
examples.

Example 1. M{(v, #)= {n*(logn)'}", @>1, v>0, u€R).
If =0, this gives the Gevrey class of order v.

Example 2. M®\(x, a, v)=n!"exp (an"), (0> 1, £>1, a>0, vER).
E{MP(x, a, 0)} appeared in W. Matsumoto [29] and [30] and £{MP(2,a, 1)}
did in W. Matsumoto [32].

Example 3. M$3(a, b, v)=n!"exp {bexp (an)}, (n>1, a, b>0, vER).

All of them satisfy Conditions (B), (A.I), (k€ Z,, then, of course, (R) and (K))
and (A.C). Here, we can take H=1. {M{"} (v=1) and all of {M{P} and {MP}
satisfy Assumption. On the other conditions, we show when they are satisfied in the
tables below.

Table 1.
Nea | B | WS, | @
), v>1or
M3 v, 1) y=1and g>1 all all all
MP(x,a,v) | all <2 £<2 nothing
M(a, b,v) all nothing nothing nothing
Table 2.
T (r>1) (C) or (C) c*
M, 1) exp {ri/¥(log r)~#/v} v>1 v>3/2
M(k, a,0) exp {a*(log r)*} all all
M(a, b, 0) r*~{log log r—log (abe)} all all

((/e+1/e®)=1, (ax)t/x X (a*£*)!/x*=1, Condition (C*) will be introduced in §6.)
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Remark. T(r) is an equivalent function to T(r). On {M? (x, a, 0)} for £>3
and on all {M®(a, b, 0)}, T(r) satisfies only T(r)< T(r) and sup r*/T(r)=M,.

We give an available lemma to show the non-equivalence of classes.

Lemma 2.0.5. Let {A4,} and {B,} are two sequences of positive numbers.
Suppose that {A,} is logarithmicly convex and that lim(4,)Y"=o and

lim inf (B,/A4,)"=0. Then, there exists a periodic function in B{A,}(R) which does
not belong to B{B,}(R).
This lemma was given, for example, in S. Mandelbrojt [28] Chap. VI.

2.8. Definition of pseudo-differential operators of class C*.

We can consider the theory of ps.d.op.’s on a manifold. However, in this
paper, in order to make clear our assertion, we consider it in R’ and stand on that
of class B developed by H. Kumano-go [27]. We denote the space of the symbols
p(x, €) of the ps.d.op’s of class C=, of order m (ER) and with 0=<6<p=1 and
0<1 in Hormander’s sense by Sp; that is,

def
p(x, O ESE o Ve, peZl,3C(e, £)>0,

2.8
9 |PB(x, £)| S CEOm-rPI+elel in R,
We set S,;= U S;5.

mER

We shall use the semi-norms |p|{)= sugp | PE)(x, &) | LEDm—PIBIFOI“,

ET)

121<7,IBISk

Remark. On S™=, we need only the following estimate
29)  VYN>0, Ve, feZi, IC(N, e, f)>0, |p{B(x, )| =CLEDY.
The ps.d.op. P(x, D) with the symbol p(x, &) is defined by

@10) PG, Du = 0s— ([ =i tpee, eu)dyae,  weB®Y).
For ue 92(R"), it is represented by

2.10) PG, D= [ e tp(x, Opuce)ae .

When P is continuous on 9%z, we define Pu for u in D7z by the fllowing;

Pu, > =<u, P*¢)>  (6€D7AR"),

where the symbol of P is the complex conjugate of that of P. We denote the space
of ps.d.op’s of order m by Sj; and set S,;= U S;;. Sometimes, we express the
symbol of P(x, D) by o(P(x, D)). e

We also denote the set of the formal sums 20 pi(x, &) with the order descent
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o—08 by &5, that is,

) def _ .
N pix, ) ESH o YieZ,,
i=0

(2.11) Ve, peZ, Irfi, @, £)>0, ICG, a, >0,

|pligg(x3 E) I §C<f>m"(p—8)i—i’|ﬁl+slal
in R'x{&H=r}.
We set S"s:mUR .

In 8,5, we define “the operator product” and “‘the formal adjoint” as follows.

2.12) (Sp)e(Ra) = S
N o= 3 )P Oy 6,
2.13) (2p)* =30k,

pE(x &) = 33 (rD7Px 6) -

We give the operator product as the product and the formal adjoint as the star
operation to the C-module S,;.

We say that the symbol p(x, &) of order m® has an asymptotic expansion

i pi(x, &) when the following is satisfied;
§i=0
YNeZ,, Ve, pcZ., 3r(N, e £)>0, IC(N,a, £)>0,
@.14) [(p(x, ©)— 3 pilx, )| SCLEO»C-DN-PEIRIa  in RIx €SS 1.
i=o0

We write the above relation by p(x, §)~3]p;(x, £), and call p(x, &) the true symbol
and 33p;(x, &) a formal symbol.

§3. Expected properties on pseudo-differential operators and properties on formal
symbols of ultradifferentiable class (Property VI).

3.1. Expected properties.

In order to make simple the consideration of the possibility of a theory of
ps.d.op’s of ul.d. class, we restrict ourselves to an easily handled case. On the
ul.d. spaces, some operators of infinite order are admited. In spite of this, the
class of ps.d.op.’s of finite order is a star algebra so far as so is a wider one. Then,
we consider only the class of finite order.

We settle our expectation in the following eight slogans. Of course, in ap-
plications, we use several of them depending on the problems and sometimes we

2) On the symbols, it seems better to say ‘“‘of degree m” than “of order m”. However, we use
“order” not only on the operators but also on the symbols identifying both of them for simplicity.
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wish other properties. However, we can say that the following eight are basic.
We use the temporary notation introduced in §1. We also temporarily denote the
relation of asymptotic expansion of class [M,] by p(x, &) ~ 3] pi(x, &).
[Xx]
I. S[M,], S[M,] and S[M,] are subsets of S,s, S,s and S,s, respectively. The
relation p ~ 3 p; implies p~>p;.
[#£4]

1. S[M,] contains all of the differential operators with coefficients in B{M}.
III. FEach ps.d.op. in S[M,] is bounded on D2{N,} and on B{N,} for suitable
{N,}
IV. Each ps.d.op. in S™[M,] is continuous from D12{N,} to D,2{N,} and from
E'{N,} to E{N,} for a suitable {N,}. (An operator which has the above property is
called ““a strong regularizer of class {N,}”.)
or IV, Each ps.d.op. in S™[M,] is continuous from D}z to D,;2{N,} and from &’
( to &{N,} for a suitable {N,}. (An operator which has the above property is
called ““a regularizer of class {N,}”.)
V. S[M,]is a star algebra over C (with or without modulo class S™[N,]) for a
suitable {N,}.
VI. S[M,] is a star algebra over C with respect to the operator product.
VII. Every elliptic operator in S[M,) has a parametrix in the same class.
VIII. For each 3p; in S[M,), there exists a true symbol in S[M,) which satisfies
P~ 2pi
[¥n]
The ps.d.op’s of C* class satisfies all of the above properties removing [M,],
{M,}, and {N,}.
First, we seek for a reasonable definitions of S[M,] (that is, of S[M,]) and
S[M,). There are some possibilities and we want to choose a simple one.

3.2. Definition of formal symbols and necessity of analytic estimate in &.

We want to construct a theory which allows asymptotic expansions of symbols
of arbitrary length. Then, we consider first the formal symbols.

Let {d,},_, be a non-decreasing sequence of positive numbers and {L,} be a
positive and logarithmicly convex sequence with Non-quasianalytic Condition

(N.Q.A).

Definition 3.1. We take real numbers 0=0=<p=1, d<1 and m.

2 p;(X, E) e S:'S[Mn] = S::;[M,,, Ln]

def
3.l e 1C>0, 3IR>0, 3Ir,>0, Ve, pcZ.,

P85, &)] SCRAHISPIM,,  fIEIm=C-DispraIm,
for (x, &)ER'X {LE>=redivip}-
3.2 1C>0, 3IR>0, 3d'>0, Ve, p=Z.,
[P0, )] S CRASIM, )y Ly pi P OirBI o101,
for (x, §)eR'x {K&H>=d'}.
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Remark. 31pix, &) is a formal sum.

As far as we consider only the formal symbols, we can take {d,} arbitrarily
because we use only the operations with the local property. On the other hand,
in case of true symbols, the choice of {d,} becomes very important. Linked with
the true symbols, we shall take d,=D}®=(M,,,/M,)”* and denote such space by
SpsolM,] (0<O=1 or 6=00). When 6=oco, we mean that d,=d ,(Yn). In this case,
Piw is holomolphically extended in a conic neighbourhood of the real axes: {{EC’;
[Im¢| <e|Rel|” and || =r,d,} (3e>0 independent of i) and it satisfies there

(3.3) [Picar(%, )| SCRFIGIM,, |, (ESP=C=Di+slal (Re{ =¢).
We set S5[M,]= U SiM,).
meER

Now, we give a comment on the analytic estimate on &. If /=1 and p,(x, &)
is positively homogeneous in £, the analytic estimate on & of p;(x, &) is evident.
In case of />1, the requirement of the analytic estimate of the derivatives in & seems
too strong. However, when {M,} satisfies Condition (C) and when {L,} satisfies
(N.Q.A) and limjnf(n I/L)/*=0, it is in general impossible to replace A! in (3.1)
by L as long as we expect that S,s[M,] is closed under the operator product or
under the star operation. In fact, in case of p=1 and 6=0, we have the following
counter-example.

First, we assume the closedness under the operator product. By Condition
(C), there is a function ¢g(x,) in B{M,} (R) such that g,,(0)=M,. (See Proposition
2.8.) Setting N,,=n!L, and N, = (NpNyin)? (n=0), lim*iilf (N,/L)"=0

holds. Then, applying Lemma 2.0.5, there exists a periodic function p(¢) in
B{L,}(R) which does not belong to B{N,}(R). We may assume that the period
of p(t) is one. Let x(¢) in B{L,} (R) be

2=5t<3,

t) = B
x(®) {0 t<1 or t=4.
We set

Po(®) = p(( 3 ED/ED(E] (EHeD™),
‘]o(x) = q(xz)’ pi(x’ 5) =qi{x,§) =0 (i= ]) .

Obviously, py(x, &) and g(x, &) are homogeneous of order 0 and satisfy (3.1) with
d,=1 (YnEZ,) replacing B! by Lg by virtue of Lemmas 2.0.1 and 2.0.2, because
{n!} satifies Condition (K).

Let (X p)o(X4g;) be rix, &). We take x=0, £=(p, ot, 0, +--, 0),
a=(0,m,0, ---,0) and =(0, n, 0, -++, 0), (0>1, 2=t =<3). r;}is given by

(3.4) i = )7 P0G w007
= p7ITMI) T M ()
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As 33r(x, &) satisfies (3.1) for some C>0 and R>0 replacing B! by Ls, we have
the following;

[P ()| SC(R/\/ 5 *"RilL,.

Taking m=0 and i=n, this implies
(3.5) sup [p(1)| S C(R/V/ 5 )" Noy -

Then, p(¢) belongs to B{N,} by virtue of Kolmogoroff’s theorem. Thus, we arrive
at a contradiction. When we assume the closedness under the star operation,
ro(x, &)=g4(x)py(¢) and r,(x, £)=0 (i=1) brings the same contradiction.

Remark. 1If we assume only (3.2), S,5[M,] becomes a star algebra. However,
such class of formal symbols does not seem available in applications.

3.3. Algebra of formal symbols (Property VI).

We notice that S,;[M,] furnishes the operator product as the product. We
can show the following theorem by the same way as L. Boutet de Monvel and P.
Krée [7].

Theorem 3.1.
1) 8,5[M,] is a star algebra over C, that is, when 33 p; and 31 q; belong to S M,
and to SIM,), respectively, (31p;)o(2q,) and (p)* do to Sp*"IM,] and
Sas'[M,], respectively. (See (2.12) and (2.13).)
2) If a square matrix of formal symbol S p; in SHIM,] is elliptic, that is,

[det{py(x, E)[KED"H 1 =C,  in @x{EET;{E>=RY,

Sfor some positive constants C, and R, and for an open set 2 and an open conic set I in
R, there exists the inverse in Sy;"[M,] on @x {€€I"; {E>=Ry}.

The structure of S,5[M,] is rather simpler than that of S,,[M,] because all
operations in &S,;[M,] have the local property. On the formal symbols of class
[M ], more profound results have been obtained. A remarkable one is “‘the perfect
decomposition of formal symbol”. T. Nishitani [35] proved it in the Gevrey classes.
His proof holds good in the general class [M,] under Condition (L), with H=1.

§4. Definition, continuity (Properties III and IV) and pseudo-local property of
pseudo-differential operators of ultradifferentiable class.

4.1. Definitions of symbols of pseudo-differential operators and of asymptotic ex-
pansions of them in class [M,].

We regard p(¢) and g,(x) in Paragraph 3.2 as true symbols and assume the
asymptotic expansion (4.3) introduced below replacing 8! by Lig. If {M,} satisfies
Condition (D), (4.3) for N and N+1 implies (3.1) for N. Thus, if we want a theory
of ps.d.op’s of ul.d. class which allows the asymptotic expansions of symbols of
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arbitrary length and the star algebraic structure, the analytic estimate in & is in-
dispensable also on true symbols. (See also (5.20) and (5.21) in Theorem 5.2.).
On the other hand, as explained in §1, we cannot adopt the process through the
formal symbols in order to see the structure of the space of ps.d.op’s in a ul.d.
class without Condition (S).

We start from the formula () in §1. However, the derivatives of the integral
on 7 near §+7~O have not the estimates of S,; sense. (See Paragraph 5.2.) In
order to treat this part separately, we wish a cut-off function depending on £&. To
make this cut-off consistent with the analytic estimate in &, we introduce the
“pseudo-analytic” estimate.

Let us take d, in Definition 3.1 for (D,)¥¢, where 0<0=1 or #=oc0 and
D,=M,.,/M,. We introduce supplementarily a positive and logarithmicly convex
sequence {L,} with Non-quasianalytic Condition (N.Q.A).

Definition 4.1. We take 0=<0=<p=<1, 6<1,0Z0=<1 or =00 and mcR.
def
(i) pCx, §)EeSyIM,] (=SylM,, L)) < IC, R>0, Ya, p=Z;,

@.1) | p@(x, )| SCRPIM, i KE PR for (x, )ER'X {KEPZ RD},
4.2) |p@(x, )| SCRPIM g Lig e m—"PI*eel - for (x,§)ER'XR'.

(D) SpuolM,] = U SZaIM,].

(i) SilM,] = {P(x, D)ES,s; o(P)ESSIM,]} and  S,ulM,] = U SlM,].

Remark 1. In case of §=oo, we mean that (4.1) holds for {¢>=3R,, where R,
is independent of 2. Hence, p(, is holomorphicly extended in a conic neighbour-
hood of the real axes: {{€C’; |Im{|<e|Rel|? || =Ry} (Fe>>0) and satisfies
there

“4.1) [P (X, O] SCR®IM g <EX"+, (Re & = ¢).

On the other hand, when =0, we do not expect (4.1). For 0<#=<1, we say that
p(x, &) is pseudo-analytic in &.

Remark 2. In Definition 4.1, the estimate (4.2) on g is of use when we consider
the kernel of P(x, D) in S,s[M,]. However, the regularity of the estimate of the
derivatives in £ in (4.2) is not essential in the other properties and we can replace
CR'PIL g by Cg which depends on the index 8 and the symbol p(x, £&).

Remark 3. SIIM,S Sye[M,] if and only if p=p’, §<¢, 6=6" and

’

m<m'.

Remark 4. 1n case of M,=n!, G. Métivier [33] relaxed the regularity on x
when 8>0; He replaced @ !<€>%1! by (a!V!~-®4al{e>8al). It is immediately gene-
ralized for general {M,} replacing M ,<EX* by (M 4q-5+ M x<EDP). This
has already been adopted by C. Iwasaki [16] and K. Taniguchi [39] in case of
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Gevrey classes. This generalization however can be understood as the replacement
of Syl M,] by SplM(E)], Mu(&)=max {M 4 )q-5), M1<EX*™}. Our considera-
tion rests valid for Sy[M5(£)]. (In Métivier’s sense, S,p[M3(&)] should be denoted,
for example, by Sy5<{M ,1,-5)-)

Definition 4.2. Let p(x, &) belong to S;3[M,] and 3)p,(x, &) do to Sj[M,].

pOm def
px, 5); I pix, &) = 3C, R>0, YNeZ,, Ye,pEZ;,
[%x]

43 |(p— B3PI S CREFHIM . §1CE ===t
i<N
for (X, f)ERIX {(E)"gRDN.,.,m}.

Remark 1. Taking a=p=0, the righthand side of (4.3) becomes the smallest
when N satisfies the relation <6)°"®=RD,. Therefore, if and only if §=p—0 ,we
can benefit by the best possible estimate.

Remark 2. L. Boutet de Monvel and P. Krée [7] adopted f=co in case of
M,=n!" (v=1), p=1 and 6=0. F. Treves [40] did 6=1 in case of M,=n!, p=1
and 6=0. S. Hashimoto, T. Matsuzawa and Y. Morimoto [13] did §=p—¢ in case
of M,=n!" (v=1) and 0=<J0<p=1.

Under Definitions 3.1, 4.1 and 4.2, Properties 1 and II are satisfied.

In the case of 6=0, that is, the case where the estimate (4.1) is not required, we
cannot use the assymptotic expansions of symbols of arbitrary length. In such case,
a theory of ps.d.op’s of Gevrey class was constructed by K. Taniguchi [37]. On
the other hand, S. Hashimoto, T. Matsuzawa and Y. Morimoto [13] constructed
another theory standing on the calculus of formal symbols taking 6=p—4d in Gevrey
class. As we are interested in a theory which allows the asymptotic expansions of
arbitrary length, the case of 6 =p0—3J becomes important. On the other hand, we
shall see in Paragraphs 5.1 and 5.3 that the theory becomes clear if 6 <1—9.

4.2. Continuity (Property III), kernel and pseudo-local property.

We note that Si[M,]1S S/ [M,]. As introduced in Paragraph 2.6, we use
the logarithmicly linear interpolation M, of {M,}. We set M ,=M,for x<<0. Now,
we give a theorem on Property III, which stands on Calderén-Vaillancourt’s
theorem [9] and others.

Theorem 4.1. Let us take £=1 and 0<0=p=1 (6<1). We set l,=[l/2]+]1,
L=[2(1 — &)+1, and M =max{M,,, M ,Me,}. (If £=1/(1—5), it holds that
MP=M,,)

1) (a) P(x,D)in SHlIM, ] is continuous from D2{My(,_} to D2 {MP}. If
{M,} satisfies Differentiability Condition (D), P(x, D) in S,5[M,] is continuous from
D2 {M,,} to D 2AMP}.

(b) We define P(x,D)u for u in Di2z{MP} by <Pu, o>=<u, P*p>

(VoD 2{M}), where o(P) is the complex conjugate of p(x,&). P(x,D) in
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Sl M,y is continuous from Di2{MP} to Diz{M(n_m}. If {M,} satisfies (D),
P(x, D) in S,5[M,) is continuous from Dy 2{MP} to Di2{M,,}.
2) (a) P(x, D) in Sh[M,) is continuous from B{M (,_p-g,-n} 10 BM}. If

{M,} satisfies (D), it is continuous from B{M,,} to B{M}.

(b) Similarly defining P(x, D) for u in B {MP} as for u in D 2{M"},
P(x, D) in Sj[M,] is continuous from B{MP} to B'{My(yom-ny-v}- If {M,}
satisfies (D), it is continuous from B {M$} to B'{M,,}.

(¢) P(x, D) in S M,_y,) is continuous from D{M(,_m} to B{MSL, }.

Remark 1. 1In 1), in case of p=1, the gap 2/, in S[M,_, ] may be replaced by
1. (See T. Muramatsu and M. Nagase [34].) However, it might not be 0. This
is suggested by C.H. Ching’s example [11]. In general case, we may at least replace
21, by 2/,+1. (See H.O. Cordes [12] and T. Kato [19].)

Remark 2. If £=1/(1—0), M coincides with M,, by the relation M, M, <
M,,,.. If {M,} satisfies Separativity Condition (S), {M,M,;,} is equivalent to
{M, s,y and MP=M,, implies £=1/(1—08). However, when {M,} does not
satisfy (S), £ =1/(1—9) rests only a sufficient condition for M{?=M,,. For example,
in case of M,=exp(an®) (v>1, a>0), MP=M,, if and only if £= {I/(1—a8")} V.

Remark 3. In order to obtain Theorem 4.1, we need not (pseudo-) analytic
estimate in £.

Next, we consider the regularity of the kernel K(x,y) of P(x, D) in S,z[M,]
on R.X Ri\4, 4 being the diagonal set, i.e. 4={(x, y); x=y}. In the case of finite
6, the results are not sufficiently clear. We apply them to the pseudo-local pro-
perty. In order to make the announcement simple, we restrict ourselves to the
case of {M,} with condition (N.Q.A) in the following theorem.

Theorem 4.2. Let us take £=1 and an arbitrary open set 2 in R'. We set
Mﬁ.‘)—_—maX{M.‘m Mnstn}'
1) [Case of 6=00.]

We set M,=max {n!*°M,, n!"?}, M’ =max {M, n'"?} and M®" =max {M®,
M},
(i) The kernel K(x,y) of P(x, D) in S,s.[M,] belongs to B{M}, n!"*} (R x R!\4).
(i) If P(x, D) belongs to Sj.[M,] and if u in B'{M '} satisfies

(0) ulp € 8{Mx(n—(m+210+1))}(‘g) >

P(x, D)u|o belongs to E{M "} (2).

When {M,} satisfies (D), we can remove (m-+2l,+1) in the above.
2) [Case where {L,} satisfies (S).]

We set M, =max{M,Lp)s, L.}, MY =max{M, L,,.} and M =
max {M$, M}}.
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(i) The kernel K(x, y) of P(x, D) in S,s[M,)] belongs to B{M}, L.} (Rix R\4).
(i) If P(x, D) belongs to So[M,] and if u in B {M} satisfies (@), P(x, D)u|q
belongs to E{M "'} (2).
When {M} satisfies (D), we can remove (m-+2ly+1) in Condition (®).
3) [Case where 0 satisfies 0<0=p and {M,} does (S).]

We set M,=max{Muy(smn, Mye}, M =max {MP, M, and M’ =
max {M$, M}}.
(i) The kernel of P(x, D) in S,s[M,] belongs to B{M}, M} (R; x R\ 4).
(ii) If P(x, D) belongs to S,s[M,] and if u in B {M3} satisfies

(@) ulg € E{M,,}(9),
P(x, D)u|, belongs to E{M "'} (2).
Remark 1. On 1), first we give a remark for M,=n!" (v=1). If £=1/py, it

follows that M =M =M,
Next, we consider the case where {M,} satisfies lim (log M,/(nlogn))=co. In
n-yo
this case, automatically M.=n!*’"M, and M{’= M$” =M}, changing finite
elements of {M,} if necessary.

Remark 2. 'When we consider problems on differential operators, we can often
take {L,} an arbitrary sequence with (N.Q.A). For example, if we take L,=
n!(log n)*", we have the same in Remark 1 for 2) replacing x=1/ov by £>1/pv.

Remark 3. 1In 3), if £=1/6, it holds that M{'=M"=M.
Remark 4. See Remark 2 of Theorem 4.1 on {M®}.

Proof. We assume that |x—y|=d>0. To see the regularity of kernel
K(x,y), we use the following;

(44) DiDiK(x,y) =33 (Z,) lim S eV TNty (e8)E" " +Pp yy(x, €)dE
= (g1,

o

o ev-—l(x-y)-Eg“"""'ﬂp(“/)(x, ‘f)df ’

4.5) S(E)<D

I¥ = lim

S eI y(e£)E* " HPp( (%, E)E,
ey0 JE>=D

(x4 and 2(0) = 1)
Obviously, we obtain

(4.6) |1<lz’| éCR!m’IMM,ID(Mm’I+|a-a’|+|ﬂ|+m)++l ,

where a,=max {a, 0}.
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On the other hand, I¢ is expressed by

@n 1 =F e [ e ey e s ores

iyl [ e T agE pin(x, £} dE
E>2p

(dS is the surface element of {¢; {&> = D}).

E>=D

Hence, we have

(48) IIgll < %1 lx-—y l _Zj—ICR"”/|+2jM|“/|Z2jD'sI‘”/|+I“_“,l""pl_zpj+'”+'—l
j=o
+ Ix_yl 'z”CR'“'l“”thI:zN(max {D, 1})8[¢'|+lm—a/|+lﬂl-29N+m+l.

Let us take N=[(8|a’ |+ |a—a'|+ | B| +m+1)[20]+1.
In case of 1) (i), we can take L,=n! and D=R,. Then, we obtain

4.9) [ IE |+ | I | £ C(d)RE) P M 1@ 1P (@ —a') /PR 1P,
In case of 2) (i), we can takeL,=L, and D=0. We obtain

4.9) |15 | < C@)RA)"***' M4\ Lisseyiat Lig-ar176Lig 175 -

In case of 3) (i), we can take L,=n!and D=RH(My)"*¥. (ZR(Dy)"® by (S.4)).
Thus, we obtain

4.9 |17 | 4+ 15| < CA)RE) ™ M1y Ms6) 1001 M - 176 M 18176 -

When {N}} and {N;'} are logarithmicly convex, it holds that max {N,N.’_sm}

osmgn
=max{N,N},, N)/}. Hence, we obtain 1) (i), 2) (i) and 3) (i).
The pseudo-local property follows from the regularity of the kernel of P(x, D)
on R.x R\4 and Theorem 4.1. Q.E.D.

4.3. Definition of pseudo-differential operators of — oo order and regularizing property
(Properties IV and IV").

We shall see in Paragraph 5.2 that some modulo class is in general indispensable
in order that S,5[M,] is an algebra. Take account of this, we expect that the
modulo class is included in the space of pseudo-differential operators of — oo order.
Hence, we do not set S™[M,] as QRS;’},(,[M -

Let us take a positive and logarithmicly convex sequence {L,} with (N.Q.A).
Let M, be the logarithmicly linear interpolation of {M,}.

Definition 4.3. i) p(x,&) € S~*[M,] (=S~~[M,, L,])
def
& px, &) el{M,, L} (R X R}) and 3C, R>0, VNER,, Ya, = Z.,

(4.10) | pE(x, &) | SCRNFI™PIM 1 Ligi<EDTY
for (x,6)eR'x {KE>=RDy}.
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i) Weset S™[M,] = {P(x,D)=S=; o(P)&S~=[M,]}.
Remark 1. For {6>=RD,,, (4.10) is equivalent to

(4.10) |PE(x, €)1 < CRPIL <X H{TKEXR}

where T(r) is the associated function of {M,}.
If {M,} satisfies Separativity Condition (), (4.10) is equivalent to

(4.10") | pE(x, )| SCRI“PIM 4 Lp {TKEX/R)} .

Remark 2. We can replace CR'®!L;; by Cp which depends on the index A
and on the symbol p(x, &).

Now, we give three theorems on the regularizing power on P(x, D) in S™[M,)].

Theorem 4.3. P(x, D) in S™[M,] is continuous from Diz to D,2{M,} and
from B to B{M,}.

When we consider the propagation of singularities, we often limit solutions to
the elements in 9’. Thus, it is important to consider the necessary and sufficient
condition in order that P(x, D) in S~=[M,] is continuous from & to a ul.d. class
and from 9}z to a ul.d. class in sense of L%

Theorem 4.4. If and only if {M,} satisfies Differentiability Condition (D),
P(x, D) in S™[M,) is continuous from D}z to D;2{M,} and from & to B{M,},
that is, P(x, D) is a regularizer of class {M}.

Every element in S™ is continuous from 9}z to 972 and from & to &£ In
case of S™=[M,], we also expect the continuity from a space of ultradistributions
to a ul.d. space of the same class.

Theorem 4.5. If and only if {M,} satisfies Separativity Condition (S), every
P(x, D) in S™=[M,] is continuous from Di2{M,} to D;z{M,} and from & {M,}
to B{M,}, that is, P(x, D) is a strong regularizer of class {M,}.

Remark. In order to obtain Theorems 4.3, 4.4 and 4.5, it is sufficient to assume
(4.10) for |B| =2/,

We can show Theorems 4.3 and 4.4 by the similar way as the proof of Theorem
4.5. Since the proof of Theorem 4.5 is a little long, we shall give it in Appendix A.

§5. Structure of star algebra of S,,[M,] and of S~[M,] (Property V) and Para-
metrices of elliptic operators in S,4[M,] (Property VII).

5.1. Star algebra of S™<[M,].

As the structure of S=[M,] is comparatively simple, we first consider it.
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Theorem 5.1. Let us take A<1—0 and let M, be the logarithmicly linear inter-
polation of {M,}.
1) For P(x,D) and Q(x,D) in S™[M,, L,], PoQ(x, D) and P*(x, D) belong to
S-N[Mn+l+l’ Ln+210]-
2) For P(x, D) in S™=[M,), L,] and Q(x, D) in S;[M,, L,], PoQ(x, D) and
Qo P(x, D) belong to S—N[M(n+[m+]+l+l)/)d Ln+21°]-
3) If {M,}and {L,} satisfy Differentiability Condition (D), S™[M,, L,] is a star
algebra over C and a bimodule with operator domain S,s)[M_gs) > L,].

Proof. o(PoQ) and o(P*) are the left simplified symbols of the double symbols
px, &)g(x’, &) and p(x’, &). Essentially, we show that the left simplified symbol of
a double symbol in sense of p, 8, 6 and of class [M,] belongs to S,s5[M,]. (The double
symbols in sense of p, d, 6 and class [M,] is defined by the same way as Definitions
4.1, 4.3 in this paper and Definition 2.1 in Chap. II §2 of H. Kumano-go [27].)
Therefore, we consider only the product. Since 3) is obvious by 1) and 2) and since
1) is similarly provable as 2), we give a proof only on 2). Further, in case of QoP,
our proof is rather easy than that in case of PoQ. Hence, we consider only a(P<Q).

We start from the formula on the symbol of operator product;

(5.1) r(x, &) = a(PoQ)(x, &) = Os— SSC'V?‘""P(& E+m)g(x+y, E)dydy .
r&(x, ) is given as follows;

1) =3 (g,)(f,’,) 0s— ([ e mp@in, e+ ma-iicty, iy .

Let us take a function ¢(¢) in B{L,}, such that
(5.2 #(t)=1 for t=<1/4, =0 for t=1/2 and 0=Z¢()<1.
We set
(5.3) 2o, €) = ¢(|2|K&)) and  x,(n, &) = 1—x(2, £).
(7, &) and x,(7, &) satisfy the following properties.

[7] =(1/2)K€> and  (1/2)KE>=<E+7>=(3/2)<¢> on supp z,,
(5:4) |71 =(1/4)<€> and <&42>=<5|7| on supp z,,
3C, R>0, |x,BrPI(y, £)| éCRlﬂl+pzlLlpl+ﬁzl [ 7] T1BALED 1!
on supprx; ((=0,1).

We define £; inductively;
2, = {nesupp 2,5 |ml = |2l/V/T}

j-1 —
2; = {n<supp 1,\( U 2); ln;lzl2l/v 1} Q=j=s]).
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]

It holds that supp x,= U 2;. We devide the integral in (5.1’) as follows;
i=1

5 0s=[[ e e, e+ ma@Bcty, dydn

=z

o e—‘/"—”'"<y>_210(1—A,,)'O[ﬂj-(NH“)D”N““
(]

X {x (7, OPER(x, E+n)al=Ei(x+y, E)}1dydn = i_; I;,
(2o=R) and x,(n, &)=x(n, &), j=1, -+, ).
We consider first 1, and secondarily I; (1< j <),
(1) Using (5.4), for arbitrary N in Z,, we arrive at
(5.6) || S CRYFIPIM 1ty tlaart LiglagrKEY ™V Hola—a 1Fmtl
Replacing N by N+9d|a—a’ | +m+1, we obtain
(5.6") [I] SCRY*PIM 1t emsnpLipraa<ED™Y .
(2) Taking account of |7;| = |7]|/v/1 =<ED/4\/ T, we have
(5.7) | 1;] SCR¥M1PIM, 1 n My 1ot 14141 L1 g1y KEDT DN Hlamalldmbd(i+) |

Here, since N+ |a—a’|+/+1 rests an integer, we can regard N as non-negative
real number. Replacing N by {N+d0|a—a’|+m+8(l+1)} /2, we arrive at

(5'7’)~ ]Ij| éCRN+la+5lM(N+|a|+m+l+1)/>\Llﬂ!+210<5>_N .

(1) and (2) imply that PoQ belongs to S™[M (y4ms1+0/n Lnras): Q.E.D.

5.2. Necessity of modulo class in order that S,4[M,] is a star algebra.
The symbol of the operator product of P(x, D) and Q(x, D) in S,; is given by

(5.8) o(PoQ) = Os— Se'v-l"”p(x, E+n)g(x+y, )dydn,

and this also belongs to S,;. However, for Pand Q in S,;[M,], o(PoQ) itself no
longer belongs to S,s[M,] if Condition (B) is satisfied. We note that p(§)=<&>7*
belongs to Si;Z[M,] for arbitrary {M,}. We can find a function g(x) in B{M,}
such that o(PoQ) does not belong to S7A[M,]. (This means also o(R*) does not
belong to STA[M,] for r(x, &)=q(x)p(€).) If we take M,=MP(k,a, v) =n!e™"
(,>1,a>0, vER) or M,= M¥(a, b, v)=n!"e"" (a>0, b>0, v R), it does not
belong to OUO Si&[M,]. In the rest part of this paragraph, we show this. We
>

remark that p(€) has the homogeneous expansion ﬁ (—1)"| €]~ which con-
n=0
verges for [£]| >1. ,
First, we study the properties of its derivatives. Let <¢> be (1+ 31 ¢&%)"2,
i=2
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Lemma 5.0.1. Let us set a,=(n, 0, ++-, 0).
(5.9 (—1)"p@(E)>0 for |&]|>m/2}<KED and & =(1/n)<ED .

(5.10) S‘ P@NE)IE, > (24/3)nICE DD
’ (n>1,nc4Z, and 0<AZ(Un)KED).

Proof. From the following equality, these follow imediately:

[x/2]
G pee) = (=1 3 (T J DRED e @<y,

(5.12) S: peI(E)dE, = (=D (n—1)! [(";2:)0/2] I:Zk’j- l:l.
PATBDEDHAHEY) . QED.

Next, we define F,,¢[q(x)]=3(¢). As {M,} and{ R"M,} (R: a positive con-
stant) give the same space, by Assumption, we may assume

(5.13) M,=zn" (n21) and M,=1.
Setting a,= log M,,, we have
a,p—a,=a,/n=logn.
Thus, r(n) which satisfies M, =r(n)"/T(r(n)), has the minoration:
(5.14) r(n)=M,,,/M,=exp (a,,,—a,)=n. (See Paragraph 2.3.)
By virtue of (5.14), we can take a subsequence {n(k)} such that
j 1) n(0)=4 and r(n(0)=2,

2) nkye4Zz, and n(k)>nk—1) (k=1),
L 3) rk)—r(nk—1)Zwn(k) (k=1), 3/4<v<l).

Let us set &P =r(n(k))= M, +/Myw (=Dyw) and L=[—¢&P, —&FP+1/n(k)]
(k=1). The following is satisfied;

(5.15)

(5.16) dist (3, I,-)=(3/4) n(k) (k=3k,).
We take I'={¢'€R'""; |§'| <1} and set

Tlr(n(k)] 7 r(nk))  (=cp) on LxI (k=k),
0 otherwise.

61 i) = {

Since [@(O)| =T(1¢1)7"1€17% g(x)=F""[q] belongs to B{M,}.
Now, we are in a position to estimate a(P(D)oQ(x)) (=r(x, &)). Itis represent-
ed by

(.8 r(x, &) = S e T Tp(E+0)g(m)d7 .

Then, for n(k) and s in 4Z, satisfying s3> 1, we have
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a0 6o ) = [T mm et i .
Especially at (x, £)=(0, ¢®), EO=(¢(, 0, -+, 0), it becomes

(5.18) ’533»-,) = g ¢; S / PO =spE(ER L) dy

IjXI
where {c;} 7., is given in (5.17). Since (5.9) brings
7i®=sp@(E®+9)>0 on I;xI',

applying (5.10), we can minorize r((g:zk)_s)(O, E®) as follows:

e 2O ez ol ey ®tady
wxt’
2 c2 30} s rn0) My

((27)'c, is the volume of the unit ball of dimension /—1.).

Therefore, for n(k)>1, we have

(5.18) Cemyrts pl8D (0, §®) Z 275 My -

) -5)

Let us take s=/[n(k)/log, log, n(k)]. As n(k)—s>n(k)[/ 2 for n(k)>1
and as (5.16) holds, we arrive at

(5.18") EWMrEa (0, EW) 2 ¢ 27 OM - sl n(k)inlom lorr1 ™t
= ¢37" MM, s!{exp (logn(k)/log, log,n(k)} "® .

On the other hand, by virtue of Condition (B), we have

Dyl exp { 33 vIjk 2 ((1/2)log, logy n(k))"
It means that
(5.19) D,n»=RD,,
for arbitrary positive R and sufficiently large n(k).

(5.18”) and (5.19) imply that r(x, &) does not belong to STalM,].

If M,=MP(x,a,v)=n"e"" (+>1, a>0, vER), taking s=n"* (1<r'<k), and
if M,=MP(a, b, v)=n'"e*" (a>0,b>0, v € R), taking s=n/2, we can see that
r(x, &) does not belong to 9L>Jo ST&IM,).

5.3. Star algebraic structure of SpylM,] (Property V).
As we have shown in Paragraph 5.2, the integral near {47~0 in (5.8°):

S eV =1="p(&+7)q(n)dn has not the estimate (4.1). On the other hand, we can
IpxI1’
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show that the integral on |7| =d<{¢> (d>0) has the estimate (4.10) replacing {M,}
by {M,q-»}. Thus, we can expect that S,;[M,] is a star algebra modulo
S™[M,;q-»] (assuming 9=<1). We note that /,=[//2]41, I,=[l/2(1—d)]+1 and
Dn=Mn+1/Mn'

Theorem 5.2. Let P(x, D) and Q(x, D) belong to S}u[M,, L, and to
m[M,,L,], respectively. We set a(PoQ)=r(x, &) and a(P*)=p*(x, £).

I] We assume one of the following three conditions;
a) 0=0,
b) 0=p<l and 0<0=I1,
c) po=l1, 0<0=1 and
(N.D), 3¢,>0, VYn>1, D,=(logn)%".
We set m=0 in case of (a) and (b) and m=min{meEZ,;m>0/e(1—08)} in
case of (c).
1) r(x, €) is divided as r(x, &) =ryx, &)+ ro(x, £), where ry and r. belong to
;'szm/[Mn+z:,+;n Ly, and 10 S™7[M i pmy 14m/+149/0-8> Latares espectively.
Further, if >0, r, satisfies

(520) |(r— X ".)Eg“ éCRN+I¢+$IMN+|¢»|+21,+7§/9!<E>m+m,—(p_sm_plm+sml
i<w
Sor <5>02RDN+I5|+210 >
ri(xa f):mEﬂr!—lp(‘v)(x’ f)q(‘l)(x’ 6) (IEZ+) .

In case of b), if {M,} satisfies (D), and {L,} does (D), M,y +m> Dusaip
M stmyrem'+142/0-5) Gnd Ly, can be replaced by M,, D,, M, _5 and L,, respecti-
vely.

2) p*(x, &) is divided as p*(x, &)=p¥(x, &)+p¥(x, &), where p¥ and p* belong to
Sesol M usatyains Lutar)] and to S™ [ Myipmyyri40/0-8)> Luvar,)s respectively.  Further, if
0>0, p¥ satisfies

(52]) l(pak__gvp'z(')ggg l g CRN+I¢+PIMN+MI+211+;"B!<5>M‘(P—B)N—PI5I+8Im|

Jor (&X= RDN+|5|+210 s
pi(x, &) =,E_r!‘1ﬁ£¥§(x, €,

where P is the complex conjugate of p.

In case of b), if {M,} satisfies (D), and {L,} does (D), M,y 15, Dpiary
Mstmigri42/0-8 and L,y can be replaced by M, D,, M,y ,_y and L,, respectively.
1]  We assume that p=1, 0<0=<1—6 and the followings;

(B) v>0, n>1, log(M, M, /M2)=vn,
(D)s 3}_];1, Vn>>1, Vm_s..n’ Dn/Dn-l (EMn+an—l/M3)§FI'

1) r(x, &) is divided as r(x, &) =ryx, &)+ r.(x, &), where ry and r. belong to
m+4m’

150" [My, Lysa,] and to S™°[M,y_s), Lyiy,), respectively. Further, r, satisfies
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(5.20) with p=1. If {L,} satisfies (D), L,z can be replaced by L,.

2) p*(x, &) is divided as p*(x, &)=p¥(x, &)+p*(x, &), where p¥ and p¥ belong to
STselMs Lyya,) and to S™"[M,_y), respectively. Further, p§ satisfies (5.21) with
p=1.

If {L,} satisfies (D), L, 3, can be replaced by L,.

Remark 1. (D), is slightly stronger than (D) and (N.D), is a little stronger
than the negation of (D). M {®(x, a, v) in Paragraph 2.7 satisfies (D), if and only if
x#=2 and does (N.D), if and only if £>2.

Remark 2. We set | p|) o= sup| pE(x, &)]/<e>mPIPI+3el where (x, ) runs
over R'x {6 €R'; {&)*=RDp} and (e, p) runs over {a=Z’; |a| <j} x {FEZJ;
|#| =k}. In Case I, the following holds;

(5.22) 3G, Ry>0, Vi, keZ,,

lrol‘,"f’:?fé""éCoRé’“"j,rp]%j [pl S"’”.)k’+210,0 lql 5"’”’2211“7,1:".0 s

K +k =k

| P& e=CoRi™| p| 5'"1)211+ m k20,0
However, in Case 11, it is difficult to show (5.22). We can only show
(5.23) aC,, Ry>0, Vi, keZ,,

sup Irol 787 [(RoR)' M,

=GRS max (sup| p|$sar,.o R'M)sup|q] 0o/ R°M)

sup | D8 |6/ (RRY M= C Rﬁ(stslp lpl g"",,),,z,o,o/R’M,) .

5.4. Proof of Theorem 5.2.—Cut-off function—

In order to prove the above theorem, we stand on the formula (5.8) (=(*) in
§ 1) and the following (5.24).

(5.8) o(Po@) = Os—{{e™p(x, e matr-+y, dydn,

(5.24) o(P*) = Os—SSe'V'_”"’p(x—l—y, £+n)dydn.

Both of them are the left simplified symbols of the double symbols p(x, &)q(x’, &)
and p(x’, €). We essentially estimate the semi-norms of the left simplified symbol
by those of the double symbol. (On the double symbols, see, for example,
H. Kumano-go [27] Chap II § 2.) Therefore, we consider only ¢(PoQ).

We want to divide the integral domain on 7 in (5.8) to

7] =d<e> and |7]2dlE> (0<d,<d,=1/2).

Hence, we want a cut-off function x(n, &) which satisfies
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1 0= [7|=d<&> (0<d<1)2),

5.25 , =
(5:29) *(1.6) 10 17l Z2E

and 0= x(», §)=1.

If 6=0 (Condition a) in Case I), such function is obtained by setting x(7, &)=
2°(| 7] /K&>), where 2°(t) belongs to D{L,} and satisfies

(5.25) () =1 for t<1/4, =0 for t=1/2and 0Z2°<1.

This x(7, €) is adopted for the estimate (4.2) on a(PoQ).
In case of p<<1 (Condition b) in Case 1), we take {N,} as follows;

(5.26) N, =min{ L, , n!(log,n)*" } (a>1),

which satisfies (N.Q.A). We take x%(¢) in D{N,} which satisfies (5.25") and set
2(n, &)=2°(|7]/<€>). Because supp ?*PC {1/4<t=<1/2} for j>0, we have

() )< |n|<<7> on supp x@rf? if |B+£.1>0.
Then, x(7, &) satifies (5.25) and

(527) HC’ R>O > Vﬂla IBZEZ-!,- s
| 2B, £) S CRPHAN, 5 <>~ PHCEY !

As {N,} satisfies (D), restricting 8,to | §,] =2/, it holds that
AR'>0, Nig sy S RPN, S (IR)P2 B, (log, | B,])"1P2 .
Further, if {<¢€)*=D,, it holds that

IR, R >0.
(&Y= L DA=P)/6)n < Ry~ (A=P)O < R (log 1) ™" n=1).

Here, the second inequality holds good because {N,} satisfies (N.Q.A). (See
Remark at Condition (N.Q.A).) Therefore, x(7, £) satisfies also

(5:27) 3C, R>0, | x®+P(n, £)| S CRPB,IKn>™1P1ICE)~"1Py!
for <&XP=RDg, and |B,|=21,.

Thus, this is adopted to obtain the estimates (4.1) and (4.2) on o(PoQ).

In case of p=1 and 6>0, if (N.D), is satisfied (Condition c) in Case I), we
adopt x(7, §) in case of p<<1 taking a=¢e,(1—8)m/6>1 in (5.26). In this case, we
use the estimate (5.27) and the relation

(5.28) E>~A-mN <pl for <&¥*=D,.
(5.28) follows from

ey a-m< pra-vme(log, m)™*  for (EXZD,.
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In the last case: p=1, 0<0=1—0 and {M,} satisfies (D),, it is difficult to
find a cut-off function satisfying (5.25) and (5.27') even if we replace {7>~'*1! by
<{n>%Bil, Then, we construct a cut-off function which satisfies (5.25) and a
weakened estimate from (5.27").

Lemma 5.0.2. We assume (B) and (D),. There exists a function x(n, &) with a
parameter R, (= 1) which satisfies (5.25) and the following;

(5.29) 3C, R>0; independent of R,,
B8 C"CRIPIf,ICnpy™ OPIKEY P, (151 4] Snt2D)
25 OV CRAL ycry- oty t, (Ve 2,

Jor eR\D,<{6X*<eR\D,,,, 1€R' and | B,| £2I,.

Proof. We can suppose that

(5.30) D,=2.
We set
(5.30) M, = M, for —n,<n<0. (n,isthatin (B),.)

i) [Partition of unity in n-space.]
Let us take ¥°(¢) in C=(R) which satisfies

(5.31) 2(t)=1 for t<—1, =0 for =0 and 0=2°(*)=1.
Let Ry (=1) be a constant decided later on. We set

{ (1) = 2’(171°—ReD,)—2°(|n|°*—RD,-)  (n21),

5.32
( ) (7)) = (| 71°—RoDy) .

Obviously, it holds that 3} 7,(7)=1 and
n=0

(539) N zm=221"~RD)=1 on {|2]*<RD,~1} and
R, ,—1=[7|°<RD, on supp z,(1)  (n=1).

m which satisfies R,D,>R,D,,—1 is smaller than n-+n, because of (B), and R,=1.
Thus, we see that

(5.33) #{n; x,(m*E0}<n, for VaER'.

Since it holds that | 7| =1 on supp x® for arbitrary n and A0, Lemmas 2.0.1 and
2.0.2 imply

(5.34) 3AC>0, |[xP@)|=CG>e-0k for R and |B|<Z2],.

it) [Cut-off function in &-space.]
Let R, (=1) be a parameter. Using {y,(¢)} in Lemma 2.0.3, we set
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(5.35) 64(€) = Vi (0 log E>—log (R,D,)) .

By virtue of Lemmas 2.0.1 and 2.0.2, it satisfies

e"CK " I&y~1* (= e En+21)

CK'™IL 1y <E>™ (YeeZ)),

#,&6) =1 for <&¥=eR D, and =0 for <E¥<RD,.

(5.36) ¢s'>(f)g{

We set

(5.37) k(n) = max {j; 0<¢ (§)<<1 for some & such that
KEXFE[eR,D,, eR,D, ]}

It holds that
(5.38) Dyw<eD,.,<eHD,,

by virtue of (D),. (Under Condition (B),, it holds that k(n)<<3xqn.)
We want the following property:

*
(539 Va€Z,, JdEZ\{0, 1}, supp'S) 2, S {n: 1] <<€/} and
n /=
supp (l_§ 1S A{n; (71 =2d<&d  for <EXPE[eR,D,, eR\D,.].

Now, we decide R, depending on R, and d independent of R;;
(5.40) Ry, = (2°H)™'R, and d = (1/2)(eH"*?)~Vo

where H is that in (D),. This choice brings (5.39) by virtue of (5.30), (5.30"), (5.38),
(D), and (B),.
Let us set

(5.41) (1, 6 = 3 1,8,6).

As n is arbitrary in (5.39), (5.25) holds good. Further, x(n, &) satisfies (5.29) by
(5.34), (5.36) and (5.38). Q.E.D.

We notice that x(7,£) in Lemma 5.0.2 satisfies

(5.42)  supp x(n, E)S {(n, €); | 2| =<{&}/2} and
(12KE>=LE+D>=3/2)XE>  on supp x(, §).

(5.42))  supp xBrPIC {(n, £); d{ED=< || <<ED/2} and
E+m>=(1+d™Y|7| on supp x®f), if |4 ]+]8,]>0.

(5.42")  supp (1—0)S A{(n, £); |7| =d<{ED} and
EHmp=(+d™)|7| on supp (l—z).
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5.5. Proof of Theorem 5.2. —Continued—

We can prove the theorem both in Cases I and II by the same idea. Since the
proof is rather simple in Case I, we consider only Case II. As the estimate (4.2) on
a(PoQ) is easily obtained, we show only (5.20), which coincides the estimate (4.1)
on o(PoQ) when N=0.

We devide (5.8) into the following manner;

(5.43) a(PoQ)(x, &) = ro(x, E)+ru(x, )
=0s— ([ e 10, s, E+magCr-tr, dydn

+ OS‘—SS e {1—x(n, Oy p(x, E+7)g(x-+y, E)dydn .

It is seen that r.(x, €) belongs to S™*[M,\(m, 14m/+1+2/0-5> Lus21,] DY the same way

as in Case (2) of the proof of Theorem 5.1.
On r,, we apply Taylor’s formula on p(x, £+7) at § and devxde it in the
following manner;

4 rx, & = 32 70 ) 05— ([ e ge ey, Odydn
YI<W¥

— 3 100, £ Os— ([ T (1= 20, Obgn(x-+y, Edydn

lvi<w

+ 3 1N 08*“ e T 1, E)qep (x4, €)dy dnx

wi=x
Xsl(l—ﬁ)”'lp(”)(x, E4-07)d6
]
=3 n->1+ 30,

NN wi<x  mi=x
As Os— Sg e~ "1 f(x+y)dydn=F(x) holds for f(x) in B(R'), we see that

(5.45) 1Y = r!7'p(x, E)gm(x, €).
It is rather easy to see that | 31 I7{8| is majorized by the right-hand side of
1YI<wz

(5.20) because both of the second arguments of p™® and g, are £. Then, we only
show that | 33 I1{#8| is majorized by the right-hand side of (5.20).
Ivi=nN

In order to make clear the dependence of every constant, we specify the meaning
of the constants C and R in this paragraph. We denote the maximum of R’s in
(4.1) and (4.2) for o(P) and o(Q) and in (5.29) by R again. We may assume R=1.
We also denote the maximum of C’s in (4.1) and (4.2) for o(P) (for o(Q), resp.) by
C, (by C,, resp.). Further, we use C only for that in (5.29). We have the following
representation:
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(5.46) e = 717N 3 (Z.)z(fg )305—58 eV OBy, £)x

J

X qap(e-+y, Xy dn || (1=0)"pLiP (x, E+07)0
=1t 2\ (£ I(a,, 8,
=riTNY (%)z(ﬂj)sll(a" A3)-

Let us set R,=eR, and restrict <> to R,D,=<<{*=<R,D,,, and N+|B| to
N+ || =n, where R, is that in Lemma 5.0.2.

In (4.1), we may replace Dyg by Djgi_y, due to Condition (D),.

In case of 8,=0, following the proof of Lemma 2.4 in H. Kumano-go [27], we
obtain

(5.47) [I(a;, B))| SN 71C,C,CQR7BRON My 4 1g1401,81 X
% <f>m+m'-(P-S)N-P|5|+8|al ,

where C, is independent of N, a and 8.

We estimate |I1(a;, 8;)| in case of g;=0.
i) (Case of N+ |a,| +2l,=n)

I(a;, B;) is expressed as follows;

G548 Tl 8) = || e Tmdy dndyy 1 —a)l |7 - 4)sx
1
x {xOB(p, &)ql2.(x+y, €) So (1_0)N-lpg«:)ﬂl)(x, §4-07)do}].

Then, by virtue of (5.42), (5.42'), N+ |a,| +2/,=n and Lemma 2.0.1, we have

(5.48) |TY(e;, B,)| SN 17 1C{C,C(2°3e RN ™I

+m’—(P—8)N -
XMN+I¢I+211/9!<E>”' m’—(P—8)N—r|B|+5|a| ,

where C{ is independent of N, @ and 8.
ii) (Case of N+ |a,| +21,<n)

In (5.48), we replace |7|721(—4,)r by |7| 2L""N=leah/2)(_ g Nitn=N=1%0)/2,
Then, we obtain the following instead of (5.48);

(5.49) [Il(e;, B)| SN 'r1C,C,C " {20d IR} 2L =N =lagh/21= 1) 5
% (293R2)N+|a+ﬁlM”M[wllﬂ !<5>m+m’—(p-s)N-p|m+a|a|-z(l-&)([(n—N- lag)/21=1y)

where we used (5.42), (5.42") and Lemma 2.0.1.
As &> is restricted to [R,D,, R,D,.,] and 6 is not greater than 1—3, we have

(5.50) M LES21=U=N=lagh/z1=1)
< M,(R,D,) (=801 C(n=N~1a;/21-1)

~2[(n—N~- !
S(eR) AN NDEIEM 4t saryt -

Let us choose R,=max {2%d 'R, 2°3eR2H?*1*'}, where H is that in Condition (D.1).
We arrive at
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(549)  |1@s B)I SNTTICH C,C 23 RV HHBIM oy ot a1 B X
X <E>m+m'—(P-B)N—9lﬂl+81’| ,

where C{’ is independent of N, @ and 5.
Applying (D.1) 2/,41 times, by virtue of (5.47), (5.48") and (5.49’), we obtain the
following;

(5.51) |1’1’Eﬁ§| éCZCquR§v+l“+p'MN+1m|ﬂ!<E>"‘+’”,—(P"S)N'p'p“'s"’” ,
for <EY=R,Dyiipis
where C, is independent of N, a and 8. Q.E.D.

We give a remark in Case I ¢). When £,30, we obtain in the first place the
following estimate by the same way as in i) in the above proof replacing 2/, by
211+’T’1;

(5.52) [ (e;, /9;)| éN—lécpcqR{v+la+leN+lm|+211+ir‘tNN+|ﬂ|+210X
X <f>m+m'-—(P—-8)N—mB|+8lal—(1—8):71 .

By virtue of (5.28), we arrive at

(5.52) | I{(e;, B))] gN_IT!C"CpchiNHMmMN+|a|+zl‘+,7,/9! X
X LEpmen = EmONPBIENT for  (EY =R Dyyipisan -

5.6. Multiproducts of pseudo-differential operators and parametrices of elliptic
operators in Sp5[M,] (Property VII).

If we can construct a true symbol in S,[M,] from every formal symbol in
S,s6lM,], Theorem 3.1 2) brings immediately the existence of a parametrix of elliptic
operator in S,5[M,]. However, unfortunately, the construction of true symbols
seems impossible if {M,} does not satisfy Separativity Condition (S). In this
paragraph, we shall try to construct a symbol of a parametrix of elliptic operator
through a Neumann series. In order to show the convergence of this series,
we need a sharp estimate on the symbol of the multiproduct of ps.d.op’s in
S,s[M,]. Such estimate was obtained in the case of Gevrey classes by K. Taniguchi
[39] and by C. Iwasaki [16]. Their proofs are available in case of general {M,}.

Theorem 5.3. We suppose (L), on {M,}, (L), on {L,} and one of a), b) and
¢) in Theorem 5.2, Case I. We assume the following estimates;

3C;>0’ 3R>O; Va7 ﬂEZ*I,,

(5.53) | pB(x, &) SC;RHPIM , BI<E)PIBIFSIal
Jor (x, )ER'x {£; <EX*=RD g},
(5.54) | P B(x, &) S C;RISPIM g LigKEYPIFI+RIaL

for (x,)eR'XR', (1<j<m).

Then, we can devide a(Pyo--+oP,)(x, &) to ri(x, &)+ ri(x, §) which satisfly the
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followings
iC,, R,>0, Ya, pZ’,
(5.55)  1r8EGx, )1 SCEAT CHRR) ™ Marsar,sBIKE P01
for (x, )€ R'X {EYZ RoRDigisus, }.
(5.56)  |re@x, &) =C ?(jﬁ CHRR)™PIM gy g1y Ligraar KEDTIPITI
for (x,&)ER'XR',
and
(557 |rz8e O] SCEAT CHRRY™ Miyiaisangr-o LipiaarCED "
for (x,§)eR'XR',

where Cy and R, are independent of m, e, B and the symbols {p;}. In case of b), if
{M,} satisfies (D), and {L,} does (D), M|a|+211+,7n Dlﬂ|+210’ M(N+|m|+211)/(1—8) and
Lg\4z, are replaced by M\, D), M(yyiasa-s and Lig, respectively.

Theorem 5.3 implies the following.

Corollary 5.4. We assume p>0, (L), on {M,}, (L)y,+, on {L,} and one of
a), b) and c) in Theorem 5.2 Case I. Let a square matrix P(x, D) with elements in
Sl M,] be elliptic, that is,

(5.58) 3G, R>0,  [det {p(x, YK =Co  for EHZR,.

Then, there exists Q(x, D) in Syg[M,ie1,4m+1> Luserg+1ls Such that PoQ—I and
QoP—1 belong 10 S™"[M 161+ 1mi+00-8)> Lutstgra]-  In case of b), if {M,} satisfies
(D), and {L,} does (D), M yi51+m+1> Mnroiztimi+nsa-8) and Lyig4y are replaced by
M, M,,_s and L,, respectively.

Remark 1. The assumption of the ellipticity of P(x, D) can be weakened to
(H,) and (H;) in S. Hashimoto, T. Matsuzawa and Y. Morimoto [13]. (See K.
taniguchi [39].)

Remark 2. 1If {M,} satisfies Condition (S), we can obtain the same result in
case of 0=0<<p=/ replacing modulo class by S™[M,,,-5»]. (See Corollary 6.4.)

8§ 6. Construction of true symbol in S,;,[M,] (Property VIII) and parametrices
of elliptic operators in S,;[ M, ] (Property VII).

In the previous paragraph, we constructed a parametrix of elliptic operator
in S,5[M,] through a Neumann series except the case of p=1 and §>0. In order
to clear this exceptional case, we return to the idea developed by L. Boutet de Monvel
and P. Krée [7] and F. Treves [40]: construction of true symbol from formal symbol.
However, in case without Condition (S), the results are not satisfactory.
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Theorem 6.1. We suppose that 0<6 = 0—6.
1) We take arbitrary k in Z... For each formal symbol 33 p(x, §) in SllM,__,),
there exists a true symbol p(x, §; k) which satisfies (2.8) limitting |a| <k and | 8| <k
and also does

3R>0’ VNEZ+7 «@, ﬂEZJ{ (lal’ 'ﬂl §k)’ acu>0 s
(6.1) [ {p(x, §)— 3 pi(x, OB SCLRVPIM LI~ C-ON-rifI+lal
i<N
Jor (x, )eR'x {{EX*=RDy}.

If {M,} satisfies (D),, we can replace M,_,_, by M,.
2) We assume Condition (W.S), on {M,}. For each formal symbol 3} p/x, &) in
SrlM,], there exists a true symbol p(x, &) in Spy which satisfies (6.1) for arbitrary «
and B.

On the other hand, there exist a positive sequence {L;} and another true symbol
Px, €) in Sl M,, L] which satisfies.

B(x, ©)~2 pi(x, €) .

3) We assume Condition (S) on {M,}. For each formal symbol 3} p(x, &) in
SnoM,, L,), there exists a sequence of positive numbers {L;} (Ly=L,) and a true
symbol p(x, &) in SJ[M,, L;] which satisfies

PSOm
P(X, E) ~ Epi(x: f)'
1

Remark. 1In 2) and 3), if {L,} satisfies Condition (B), {L;} is taken as
{L¢s+na}> Where d is that in (B), for R=eH, H is that in (S.3).

Theorem 6.2. We assume (D), (C) and the following:
(c* 3R,, R, such that RI<R,<R, and

T(R,;r)T(r|R)[T(r)* is bounded,

where T(r) is the associated function of {M,} and R, is that in Condition (C). Then,
the results 2) and 3) in Theorem 6.1 hold replacing 6 by oo and relaxing (D), by (D)
and (W.S), by (W.S).

Remark. 1In case of §=oc0, we also obtain the result corresponding to 1) in
Theorem 6.1. As it is complicated, we omit it.

The following is brought by Theorems 6.1 and 6.2 and the proof of Theorem 4.5.

Corollary 6.3. We assume Condition (S) and take 6=p—0 or 6=co. We also
assume the conditions in Theorem 6.2 when 0=oco. Then, the relation of asymptotic

poOm
expansion p(x, &) ~ 33 pix, &) gives a onto-homomorphism of star algebra from

n.
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So0[M,] 10 S,p5[M,) modulo symbols of {M,y,_s} Strong regularizers.

We can show Theorem 6.1 following F. Treves [40] and S. Hashimoto, T.
Matsuzawa and Y. Morimoto [13]. On the other hand, we can show Theorem
6.2 following L. Boutet de Monvel and P. Krée [7] and L. Boutet de Monvel [6].
In order to make clear the role of Condition (S), we present the proof of Theorem
6.1 Case 3).

Proof of Theorem 6.1 Case 3). Under Assumption, we can assume D,=n.
Using {y~(¢)} in Lemma 2.0.3, we set

(6.2) 2(§) = ¥ru(0 log <E>—log (R.Dy)) ,

where R,=H?R and H is that in (S.3). x,(£) satisfies

CetRIPIBICED IR O=|gl=k),
B)

(63 FEGIE Dty

Let us set

(64) P, &) = 31pilx, O,0).

On each compact set in R}, the right-hand side of (6.4) is a finite sum and then it
converges and belongs to &(R' X RY).

For arbitrary n in Z,\{0}, we limit § to G,={eRD,<{>*=<eRD,,, }.
Since supp z; is included in {{EX*=R,D; }, if supp x; N G,=£ ¢, it holds that

(6.5) D;=<eD,,,<eHD,.

We set d(n)=max{i; supp x; N G,#+¢}. Since, by virtue of (S.3) and (6.5), we
have

(66) DIB|+i§HDmax(n,i)§-eH2Dn s ( |/9I én» léd(n)) >

we can apply the estimate (3.1) to p,&)(x, &) on G, for |#| <n and i<d(n).
Paying attention to x(§)=1 on G, if i=<n, we see that p(x, &)— Ep (x, &)=
E ,(x, &)x (&) on G, for N <n. Applying (S.1), we obtain <

N<i=sdC

6.7 [{p—3 p}E| S CHRYNH12EIM, B IKEH =N =PIBI+Slal ¢
i<N
X 3 (HRY™™M/(eRD,)y ™3 1.

NsisdOn p’'<B

As it holds that M,/(eHD,) ¥ <M, (i=d(n)) by virtue of (6.5) and
#{8' < B} <2®1+1-1 we arrive at
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6.7) | {p_i;z';p'_} B S CRNHWHBIAL M, B1EIP= =N =PIBI+3lal
on G, for [B|<n.

On the other hand, on G, and for || >n, we have

©.8) | PE| S CUHRY M1 L0415, <EP 1P +0191

X 33 (HRYM/(eR,D,) 311
0<i<d(n) B'sB

SCRYHPIM G Lyippy4ipiKEYTPIPIHOIaL Q.E.D.

We remark that (6.6) holds if and only if {M,} satisfies Condition (S). (See
(S.3).) Further, in order to obtain (6.7), we need

IR>0, NZVi<d(N), VK=N, M, ,SR*My, (Dy)y V.

This is (S.5) itself.
On the other hand, in the proof of Theorem 6.2, we use the following;

For some positive R independent of &, the norm of {M, ,}.. in
2{R"M,} is bounded by R*M,, where I*{N,} = {{c,} -0 || {ca} ||252” (¢,/N,)<<oo}.
This is equivalent to Condition (S.1). "=
Thus, as long as we adopt the method by F. Treves or L. Boutet de Monvel and
P. Krée, the construction of true symbol in S,,[M,] from formal symbol in
S,solM,] goes well if and only if {M,} satisfies (S).

By Theorems 6.1 and 6.2, we immediately obtain the following;

Corollary 6.4. We restrict 0 10 0<6=<p—08 or 6=0c0. We assume the same
conditions in Theorem 6.2 when 6=co. We assume also that a matrix P(x, D) with
elements in SJ,IM,] is elliptic, that is,

(6.9) 3C,>0, 3r,>0, det|{p(x, E))KEX"} [=C,  for (x, E)ER'x {E>=rg}.

1) We take arbitrary k in Z.. There exists a ps.d.op Q(X, D; k) which is conti-
nuous from 9 ,2""* to 9,2 (0= j<k—2l\). Further, it satisfies

IR>0, VNeZ,, ¢, fZ! (|a|, |B| £k), 3C,>0,
(6.10) |a(PoQ—D)&], [a(QoP_I)EggléCmRN+|B|MN+k+l/9!<5>m-(p—s)1v—p|5|+s|a|
Jor (x, )eR'x {KEY¥*=RD,}.

If {M,} satisfies (D),, we can replace My ., by M.

2) We assume Condition (W.S), when 0=<p—0 and (W.S) when 8 =oco. There
exists a ps.d.op Q(x, D) in 8™™ which satisfies (6.10) for arbitrary a and f. On
the other hand, there exist a positive sequence {L.} and another ps.d.op é(x, D) in
Sq5[M,, L), where POQ—I and QoP—1I belong to S™*.

3) We assume Condition (S). There exists a sequence of positive numbers {L.}
(L,=L,) and a ps.d.op Q(x, D) in S;35[M,, L;] such that PoQ—1I and QoP—I belong
to 8™"[M,,y], 0'=min{6, po—0}.
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Appendix A. Proof of Theorem 4.5.
A.l. Proof of Theorem 4.5, sufficiency.

Under Separativity Condition, we show only the continuity of P(x, D) in
S~=[M,] from Di2{M,} to D;2{M,} because the continuity from & {M,} to
B{M,} follows immediately from this by virtue of Sobolev’s lemma. We use a
“regularized associated function” T'(r). Using a non-negative function o(r) in

9(R) with its support in [—1, 1] and ||o||,2=1, we set T(r)=Sp(r—s)T(s)ds (rer)

where T(s) (s<0) is defined by T(—s). Then, we easily see that 7(r) belongs to
E(R) and satisfies

(A.1) Tr)=T(r=T2r) (rz2),
(A.2) | DiT(r)| =C;T(2r) (rER, jeZ,).

Owing to (A.1), we can use T(r) instead of the associated function T(r).
By virtue of (S.6) in Proposition 2.5 and (4.10”), we have

(A3) >0, 3C, R>0, Yae Z{, peZ: (1| =2)),
|€7pE)(x, £)] < CR“M, o KEYMT(LED/re) .

On the other hand, let B be a bounded set in 972{M,}. Applying Proposi-
tion 2.2, we have the representation of the Fourier image of v in B:

V>0, 3v(x) = v(x, r) ELARY), (&) = T(EY/ro) (¢) -
Then, D% P(x, D)u) is expressed as follows:

(A4 (Puo = 3 () | &4 peantx, e de

o

=2 (Z’) S Cx—ypHoe T Ey(y)dy x
% g (1 — 4o {€5 piyr(x, OYTKED/r)} dE .

The above (1—4g)'o{---} is majorized by CR''*' M, T({ED/r) ™! in virtue of (2.6)
and (S.1). Applying Schwarz’ inequality, it is majorized as follows;

|(Pu)eo 'S CR ™™ My | <oy 0] (3) [y

Thus, we obtain ||Pul|(y,) 2z7<<oo and this show that the image of B by P(x, D) is
bounded in @,2{M,}. Q.E.D.

A.2. Proof of Theorem 4.5, necessity. —Preliminary—

Assuming that Separativity Condition (S) is not satisfied, we show that there
exists a symbol p(£) in S™[M,] and an ultradistribution u» in & {M,} such that
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P(D)u does not belong to £{M,}.

Having regard to Theorem 4.4, we may assume Differentiability Condition (D)
on {M,}. Preliminarily, we consider the trace function of {logM,}. We use
the notation in Paragraph 2.3. By virtue of Proposition 2.5, if {M,} does not
satisfy Separativity Condition (S), there exists a sequence {r;} such that

(A.5) }Lrg ri=oo and YR>1, 3j,=1, Vj=j,, T(r;/R)T(r;))>1.
Setting ¢;=log r; and 3r=log Ry, (5.5) means

(A.5) }LIB tj=o0 and Vr>0, 3,=1, Yj=j, 2H(t;—3r)—H(1;)>0.
We set 7;=¢;,—2r. (A.5) brings

(A.5") 2H(r;—71)— H(z;)>2rh(r)).

Thus, it follows that

(A.6) 2H(t—r)—H@)>71h(t) on [t;—r, 7]].

In fact, as A(t) is non-decreasing, we have

(A7) [2H(z )~ 7)— H(z )| —[2H(t—7)— H(?)]
< {2h(c;— 1))} (e~ 1)
<h(e;~7)e;~0)Sths)  for T—r<tsr;.

Combining (A.5”) and (A.7), we obtain (A.6).
Standing on the inequality (A.6), we have a lemma.

Lemma A.1. There is a function G(t) which satisfies
(A.8) VkeZ,, 3s(k)>0, G@)<H(t—k)—k  for t=s(k),

(A9) VkeZ,, 3t(k)>0, 2G(t)—H(1)=0 on [r(k)—k, =(k)].
and ©(k)>s(k)+k>r(k—1)+k .

Proof. Let us set
H(t) = Ht—k)—k=(—kh(t—k)—ay,_pn—k .
We define inductively s(k) and z(k) and construct G(¢) which satisfies
G(t) = H,(1) for s(h)=t=r(k).

Step 1. We set s(0)=0, (0)=1 and G(¢)=H,(t) on [0, 1].
Step 2. Let k be a natural number. Suppose that s(k—1), 7(k—1) (s(k—1)+
k—1<z(k—1)) and G(t) for t <r(k—1) are already defined and that G(¢) satisfies

(A.10) G(t) = H,_(t) for sk—1)<t<r(k—1).

Let us set
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(A11)  Fp(t) = {t—(k—D}h(e(k—1)—(k— D) —@ycth-p-e-0) —(k—1)
and
(A.12) s(k) = min {t; t>t(k—1) and F,_,(t) = H()}.
Since H(t)>F,_,(t) for sufficiently large ¢ and

Hy®) | t=th-p1 = Fao(rk—1))—1,
s(k) is well-defined and larger than z(k—1)41. We define
(A.13) G(t) = F,_,(t) on [z(k—1),s(k)].

Then, it follows that

@1 (L) ) i = hsG—~B)
2= D—kA+DZ(S) GO liman

Let us take r=k in (A.6) and take one of the element of {r;} (j=j,) such that

(A.15) t,—k>s(k) and h(t)=2 for t=7;—k.
We set
(A.16) (k) =7; and G(t) = Hyt) on [s(k), (k)] .

Thus, s(k), (k) (k€ Z,) and G(¢) (t =0) are defined. They also satisfy (A.9)
by virtue of (A.6) and (A.15). Q.E.D.

Remark. A function is a trace function of some {a,} when it is increasing,
convex and piecewise linear with integer valued slopes. G(¢) defined in the above
lemma is a trace function.

A3. Proof of Theorem 4.5, necessity. —Continued—
Let us set

S(r) =exp G(logr) and N, = supr®/S(r).

Obviously, S(r) is the associated function of {N,}. (A.8) implies
(A.17) VR>0, N,=R"*"'M, n>1).
Moreover, (A.8) and (A.9) mean

(A.18) YkeZ,, Sr)<e*T(r/eh),

and

(A.19) VkeZ,, SrPTr)=1 on [r{, ri],



496 Waichiro Matsumoto
where r{P=e *+"® and rP=¢"®,

F()=3 /M ;) is an entire function and satisfies
j=0

(A.20) Vd>1, 3C(d)>0, T()<T()<CA)T@r2) (r=0),
vYneZ,, |DiT()|<27"T(|z|) (ze0),

because of M, /M,_,=n (n=1). [See (5.14)] We set

(A.21) pE&) = TKE)™.

By virtue of Proposition 2.1 ii), this is real analytic in .R’ and satisfies
(A.22) 3C, R>0, | p®(&)| SCRPIBITEN)™,

because n! satisfies the condition (R) with H=1. (See also the proof of Theorem
A in W, Rudin [36].) This means that p(§) belongs to S™[M,]. .

Now, we show that the image of & {M,} by P(D) is not included in E{M,}.
First, we assume Weak Separativity Condition (W.S) on {M,}. Under this restric-
tion, we can take

(A.23) G(t)=r.

In fact, as F,_, < Hy(t) and 1* Hy(t) (¢ >1), §(k)=min{t; t>7(k—1) and F,_,(t)=
Hy(t)} is well defined. Here, Fy(t) is defined by max{F,(¢), t*}. If we use F(z)
and §(k) instead of F,(¢) and s(k), G(¢) satisfies (A.23).

(A.23) means {N,} satisfies Differentiability Condition (D). We set

(A.24) u =31 (— 1)y H¥46@0ON,
j=0
where H is that in Condition (D.1) on {N,} and 6‘“”2(?) 8. u belongs to
x

&'{M,} by virtue of (A.17) and P(D)u belongs to & due to Theorem 4.4. If
P(D)u further belongs to £{M,}, |<{u, P(D)u>| must be bounded. However, we
have

(A25)  3R>0,Vd>1,3Cd)>0, S(I&)=)=CA)S@H & ])([61>1),

because of Differentiability Condition on {¥,}. Then, it is seen that

(A.26) <33 (1Y HY3#" [N, , P(D)u>

I

[453 (meny T (53 (e N de

2 -1 ! s —
zcf .. SUGPTIaDE] d—e @)

h(log§d=2n

[6, = (52’ R el)] s
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by (A.19), (A.20) with d=+/2 and (A.25). This implies that P(D)u does not
belong to £{M,}.
In case that {M,} satisfies only Differentiability Condition, modifying p() to

p(&) = TKE)8(€)
and u to
u= 3 (—V/ =120 N,
j=0
we arrive at the same conclusion, where

0=¢(E)=1, ¢()EB{L}(R),
1 &§=V72,
(&) = { 0 ¢&=I1. Q.E.D.

(A.27)

Appendix B. Equivalence between (S.2), (S.3), (S.4) and (S.5).

We rewrite (S.)) (1= j<5) using a,=log M, and a;=a,,,—a,.

(1) 3r>0,VYn, m>1, Apim=a,+a,+(n+m)r,
(2) 3r>0,n>1, a,,/(2n) < (a,/n)+r1,

(3 3Ir>0,n>1, at.=a,+r,

4 3r>0,Vn>l, an=(a,/n)+r,

) 3Ir>0,Va, m>1, k=n, apn=kay+a,+k+m)r.

Proof. 1) The equivalence between (2) and (4) follows from
(B.1) na, < z'ﬁ a; = a,,—a, < nas, .
j=n

ii) Note that (1) and (2) are equivalent. (5) is derived from (1) and the relations
aJk=a; and kZn.

iii) (5)=(3). In (5), we take m=sn (s€Z,\{0}) and k=n. Then, it holds that
Asipn=nap+a,,+(s+1nr. Therefore, we have

na;n = A(s+1)n Gsn = na,’,—l—(s-l-l)nr .

If we set s=2, the above inequality implies (3).
iv) (3)=>(2). For n=3, by virtue of (3), it holds that

(B.2) o S @ +7 = Qi +2r = ap+27 .

Then, we have

2n

4n-1 21
Gy, = 510} S2 3} afy S 2 33 (@f+27)

j=n+1 j=n
= 2ay,—a,)t4nr,

that is,
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(B.3) (a4a/4n)— (3/2)(@z0/2n)+(1/2)(an/m) =7 .
We set b,=n{(a,,/2n)—(a,/n)}. Then, (B.3) means that
(B.3") byy—b,<2rn.

This implies

Apn+1—2a,n S 72" 2 2(b,—87) < 12" 3r'>0).

Thus, for 2*"'<k<2", we obtain

ay—2a, £ aypi1—2a, = 7’2" < 2rk,

because a,,—2a, is increasing on n. Q.E.D.
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