Projective structures on Riemann surfaces and Kleinian groups

By

Hiroshige Shiga

§1. Introduction and notations.

Let S be a compact Riemann surface of genus $p \ge 2$, and let $\pi: U \rightarrow S$ be a holomorphic universal covering of S with the covering transformation group Γ , where U is the upper half plane $\{z \in \mathbb{C}: \text{Im } z > 0\}$. Then, Γ is a finitely generated Fuchsian group of the first kind on U and consists of hyperbolic Möbius transformations. We denote by $B_2(L, \Gamma)$ the Banach space of all holomorphic quadratic differentials for Γ defined on the lower half plane L. Namely, $B_2(L, \Gamma)$ is the set of all holomorphic functions ϕ on L satisfying

(1.1)
$$\phi(r(z))r'(z)^2 = \phi(z), \quad \text{for all } z \in L, r \in \Gamma,$$

with the norm

$$||\phi||_L = \sup_{z \in L} (2 \operatorname{Im} z)^2 |\phi(z)|$$
.

More generally, for a Kleinian group G and for a G-invariant union Δ of components of G we denote by $B_2(\Delta, G)$ the Banach space consisting of all holomorphic functions ψ on Δ satisfying

$$\begin{aligned} \psi(g(z))g'(z)^2 &= \psi(z) , \quad \text{for all } z \in \mathcal{A}, g \in G , \\ \psi(z) &= O(|z|^{-4}) , \quad z \to \infty , \quad \text{if } \infty \in \mathcal{A} \end{aligned}$$

with the norm

and

$$||\psi||_{\mathfrak{a}} = \sup_{z \in \mathfrak{a}} \rho_{\mathfrak{a}}(z)^{-2} |\psi(z)| ,$$

where $\rho_{\Delta}(z) |dz|$ is the Poincaré metric on the component of Δ containing z.

For every ϕ in $B_2(L, \Gamma)$, there exists a locally schlicht meromorphic function f_{ϕ} on L with $\{f_{\phi}, z\} = \phi(z)$; here $\{f, \cdot\}$ means the Schwarzian derivative of f

$$\{f, \cdot\} = (f''/f')' - (f''/f')^2/2.$$

Throughout this paper, we shall denote by W_{ϕ} ($\phi \in B_2(L, \Gamma)$) a locally schlicht meromorphic function on L which is uniquely determined by ϕ such that

$$\{W_{\phi}, z\} = \phi(z)$$

Received February 8, 1986

and

$$W_{\phi}(z) = (z+i)^{-1} + O(|z+i|)$$
 as $z \to -i$.

From (1.1) we verify that the function W_{ϕ} induces a group homomorphism θ_{ϕ} : $\Gamma \rightarrow PSL(2, C)$ defined by

(1.2)
$$\theta_{\phi}(r) \circ W_{\phi} = W_{\phi} \circ r , \quad r \in \Gamma ,$$

and we say that W_{ϕ} determines a *projective structure* on S, or that θ_{ϕ} (or the pair $(W_{\phi}, \theta_{\phi})$) is a *deformation* of Γ (cf. Gunning [4], Kra[6]).

Here, we consider the set $K(\Gamma)$ of ϕ in $B_2(L, \Gamma)$ such that $\Gamma^{\phi} = \theta_{\phi}(\Gamma)$ is a Kleinian group. As is well known, (Bers' embedding of) *Teichmüller space* $T(\Gamma)$ of Γ , which has been investigated by many authors (cf. [1], [7], [10], [11], [12]), is a connected open subset of $K(\Gamma)$, where $T(\Gamma)$ is the set of all ϕ in $B_2(L, \Gamma)$ such that W_{ϕ} admits a quasiconformal extension to \hat{C} . And the case where W_{ϕ} is a (unbranched and unbounded) covering mapping on L is studied in Kra[6] and Kra-Maskit[8]. They showed that the set of all such ϕ is compact in $B_2(L, \Gamma)$.

The purpose of this paper is to investigate the structure of Int $K(\Gamma)$, the interior of $K(\Gamma)$ in $B_2(L, \Gamma)$. Our main results assert that the set of ϕ in $B_2(L, \Gamma)$ for which W_{ϕ} is a covering mapping on L is small in a certain sense (Theorem 2) and that all small deformations of a *b*-group are *not* Kleinian groups (Theorem 3).

§2. Preliminaries.

We shall state some known results for deformations of Γ .

- **Proposition 1** ([6]). Let ϕ be in $B_2(L, \Gamma)$. Then, the followings are equivalent:
- (i) $\Gamma^{\phi}(=\theta_{\phi}(\Gamma))$ acts discontinuously on $W_{\phi}(L)$,
- (ii) W_{ϕ} is a covering mapping on L, and
- (iii) $W_{\phi}(L) \neq C$.

Furthermore, in the above cases $W_{\phi}(L)$ is an invariant component of Γ^{ϕ} .

To state the next proposition, we define three classes of Kleinian groups. A finitely generated non-elementary Kleinian group G is a *quasi-Fuchsian group* if G has two simply connected invariant components, a *b-group* if G has only one simply connected invariant component, and a *totally degenerate group* if the region of discontinuity of G is connected and simply connected. Of course, a totally degenerate group is a *b*-group.

Proposition 2 ([9]). Let ϕ be in $K(\Gamma)$. Suppose that θ_{ϕ} is an isomorphism of Γ onto Γ^{ϕ} and Γ^{ϕ} is purely loxodromic. Then, Γ^{ϕ} is a quasi-Fuchsian group or a totally degenerate group.

The following proposition implies that outside of $T(\Gamma)$ in $K(\Gamma)$ is generally ample.

434

Proposition 3 ([9] Theorem 5 and Remark 3). There exists a Fuchsian group Γ satisfying the following conditions:

- (a) U/Γ is a compact Riemann surface of genus $p \ge 2$,
- (b) Int $(K(\Gamma) T(\Gamma))$ is not empty.

As for Int $K(\Gamma)$, we know the following:

Proposition 4 ([6]). For each ϕ in Int $K(\Gamma)$, θ_{ϕ} is an isomorphism, and Γ^{ϕ} is purely loxodromic.

We denote by $S(\Gamma)$ the set of all ϕ in $B_2(L, \Gamma)$ such that W_{ϕ} is schlicht. Obviously, $T(\Gamma) \subset S(\Gamma) \subset K(\Gamma)$, and it is known that $S(\Gamma)$ is compact in $B_2(L, \Gamma)$. Furthermore,

Proposition 5 ([12]). Int $S(\Gamma) = T(\Gamma)$.

§3. Structure of Int $K(\Gamma)$.

It follows from Propositions 2 and 4 that for every ϕ in Int $K(\Gamma)$, Γ^{ϕ} is a quasi-Fuchsian group or a totally degenerate group. Let K be a component of Int $K(\Gamma)$, and let ϕ be in K. Then, there is a small r>0 such that

$$B(r;\phi) = \{\psi \in B_2(L,\Gamma) : ||\psi - \phi||_L < r\} \subset K.$$

Taking a ψ in $B(r; \phi)$, we define a family $\{\chi_{\lambda}\}$ of isomorphisms of Γ^{ϕ} with a complex parameter λ in the unit disk $D = \{\lambda \in C: |\lambda| < 1\}$ by

(3.1)
$$\chi_{\lambda} = \theta_{\phi_{\lambda}} \circ \theta_{\phi}^{-1},$$

where $\phi_{\lambda} = \phi + \lambda(\phi - \psi) \in B(r; \phi)$. Since χ_{λ} depends holomorphically on λ and $\chi_{\lambda}(\Gamma^{\phi}) = \Gamma^{\phi_{\lambda}}$ is a Kleinian group for every λ , the family $\{\chi_{\lambda}\}$ satisfies the condition of Theorem in Bers [2]. Hence, from this theorem, χ_{λ} is a quasiconformal deformation of Γ^{ϕ} for each $\lambda \in D$, that is, there exists a quasiconformal self-mapping w_{λ} of \hat{C} for each $\lambda \in D$ such that

(3.2)
$$\chi_{\lambda}(r) = w_{\lambda} \circ r \circ w_{\lambda}^{-1}$$
, for all $r \in \Gamma^{\phi}$.

Furthermore, from the proof of the theorem we verify that if $|\lambda| < 1/3$, then there exists a function f_{λ} such that f_{λ} is holomorphic on $\mathcal{Q}(\Gamma^{\phi})$, the region of discontinuity of Γ^{ϕ} , and

(3.3)
$$\mu_{\lambda}(z) = \begin{cases} \rho_{\mathcal{Q}(\Gamma^{\Phi})}(z)^{-2} f_{\lambda}(z), & \text{if } z \in \mathcal{Q}(\Gamma^{\Phi}), \\ 0, & \text{if } z \in \mathcal{A}(\Gamma^{\Phi}), \end{cases}$$

where $\Lambda(\Gamma^{\phi})$ is the limit set of Γ^{ϕ} , μ_{λ} the complex dilatation of w_{λ} , and $\rho_{\mathcal{Q}(\Gamma^{\phi})}|dz|$ the Poincaré metric on the component of $\mathcal{Q}(\Gamma^{\phi})$ containing z.

From (3.2) and (3.3), we verify that

$$\mu_{\lambda}(r(z))r'(z)/r'(z) = \mu_{\lambda}(z), \quad \text{for all } r \in \Gamma^{\phi}.$$

On the other hand, the Poincaré density $\rho_{\mathcal{Q}(\Gamma}\phi)$ satisfies the condition:

$$\rho_{\mathcal{Q}(\Gamma}\phi)(r(z))|r'(z)| = \rho_{\mathcal{Q}(\Gamma}\phi)(z), \quad \text{for all } r \in \Gamma^{\phi}$$

Hence we conclude that

(3.4)
$$f_{\lambda} \in B_2(\mathcal{Q}(\Gamma^{\phi}), \Gamma^{\phi}) \text{ and } ||f_{\lambda}||_{\mathcal{Q}(\Gamma^{\phi})} < 1$$
,

for all λ in { $|\lambda| < 1/3$ }. Thus, we have:

Theorem 1. Let K be an arbitrary component of Int $K(\Gamma)$. Then, for ϕ_0 , ϕ_1 in K, Γ^{ϕ_0} and Γ^{ϕ_1} are quasiconformally equivalent, i.e., there exists a quasiconformal self-mapping w of \hat{C} such that

(3.5)
$$\theta_{\phi_1} \circ \theta_{\phi_0}^{-1}(r) = w \circ r \circ w^{-1}, \quad \text{for all } r \in \Gamma^{\phi_0}.$$

Moreover, if the norm $||\phi_0 - \phi_1||_L$ is sufficiently small, then we can take a quasiconformal self-mapping w of \hat{C} satisfying (3.5) as follows.

There exists an f in $B_2(\Omega(\Gamma^{\phi_0}), \Gamma^{\phi_0})$ such that

(3.6)
$$\mu(z) = \begin{cases} \rho(z)^{-2} f(z), & z \in \mathcal{Q}(\Gamma^{\phi_0}), \\ 0, & z \in \mathcal{A}(\Gamma^{\phi_0}), \end{cases}$$

where μ is the complex dilatation of w, $\rho(z) |dz|$ the Poincaré metric on the component of $\Omega(\Gamma^{\phi_0})$ containing z.

Since a quasi-Fuchsian group and a b-group are not quasiconformally equivalent to each other, we have immediately from this theorem

Corollary. The Teichmüller space $T(\Gamma)$ of Γ is equal to the component of Int $K(\Gamma)$ containing the origin.

Remark. It is easily seen that Theorem 1 and Corollary are valid for *every* finitely generated Fuchsian group of the first kind.

Next, we shall investigate the function W_{ϕ} for ϕ in Int $K(\Gamma) - T(\Gamma)$.

Theorem 2. For every ϕ in Int $K(\Gamma) - T(\Gamma)$, the function W_{ϕ} is not a covering mapping on L. Consequently, $W_{\phi}(L) = \hat{C}$.

Proof. Suppose that there exists a ϕ_0 in Int $K(\Gamma) - T(\Gamma)$ for which W_{ϕ_0} is a covering mapping, and denote by K the component of Int $K(\Gamma)$ containing ϕ_0 . Then, from Propositions 2 and 4, Γ^{ϕ_0} is a quasi-Fuchsian group or a totally degenerate group. Since $W_{\phi_0}(L)$ is a simply connected component of Γ^{ϕ_0} from Proposition 1, W_{ϕ_0} is schlicht by the monodromy theorem. If Γ^{ϕ_0} is a quasi-Fuchsian group, then ϕ_0 is in $T(\Gamma)$ by a theorem in Kra[7]. Thus, Γ^{ϕ_0} must be a totally degenerate group. We take a ϕ_1 sufficiently close to ϕ_0 so that the second statement of Theorem 1 holds. Then, both a locally schlicht meromorphic function $W_{\phi_1} \circ W_{\phi_0}^{-1}$ and a quasiconformal self-mapping w of \hat{C} induce the same group isomorphism

436

 $\theta_{\phi_1} \circ \theta_{\phi_0}^{-1}$ of Γ^{ϕ_0} , where w is a quasiconformal mapping obtained in Theorem 1. Since the Schwarzian derivative $\{W_{\phi_1} \circ W_{\phi_0}^{-1}, \cdot\}$ of $W_{\phi_1} \circ W_{\phi_0}^{-1}$ on $\ddot{W}_{\phi_0}(L)$ belongs to $B_2(W_{\phi_0}(L), \Gamma^{\phi_0})$ and the complex dilatation of w is given as (3.6), we can conclude that $W_{\phi_1} \circ W_{\phi_0}^{-1}$ is a Möbius transformation α from Gardiner-Kra[3] Theorem 11.2. Namely, ϕ_1 belongs to $S(\Gamma)$. This implies that ϕ_0 is in Int $S(\Gamma)$, and from Proposition 5, we have a contradiction. Thus, we proved the theorem.

§4. Small deformations of *b*-groups.

Bers[1] showed that a finitely generated (quasi-) Fuchsian group is quasiconformally stable, that is, roughly speaking, a small deformation of the Fuchsian group is always a deformation induced by a quasiconformal self-mapping of \hat{C} . And he also showed that a totally degenerate group is not so. Here, concerning with his results, we shall show that all groups obtained by small deformations of a *b*group are not Kleinian groups.

Let G be a b-group with the invariant component Δ . Then, for each ϕ in $B_2(\Delta, G)$, we can take a locally schlicht meromorphic function f_{ϕ} on Δ satisfying

$$\{f_{\phi}, z\} = \phi(z), \quad z \in \mathcal{A},$$

and for a fixed point $z_0 \in \Delta$

$$f_{\phi}(z) = z + O(|z - z_0|^3)$$
, as $z \to z_0$.

Note that $f_0(z)=z$. We easily see that f_{ϕ} induces a group homomorphism χ_{ϕ} of G as (1.2).

Theorem 3. Let G be a b-group with the invariant component Δ . Then for each $\varepsilon > 0$ there exists a ϕ in $B_2(\Delta, G)$ such that

- (i) $\|\phi\|_{\mathbf{A}} < \varepsilon$, and
- (ii) $\chi_{\phi}(G)$ is not a Kleinian group.

Remarks. 1) In [12], we have shown that all f_{ϕ} for $||\phi||_{\mathcal{A}} < \varepsilon$ are not schlicht on \mathcal{A} . Obviously, $\chi_{\phi}(G)$ is a Kleinian group if f_{ϕ} is schlicht on \mathcal{A} . Therefore, Theorem 3 is an extension of this result.

2) Jørgensen-Klein [5] show that an algebraic limit of finitely generated Kleinian groups is also Kleinian. Since χ_{ϕ} is an isomorphism for almost all ϕ in $B_2(\Delta, G)$ (cf. [6] p. 545), we can take ϕ in Theorem 3 such that $\chi_{\phi}(G)$ is isomorphic to G.

Proof. Take a conformal mapping h of the lower half plane L onto Δ and set $\Gamma = hGh^{-1}$. Then, Γ is a finitely generated Fuchsian group of the first kind isomorphic to G via h and L/Γ is a Riemann surface conformally equivalent to Δ/G .

Suppose that for every ϕ in $B_2(\Lambda, G)$ satisfying (i), $\chi_{\phi}(G)$ is a Kleinian group. Then, a locally schlicht meromorphic function $f_{\phi} \circ h$ on L induces a group homomorphism of Γ onto a Kleinian group $\chi_{\phi}(G)$, and

$$\begin{split} |\{f_{\phi} \circ h, z\}| (2 \operatorname{Im} z)^{2} &\leq |\phi(h(z))h'(z)^{2}| (2 \operatorname{Im} z)^{2} + |\{h, z\}| (2 \operatorname{Im} z)^{2} \\ &= |\phi(h(z))| (\rho_{A}(h(z)))^{-2} + |\{h, z\}| (2 \operatorname{Im} z)^{2} &\leq ||\phi||_{\Delta} + ||h||_{L} < +\infty , \end{split}$$

because $\{h, \cdot\}$ is in $B_2(L, \Gamma)$ by Nehari's theorem. Thus, the Schwarzian derivative $\{f_{\phi} \circ h, \cdot\}$ on L belongs to $K(\Gamma)$. In particular, $\{h, \cdot\} = \{f_0 \circ h, \cdot\}$ belongs to $K(\Gamma)$. Furthermore, by considering $\{f_{\phi} \circ h, \cdot\}$ for all ϕ satisfying (i), we verify that $\{h, \cdot\}$ is in Int $K(\Gamma)$. Since h is a covering (schlicht) mapping on L, we have a contradiction by the same way as in the proof of Theorem 2.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2), 91 (1970), 570–600.
- [2] L. Bers, Holomorphic families of isomorphisms of Möbius groups, J. Math. Kyoto Univ., 26 (1986), 73-76.
- [3] F. Gardiner and I. Kra, Stability of Kleinian groups, Indiana Univ. Math. J., 21 (1972), 1037-1059.
- [4] R. C. Gunning, Affine and projective structures on Riemann surfaces, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Ann. Math. Studies, No. 97, 1980, pp. 225–244.
- [5] T. Jørgensen and P. Klein, Algebraic convergence of finitely generated Kleinian groups, Quart. J, Math., 33 (1982), 325–332.
- [6] I. Kra, Deformations of Fuchsian groups, Duke Math. J., 36 (1969), 537-546.
- [7] I. Kra, On Teichmüller spaces for finitely generated Fuchsian groups, Amer. J. Math., 91 (1969), 67-74.
- [8] I. Kra and B. Maskit, Remarks on projective structures, Riemann Surfaces and Related Topics:Proceedings of the 1978 Stony Brook conference, Ann. Math. Studies, No. 97, pp. 343–359.
- [9] B. Maskit, On a class of Kleinian groups, Ann. Acad. Sci. Fenn., Ser. A. 442 (1969), 8 pp.
- [10] B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math., 91 (1970), 607–639.
- [11] H. Shiga, On analytic and geometric properties of Teichmüller spaces, J. Math. Kyoto Univ., 24 (1984), 441-452.
- [12] H. Shiga, Characterization of quasi-disks and Teichmüller spaces, Tôhoku Math. J., 37 (1985), 541-552.

438