# A property of operators characterized by iteration and a necessary condition for hypoellipticity 

By<br>Toshihiko Hoshiro*

## §0. Introduction.

Let $\mathcal{A}\left(x, D_{x}\right)$ be a linear partial differential operator of order $m(\geqq 1)$ with coefficients of class $C^{\infty}$ in a bounded open set $\Omega$ of $\boldsymbol{R}^{n}$. For $\sigma \geqq 1$, let us denote by $G^{\sigma}(\bar{\Omega}, \mathcal{A})$ the vector space consisting of all $u \in L^{2}(\Omega)$ such that $\mathcal{A}^{k} u \in L^{2}(\Omega)$ for $k=1,2, \cdots$, and furthermore

$$
\left\|\mathcal{A}^{k} u\right\| \leqq L^{k+1}(k!)^{\sigma m} \quad \text { for } k=0,1,2, \cdots
$$

with some positive constant $L$ (where \|\| denotes the norm in $L^{2}(\Omega)$ ). In particular, $G^{\sigma}(\bar{\Omega}, \Delta)$ (where $\Delta$ denotes Laplacian) coincides with the Gevrey class of index $\sigma$ in $\bar{\Omega}$.
G. Métivier ([6] and [7]) proved that, if $\mathcal{A}$ is formally selfadjoint and $G^{1}(\bar{\Omega}, \mathcal{A})$ $\subset \boldsymbol{A}(\Omega)$ (where $\boldsymbol{A}(\Omega)$ denotes the space of real analytic functions in $\Omega$ ), then $\mathcal{A}$ is elliptic in $\Omega$ (see also T. Kotake-M.S. Narasimhan [4]).

On the other hand, Y. Morimoto [8] showed that, for the operator

$$
\mathcal{A}_{\gamma}=D_{x_{1}}^{2}+\exp \left(-1 /\left|x_{1}\right|^{\gamma}\right) D_{x_{2}}^{2} \quad\left(D_{x_{j}}=\frac{1}{i} \frac{\partial}{\partial x_{j}}, j=1,2\right)
$$

there exists a function $u_{0}$ belonging to $G^{1}\left(\Omega, \mathcal{A}_{\gamma}\right)$ but not of class $C^{\infty}$ in $\Omega$ if $r \geqq 1$ (where $\Omega$ is a neighborhood of the origin in $\boldsymbol{R}^{2}$ ). Furthermore, he proved that the operator $P_{\gamma}=D_{t}^{2}+\mathcal{A}_{\gamma}$ is not hypoelliptic in $\boldsymbol{R} \times \Omega$ if $\gamma \geqq 1$, in the following way: Let us define

$$
u\left(t, x_{1}, x_{2}\right)=\sum_{k \geq 0} t^{2 k} \mathcal{A}_{\gamma}^{k} u_{0}\left(x_{1}, x_{2}\right) /(2 k)!.
$$

Then, since $u_{0} \in G^{1}\left(\bar{\Omega}, \mathcal{A}_{\gamma}\right)$, the series on the right hand side converges in $L^{2}(\Omega)$ if $|t|$ is small enough. But $u\left(t, x_{1}, x_{2}\right)$ is a non-smooth solution of the equation

$$
P_{\gamma} u \equiv 0 \quad \text { satisfying } \quad u\left(0, x_{1}, x_{2}\right)=u_{0}\left(x_{1}, x_{2}\right)
$$

Hence, $P_{\gamma}$ is not hypoelliptic. ( $P_{\gamma}$ is hypoelliptic if $0<r<1$. See S. Kusuoka-

[^0]
## D. Strook [5] and Y. Morimoto [9].)

By the above argument, we see that $G^{1}\left(\bar{\Omega}, \mathcal{A}_{\gamma}\right)$ should be contained in $C^{\infty}(\Omega)$ for $P_{\gamma}$ to be hypoelliptic. (Note that $\mathcal{A}_{\boldsymbol{\gamma}}$ itself is hypoelliptic whenever $r>0$. See V.S. Fediǐ [2].) Now, we can expect that the same is true for the operators of higher order, that is, $G^{1}(\bar{\Omega}, \mathcal{A}) \subset C^{\infty}(\Omega)$ if $\mathcal{A}\left(x, D_{x}\right)$ is of order $m(\geqq 1)$ and if $P=D_{t}^{m}+$ $\mathcal{A}\left(x, D_{x}\right)$ is hypoelliptic. In the present paper, noting this property and based on the method of G. Métivier [7], we shall show a necessary condition for the operators of the form $D_{t}^{m}+\mathcal{A}\left(x, D_{x}\right)$ to be hypoelliptic.

The plan of this paper is as follows. We state our main results in §1. In §2, we prove some auxiliary lemmas, and in $\S 3$ we give the proofs of the theorems stated in $\S 1$. In $\S 4$ we shall apply our results to some concrete examples of operators analogeous to $\mathcal{A}_{y}$.

In the course of the preparation of this paper, the author was communicated that Prof. Y. Morimoto independently obtained almost the same results as Theorem 1 and Theorem 2 below. The present paper is also based on the works of Y. Morimoto [8] and [9].

Acknowledgement. The author would like to express his gratitude to Professors S. Mizohata, W. Matsumoto and N. Shimakura for invaluable suggestions and helpful encouragement.

## §1. Main results.

Notations. In this paper, we use || \| to denote the norm in $L^{2}(\Omega)$, or that in $L^{2}\left(\boldsymbol{R}^{n}\right)$. The norm in the Sobolev space $H^{s}\left(\boldsymbol{R}^{n}\right)$ for $s>0$ is denote by $\left\|\|_{s}\right.$. Furthermore, for an open set $\omega \subset \Omega$, we denote $H^{s}(\omega)$ by the Sobolev space for $s>0$ in $\omega . \quad H^{\infty}(\omega)$ is defined by $\bigcap_{s>0} H^{s}(\omega)$.

First, let us introduce the space of functions, which is connected with the method of Y. Morimoto [9].

Definition. For $r>0, H_{r}^{108}\left(\boldsymbol{R}^{n}\right)$ is the vector space which consicts of all $u \in$ $L^{2}\left(\boldsymbol{R}^{n}\right)$ such that

$$
\|u\|_{\log , r}^{2}=\int\left\{\log \left(2+|\xi|^{2}\right)\right\}^{2 r}|\hat{u}(\xi)|^{2} d \xi<+\infty
$$

where

$$
\hat{u}(\xi)=(2 \pi)^{-n / 2} \int u(x) e^{-i x \cdot \xi} d x .
$$

Now, we state the results for formally selfadjoint operators.
Theorem 1. Let $\mathcal{A}\left(x, D_{x}\right)$ be formally selfadjoint partial differential operator of order $m(\geqq 1)$ with coefficients of class $C^{\infty}(\bar{\Omega})$. Assume that, for an open set $\omega \subset \Omega$ and for some real numbers $\sigma \geqq 1$ and $s>0$, the restriction $\left.u\right|_{\omega}$ of any function $u \in G^{\sigma}(\bar{\Omega}$, A) belongs to $H^{s}(\omega)$. Then, for any open set $\omega_{1} \subset \subset \omega$, there exists a positive constant $C$ such that

$$
\begin{equation*}
\|u\|_{\log , \sigma m}^{2} \leqq C\left(\|\mathcal{A} u\|^{2}+\|u\|^{2}\right) \quad \text { for all } u \in C_{0}^{\infty}\left(\omega_{1}\right) . \tag{1.1}
\end{equation*}
$$

Theorem 2. Let $\mathcal{A}\left(x, D_{x}\right)$ be a formally selfadjoint partial differential operator of order $m(\geqq 1)$ with coefficients of class $C^{\infty}(\bar{\Omega})$. Assume that, for an open set $\omega \subset \Omega$ and for a real number $\sigma \geqq 1$, the restriction $\left.u\right|_{\omega}$ of any function $u \in G^{\sigma}(\bar{\Omega}, \mathcal{A})$ belongs to $H^{\infty}(\omega)$. Then, for any open set $\omega_{1} \subset \subset \omega$ and for any $\varepsilon>0$, there exists a positive constant $C_{\mathrm{e}}$ such that

$$
\begin{equation*}
\|u\|_{\log , \sigma m}^{2} \leqq \varepsilon\|\mathcal{A} u\|^{2}+C_{\varepsilon}\|u\|^{2} \quad \text { for all } u \in C_{0}^{\infty}\left(\omega_{1}\right) . \tag{1.2}
\end{equation*}
$$

Now, we can present a necessary condition for hypoellipticity.
Corollary. Let $\mathcal{A}\left(x, D_{x}\right)$ be a formally selfadjoint partial differential operator of order $m(\geqq 1)$ with coefficients of class $C^{\infty}(\Omega)$. If the operator $D_{t}^{m}+\mathcal{A}\left(x, D_{x}\right)$ is hypoelliptic in $\boldsymbol{R} \times \Omega \subset \boldsymbol{R}^{n+1}$, then (1.2) with $\sigma=1$ holds for any open set $\omega_{1} \subset \subset \Omega$.

Proof of Corollary. If (1.2) with $\sigma=1$ does not hold for $\omega_{1} \subset \subset \Omega$, then it follows from theorem 2 that there exists a $u_{0} \in G^{1}(\bar{\Omega}, \mathcal{A})$ not belonging to $H^{\infty}(\omega)$ $\left(\omega_{1} \subset \subset \omega \subset \subset \Omega\right)$. Since $u_{0} \in G^{1}(\bar{\Omega}, \mathcal{A})$, the series

$$
u(t, x)=\sum_{k \geq 0}(i t)^{m k}(-\mathcal{A})^{k} u_{0}(x) /(m k)!
$$

converges in $L^{2}((-\delta, \delta) \times \Omega)$ for small $\delta>0$, and it satisfies the equation ( $D_{t}^{m}+\mathcal{A}$ $\left.\left(x, D_{x}\right)\right) u(t, x) \equiv 0$.

On the other hand, $u(t, x)$ is not of class $C^{\infty}$ in $(-\delta, \delta) \times \Omega$, because $u(0, x)=$ $u_{0}(x) \notin H^{\infty}(\omega)$. Hence, the operator $D_{t}^{m}+\mathcal{A}\left(x, D_{x}\right)$ is not hypoelliptic. Q.E.D.

Let us now generalize the above Theorem 1 to the operators which are not necessarily formally selfadjoint but have maximally accretive extensions (see T . Kato [9] page 279 for the definition of maximally accretive operator).

Theorem 3. Let $\mathcal{A}\left(x, D_{x}\right)$ be a partial differential operator of order $m(\geqq 1)$ with coefficients of class $C^{\infty}(\bar{\Omega})$ which has a maximally accretive realization $(A, \mathrm{D}(A))$ in $L^{2}(\Omega)$. Assume that, for an open set $\omega \subset \Omega$ and for some real numbers $\sigma \geqq 1$ and $s>0$, the restriction $\left.u\right|_{\omega}$ of any function $u \in G^{\sigma}(\bar{\Omega}, \mathcal{A})$ belongs to $H^{s}(\omega)$. Then, for any open set $\omega_{1} \subset \subset \omega$ and for any $\delta(1<\delta<\sigma m)$, there exists a positive constant $C$ such that

$$
\begin{equation*}
\|u\|_{10, \sigma m-\delta}^{2} \leqq C\left(\|\mathcal{A} u\|^{2}+\|u\|^{2}\right) \quad \text { for all } u \in C_{0}^{\infty}\left(\omega_{1}\right) . \tag{1.3}
\end{equation*}
$$

If $A$ is a maximally accretive operator, then $A+\lambda$ has bounded inverse for any $\lambda \in \boldsymbol{C}$ with $\operatorname{Re} \lambda>0$ and $\left\|(A+\lambda)^{-1}\right\| \leqq(\operatorname{Re} \lambda)^{-1}$. Moreover, $\mathrm{D}(A)$ (the domain of definition of $A$ ) is dense in $L^{2}(\Omega)$. So, $-A$ generates a contractive semi-group $\{G(t)\}_{t \geq 0}$ by Hille-Yosida's theorem. We will make use of $G(t)$ in the proof of theorem 3.

Remark. We can apply Theorem 3 to the operators of the form

$$
\mathcal{A}=-\sum_{j=1}^{p} X_{j}^{2}+X_{0}+c,
$$

where $X_{0}, X_{1}, \cdots, X_{p}$ are real vector fields of class $C^{\infty}(\bar{\Omega})$ and $c \in C^{\infty}(\bar{\Omega})$ (see G. Métivier [7] §5).

## §2. Auxiliary lemmas.

In this section, we treat two spectral resolution of positively selfadjoint operators. One is related to formally selfadjoint differential operator $\mathcal{A}\left(x, D_{x}\right)$, and the other is related to $\Lambda=\left(1+\left|D_{x}\right|^{2}\right)^{1 / 2}$. Using them, we introduce some spaces of functions connected with $G^{\sigma}(\bar{\Omega}, \mathcal{A})$, and characterize the space $H_{r}^{\mathrm{log}}\left(\boldsymbol{R}^{n}\right)$. Furthermore, in Lemma 2.4 and Lemma 2.5 below, we modify the interpolative method of G. Métivier [7] §3 to make use of our theorems.

## I) Spectral resolutions.

Let $(A, \mathrm{D}(A))$ be a realization in $L^{2}(\Omega)$ of a formally selfadjoint differential operator $\mathcal{A}\left(x, D_{x}\right)$, of order $m(\geqq 1)$, with coefficients of class $C^{\infty}(\bar{\Omega})$. In this section, we assume that $A$ is positively selfadjoint with domain $\mathrm{D}(A)$. (In general case, we make use of the square root of a Friedrichs extension of $\mathcal{A}^{2}$. The detail will be stated in the next section.) We denote by $E(t)(-\infty<t<+\infty)$ the spectral resolution of $(A, \mathrm{D}(A))$ :

$$
A=\int_{-\infty}^{\infty} t d E(t), \quad E((-\infty, 0))=0
$$

First, let us put

$$
F(t)=E(t-1)-E\left(\frac{t}{e}-1\right)
$$

Then, it is easy to see that

$$
\begin{equation*}
u=\int_{1}^{\infty} F(t) u \frac{d t}{t} \quad \text { for all } u \in L^{2}(\Omega) \tag{2.1}
\end{equation*}
$$

where the integral on the right hand side converges in $L^{2}(\Omega)$. Moreover,

$$
\begin{equation*}
\|u\|^{2}=\int_{1}^{\infty}\|F(t) u\|^{2} \frac{d t}{t} \quad \text { for all } u \in L^{2}(\Omega) \tag{2.2}
\end{equation*}
$$

where \| \| denotes the norm in $L^{2}(\Omega)$.
Next, we introduce the following integrals $J_{k}(u)$ and $N_{\alpha}^{\sigma}(u)$ connected with $\mathrm{D}\left(A^{k}\right)$ and $G^{\sigma}(\bar{\Omega}, \mathcal{A})$.

$$
\begin{gathered}
J_{k}(u)=\int_{1}^{\infty} t^{2 k}\|F(t) u\|^{2} \frac{d t}{t} \quad \text { for integer } k \geqq 0 . \\
N_{\alpha}^{\sigma}(u)=\int_{1}^{\infty} \exp \left(\alpha t^{1 / \sigma m}\right)\|F(t) u\|^{2} \frac{d t}{t} \quad \text { for } \sigma \geqq 1 \text { and } \alpha>0 .
\end{gathered}
$$

Furthermore, concerning the integral $N_{\alpha}^{\sigma}(u)$, we define the followings:
Definition (1). For $\sigma \geqq 1$, we denote by $\mathrm{D}^{\sigma}(A)$ the vector space consisting of all
functions $u \in \mathrm{D}\left(A^{\infty}\right)\left(=\bigcap_{k=0}^{\infty} \mathrm{D}\left(A^{k}\right)\right)$ such that

$$
\left\|A^{k} u\right\| \leqq L^{k+1}(k!)^{\sigma m} \quad \text { for } k=0,1,2, \cdots
$$

with some positive constant $L$.
(2). For $\sigma \geqq 1$ and $\alpha>0$, we denote by $\mathrm{D}_{\alpha}^{\sigma}(A)$ the vector space consisting of all functions $u \in \mathrm{D}\left(A^{\infty}\right)$ satisfying

$$
N_{\alpha}^{\sigma}(u)<\infty .
$$

Now, we see the followings:
Lemma 2.1 (i). An element $u \in L^{2}(\Omega)$ belongs to $\mathrm{D}\left(A^{k}\right)$ if and only if $J_{k}(u)<\infty$. Moreover, for all $u \in \mathrm{D}\left(A^{k}\right)$,

$$
\begin{equation*}
\left\|(A+1)^{k} u\right\|^{2} \leqq J_{k}(u) \leqq e^{2 k}\left\|(A+1)^{k} u\right\|^{2} \tag{2.3}
\end{equation*}
$$

(ii). For $\sigma \geqq 1, \bigcup_{a>0} \mathrm{D}_{a}^{\sigma}(A)=\mathrm{D}^{\sigma}(A)$.
(iii). For any $u \in L^{2}(\Omega), \tau \mapsto F(\tau) u$ is a measurable mapping from $[1, \infty)$ to $\mathrm{D}_{a}^{\sigma}(A)$ satisfying

$$
\begin{equation*}
N_{\alpha}^{\sigma}(F(\tau) u) \leqq \exp \left(\alpha(e \tau)^{1 / \sigma m}\right)\|u\|^{2} . \tag{2.4}
\end{equation*}
$$

Proof of (i). To verify (2.3), it suffices to remark that

$$
\begin{equation*}
\left(\frac{t}{e}\right)^{k}\|F(t) u\| \leqq\left\|(A+1)^{k} F(t) u\right\| \leqq t^{k}\|F(t) u\| . \tag{2.5}
\end{equation*}
$$

Integration of (2.5) with respect to $t$ yields (2.3).
Proof of (ii). If $u \in \mathrm{D}_{a}^{\sigma}(A)$, then by (2.3)

$$
\begin{aligned}
\left\|(A+1)^{k} u\right\|^{2} & \leqq \int_{1}^{\infty} t^{2 k}\|F(t) u\|^{2} \frac{d t}{t} \\
& \leqq \sup _{t \geq 0} t^{2 k} \exp \left(-\alpha t^{1 / \sigma^{m}}\right) N_{\alpha}^{\sigma}(u) \\
& \leqq\left(\frac{2 \sigma m}{\alpha}\right)^{2 \sigma m k}(k!)^{2 \sigma m} N_{\alpha}^{\sigma}(u) .
\end{aligned}
$$

Hence, we see that $u \in \mathrm{D}^{\sigma}(A)$.
Conversely, if $u \in L^{2}(\Omega)$ satisfies

$$
\left\|(A+1)^{k} u\right\| \leqq L^{k+1}(k!)^{\sigma m} \quad \text { for } k=0,1,2, \cdots
$$

with some positive constant $L$, then by (2.3) we see that

$$
\int_{1}^{\infty} t^{2 k}\|F(t) u\|^{2} \frac{d t}{t} \leqq L^{2}(e L)^{2 k}(k!)^{2 \sigma m} \quad \text { for } k=0,1,2, \cdots
$$

Hence, it follows from Hölder's inequality that

$$
\begin{aligned}
& \int_{1}^{\infty} t^{k / \sigma m}\|F(t) u\|^{2} \frac{d t}{t} \\
& \quad \leqq\left(\int_{1}^{\infty} t^{2 k}\|F(t) u\|^{2} \frac{d t}{t}\right)^{1 / 2 \sigma m}\left(\int_{1}^{\infty}\|F(t) u\|^{2} \frac{d t}{t}\right)^{1-1 / 2 \sigma m} \\
& \quad \leqq L^{2}(e L)^{k / \sigma m} k!\quad \text { for } k=0,1,2, \cdots
\end{aligned}
$$

Let us divide the both sides of the last inequality by $2^{k}(e L)^{k / \sigma m} k!$, and sum up them with respect to $k$. Then, we see that $N_{\alpha}^{\sigma}(u)<\infty$ with $\alpha=2^{-1}(e L)^{-1 / \sigma m}$.

Proof of (iii). By (2.5), we have $F(\tau) u \in \mathrm{D}\left(A^{\infty}\right)$.
On the other hand, by definition of $N_{a}^{\sigma}(u)$,

$$
N_{\alpha}^{\sigma}(F(\tau) u) \leqq \int_{1}^{\infty} \exp \left(\alpha t^{1 / \sigma m}\right)\|F(t) F(\tau) u\|^{2} \frac{d t}{t}
$$

Noticing that $F(t) F(\tau) u \equiv 0$ for $t>e \tau$, we have

$$
\begin{align*}
N_{\alpha}^{\sigma}(F(\tau) u) & \leqq \exp \left(\alpha(e \tau)^{1 / \sigma m}\right) \int_{1}^{\infty}\|F(t) F(\tau) u\|^{2} \frac{d t}{t} \\
& =\exp \left(\alpha(e \tau)^{1 / \sigma m}\right)\|F(\tau) u\|^{2} \\
& \leqq \exp \left(\alpha(e \tau)^{1 / \sigma m}\right)\|u\|^{2}
\end{align*}
$$

Next, we introduce the operator $\Lambda=\left(1+\left|D_{x}\right|^{2}\right)^{1 / 2}$ in $L^{2}\left(\boldsymbol{R}^{n}\right)$ with bomain $H^{1}\left(\boldsymbol{R}^{n}\right)$, that is,

$$
\Lambda u(x)=(2 \pi)^{-\pi / 2} \int e^{i x \cdot \xi}\left(1+|\xi|^{2}\right)^{1 / 2} \hat{u}(\xi) d \xi
$$

The spectral resolution of $\Lambda$ is denoted by $\widetilde{E}(\lambda)(-\infty<\lambda<+\infty)$ :

$$
\Lambda u=\int_{-\infty}^{\infty} \lambda d \tilde{E}(\lambda), \quad \tilde{E}((-\infty, 1))=0
$$

Furthermore, let us put

$$
\widetilde{F}(\lambda)=\widetilde{E}(\lambda-1)-\widetilde{E}\left(\frac{\lambda}{e}-1\right)
$$

Then, by the same way as in (2.1) and (2.2), we have

$$
\begin{gather*}
u=\int_{1}^{\infty} \tilde{F}(\lambda) u \frac{d \lambda}{\lambda}, \text { and }  \tag{2.6}\\
\|u\|^{2}=\int_{1}^{\infty}\|\tilde{F}(\lambda) u\|^{2} \frac{d \lambda}{\lambda} \quad \text { for all } u \in L^{2}\left(\boldsymbol{R}^{n}\right), \tag{2.7}
\end{gather*}
$$

where \| \| denotes the norm in $L^{2}\left(\boldsymbol{R}^{n}\right)$.
Next, let us introduce the following integrals $\widetilde{J}_{s}(u)$ and $\widetilde{I}_{r}(u)$ connected with $H^{s}\left(\boldsymbol{R}^{n}\right)$ and $H_{r}^{\log }\left(\boldsymbol{R}^{n}\right)$.

$$
\begin{equation*}
\widetilde{J}_{s}(u)=\int_{1}^{\infty} \lambda^{2 s}| | \tilde{F}(\lambda) u \|^{2} \frac{d \lambda}{\lambda} \quad \text { for } s>0 \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{I}_{r}(u)=\int_{1}^{\infty}(\log \lambda)^{2 r}\|\tilde{F}(\lambda) u\|^{2} \frac{d \lambda}{\lambda} \quad \text { for } r>0 . \tag{2.9}
\end{equation*}
$$

Lemma 2.2 (i). An element $u \in L^{2}\left(\boldsymbol{R}^{n}\right)$ belongs to $H^{s}\left(\boldsymbol{R}^{n}\right)$ if and only if $\widetilde{J}_{s}(u)<$ $\infty$. Moreover, there exists a positive constant $C_{s}$ such that

$$
\begin{equation*}
C_{s}^{-1}\|u\|_{s}^{2} \leqq \widetilde{J}_{s}(u) \leqq C_{s}\|u\|_{s}^{2} \quad \text { for all } u \in H^{s}\left(\boldsymbol{R}^{n}\right) . \tag{2.10}
\end{equation*}
$$

(ii). An element $u \in L^{2}\left(\boldsymbol{R}^{n}\right)$ belongs to $H_{r}^{10 \mathrm{~s}}\left(\boldsymbol{R}^{n}\right)$ if and only if $\tilde{I}_{r}(u)<\infty$. Moreover, there exists a positive constant $C_{r}$ such that

$$
\begin{equation*}
C_{r}^{-1}\|u\|_{\log , r}^{2} \leqq \widetilde{I}_{r}(u) \leqq C_{r}\|u\|_{\log , r}^{2} \quad \text { for all } u \in H_{r}^{\log }\left(\boldsymbol{R}^{n}\right) . \tag{2.11}
\end{equation*}
$$

Proof of (i). Noticing that the norms $\|u\|_{s}$ and $\left\|(\Lambda+1)^{s} u\right\|$ are equivalent, we obtain (i) by the same argument as in the proof of (ii) of lemma 2.1.

Proof of (ii). Let us consider the operator

$$
\{\log (\Lambda+1)\}^{r}=\int_{0}^{\infty}\{\log (\lambda+1)\}^{r} d \tilde{E}(\lambda) \quad \text { for } r>0
$$

Then, for $\lambda \geqq 1$,

$$
\begin{aligned}
& (\log \lambda)^{2 r}\|\tilde{F}(\lambda) u\|^{2}-\left\|\{\log (\Lambda+1)\}^{r} \tilde{F}(\lambda) u\right\|^{2} \\
& \quad=\int_{1}^{\infty}\left\{(\log \lambda)^{2 r}-(\log \mu)^{2 r}\right\} d_{\mu}\|\tilde{E}(\mu-1) \tilde{F}(\lambda) u\|^{2}
\end{aligned}
$$

The integral on the right hand side is non-negative, because

$$
d_{\mu} \widetilde{E}(\mu-1) \widetilde{F}(\lambda) u=0 \quad \text { if } \mu>\lambda .
$$

Hence, it follows from the above argument that

$$
\left\|\{\log (\Lambda+1)\}^{r} \widetilde{F}(\lambda) u\right\|^{2} \leqq(\log \lambda)^{2 r}\|\tilde{F}(\lambda) u\|^{2} \leqq\left\|\{\log (e \Lambda+e)\}^{r} \widetilde{F}(\lambda) u\right\|^{2},
$$

where the definition of $\{\log (e \Lambda+e)\}^{r}$ is analogous to that of $\{\log (\Lambda+1)\}^{r}$. Integrations of the inequalities with respect to $\lambda$ yield (ii), noticing that the norms $\|u\|_{\log , r},\left\|\{\log (\Lambda+1)\}^{r} u\right\|$ and $\left\|\{\log (e \Lambda+e)\}^{r} u\right\|$ are equivalent.
Q.E.D.
II) Interpolation.

Now, we shall prove the following lemmas which play important roles in the proofs of the theorems.

Lemma 2.3. Let $t \mapsto f(t)$ be a measurable mapping from $[1, \infty)$ to $H^{s}\left(\boldsymbol{R}^{n}\right)(s>0)$ satisfying

$$
\begin{aligned}
M(f ; \theta) & =\int_{1}^{\infty}\|f(t)\|^{2} t^{2 \theta} \frac{d t}{t}<\infty, \text { and } \\
N(f ; s, \alpha, \beta, \theta) & =\int_{1}^{\infty} \exp \left(-\alpha t^{1 / \beta}\right) \tilde{J}_{s}(f(t)) t^{2 \theta} \frac{d t}{t}<\infty
\end{aligned}
$$

for some positive numbers $\alpha, \beta, \theta$ and $s(f o r ~ b r e v i t y, ~ l e t ~ u s ~ d e n o t e ~ M(f)=M(f ; \theta)$
and $N(f)=N(f ; s, \alpha, \beta, \theta))$.
Then, the integral

$$
\begin{equation*}
v=\int_{1}^{\infty} f(t) \frac{d t}{t} \tag{2.12}
\end{equation*}
$$

converges with respect to the norm in $L^{2}\left(\boldsymbol{R}^{n}\right)$. Moreover, $v \in H_{\theta \beta}^{\log }\left(\boldsymbol{R}^{n}\right)$ and

$$
\begin{equation*}
\|v\|_{\text {ios }, \theta \beta}^{2} \leqq C(M(f)+N(f)), \tag{2.13}
\end{equation*}
$$

where $C$ is a constant independent of $f$.
Remark. In the integral defining $N(f)$, the factor $t^{2 \theta}$ is negligible if we take $\alpha>0$ larger. Also, $\widetilde{J}_{s}(f(t))$ can be replaced by $\|f(t)\|_{s}^{2}$. So, the condition $N(f)<\infty$ says that $\|f(t)\|_{s}$ increases at most in exponential order as $t \rightarrow \infty$.

Lemma 2.4. Let $t \mapsto f(t)$ be a measurable mapping from $[1, \infty)$ to $H^{\infty}\left(\boldsymbol{R}^{n}\right)$ satisfying

$$
M(f ; \theta)<\infty \text { and } N(f ; s, \alpha, \beta, \theta)<\infty
$$

for some fixed positive numbers $\alpha, \beta$ and $\theta$, and for any $s>0$ (for brevity, let us denote $N(f ; s)=N(f ; s, \alpha, \beta, \theta))$.

Then, for any $\varepsilon>0$, there exists a $s>0$ independent of $f$ such that

$$
\int_{1}^{\infty}(\log \lambda)^{2 \theta \beta}\|\widetilde{F}(\lambda) v\|^{2} \frac{d \lambda}{\lambda} \leqq \varepsilon(M(f)+N(f ; s)),
$$

where $v$ is the same as in (2.12).
Proof of lemma 2.3. The integral on the right hand side of (2.12) is convergent, because

$$
\left(\int_{1}^{\infty}\|f(t)\| \frac{d t}{t}\right)^{2} \leqq \int_{1}^{\infty} t^{2 \theta}\|f(t)\|^{2} \frac{d t}{t} \cdot \int_{1}^{\infty} t^{-2 \theta} \frac{d t}{t}=(2 \theta)^{-1} M(f)<\infty .
$$

Let us put $\exp \left(t^{1 / \beta}\right)=\tau$ and $g(\tau)=f(t)$. Then, we see that

$$
\begin{align*}
M(f)+N(f) & =\beta \int_{e}^{\infty}\left\{\|g(\tau)\|^{2}+\tau^{-\alpha} \cdot \widetilde{J}_{s}(g(\tau))\right\}(\log \tau)^{2 \theta \beta-1} \frac{d \tau}{\tau}  \tag{2.14}\\
& =\beta \int_{e}^{\infty} \int_{1}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)(\log \tau)^{2 \theta \beta-1}\|\tilde{F}(\lambda) g(\tau)\|^{2} \frac{d \lambda}{\lambda} \frac{d \tau}{\tau},
\end{align*}
$$

In the last inequality, we have used (2.7) and (2.8).
On the other hand, since $\widetilde{F}(\lambda)$ is a bounded linear operator in $L^{2}\left(\boldsymbol{R}^{n}\right)$,

$$
\begin{aligned}
\widetilde{F}(\lambda) v & =\widetilde{F}(\lambda) \beta \int_{e}^{\infty} g(\tau)(\log \tau)^{-1} \frac{d \tau}{\tau} \\
& =\beta \int_{e}^{\infty} \widetilde{F}(\lambda) g(\tau)(\log \tau)^{-1} \frac{d \tau}{\tau} .
\end{aligned}
$$

Hence, it follows from Schwarz's inequality that

$$
\begin{align*}
&\|\widetilde{F}(\lambda) v\|^{2} \leqq \beta^{2} \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)(\log \tau)^{2 \theta \beta-1}\|\tilde{F}(\lambda) g(\tau)\|^{2} \frac{d \tau}{\tau}  \tag{2.15}\\
& \times \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)^{-1}(\log \tau)^{-2 \theta \beta-1} \frac{d \tau}{\tau}
\end{align*}
$$

Let us estimate the right hand side of (2.15). Changing variable $\tau$ by $\mu=\log \tau$, and putting a $(\lambda)=\frac{s}{\alpha} \log \lambda$, we obtain

$$
\begin{aligned}
& \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)^{-1}(\log \tau)^{-2 \theta \beta-1} \frac{d \tau}{\tau} \\
& \quad=\int_{1}^{\infty}\left(1+\lambda^{2 s} \cdot e^{-\alpha \mu}\right)^{-1} \mu^{-2 \theta \beta-1} d \mu \\
& \quad \leqq \int_{a(\lambda)}^{\infty} \mu^{-2 \theta \beta-1} d \mu+\lambda^{-2 s} \int_{1}^{a(\lambda)} e^{\alpha \mu} d \mu .
\end{aligned}
$$

Furthermore, since $e^{\alpha \mu} \leqq \lambda^{5}$ for $\mu \leqq a(\lambda)$, we see that

$$
\begin{align*}
& \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)^{-1}(\log \tau)^{-2 \theta \beta-1} \frac{d \tau}{\tau}  \tag{2.16}\\
& \quad \leqq(2 \theta \beta)^{-1}\left[\frac{s}{\alpha} \log \lambda\right]^{-2 \theta \beta}+\lambda^{-s}\left[\frac{s}{\alpha} \log \lambda\right] \\
& \quad \leqq\left\{(2 \theta \beta)^{-1}\left[\frac{s}{\alpha}\right]^{-2 \theta \beta}+\frac{s}{\alpha}\left[\frac{2 \theta \beta+1}{s}\right]^{2 \theta \beta+1}\right\}(\log \lambda)^{-2 \theta \beta} \\
& \quad=s^{-2 \theta \beta}\left\{(2 \theta \beta)^{-1} \alpha^{2 \theta \beta}+\alpha^{-1}(2 \theta \beta+1)^{2 \theta \beta+1}\right\}(\log \lambda)^{-2 \theta \beta}
\end{align*}
$$

The third line of (2.16) holds because

$$
\lambda^{-s}(\log \lambda)^{2 \theta \beta+1} \leqq\left[\frac{2 \theta \beta+1}{s}\right]^{2 \theta \beta+1} \quad \text { for } \lambda \geqq 1
$$

Therefore, it follows from (2.15) and (2.16) that

$$
\begin{aligned}
& (\log \lambda)^{2 \theta \beta}\|\tilde{F}(\lambda) v\|^{2} \\
& \quad \leqq C \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)(\log \tau)^{2 \theta \beta-1}\|\tilde{F}(\lambda) g(\tau)\|^{2} \frac{d \tau}{\tau}
\end{aligned}
$$

where $C$ depends only on $s, \alpha, \beta$ and $\theta$.
Hence, it follows from (2.14) that

$$
\int_{1}^{\infty}(\log \lambda)^{2 \theta \beta}| | \tilde{F}(\lambda) v \|^{2} \frac{d \lambda}{\lambda} \leqq \beta^{-1} C(M(f)+N(f)) .
$$

Noticing (ii) of Lemma 2.2, we have Lemma 2.3.
Q.E.D.

Proof of Lemma 2.4. In (2.16), let us take $s>0$ such that

$$
s^{-2 \theta \beta}\left\{(2 \theta \beta)^{-1} \alpha^{2 \theta \beta}+\alpha^{-1}(2 \theta \beta+1)^{2 \theta \beta+1}\right\} \leqq \varepsilon \cdot \beta^{-1}
$$

Then, (2.16) becomes

$$
\int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)^{-1}(\log \tau)^{-2 \theta \beta-1} \frac{d \tau}{\tau} \leqq \varepsilon \cdot \beta^{-1}(\log \lambda)^{-2 \theta \beta}
$$

Hence, it follows from (2.15) that

$$
\begin{aligned}
& (\log \lambda)^{28 \beta}\|\tilde{F}(\lambda) v\|^{2} \\
& \quad \leqq \varepsilon \beta \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)(\log \tau)^{2 \theta \beta-1}\|\tilde{F}(\lambda) g(\tau)\|^{2} \frac{d \tau}{\tau}
\end{aligned}
$$

Now, if we integrate the last inequality with respect to $\lambda$, we obtain

$$
\begin{aligned}
& \int_{1}^{\infty}(\log \lambda)^{2 \theta \beta}\|\tilde{F}(\lambda) v\|^{2} \frac{d \lambda}{\lambda} \\
& \quad \leqq \varepsilon \beta \int_{1}^{\infty} \int_{e}^{\infty}\left(1+\lambda^{2 s} \cdot \tau^{-\alpha}\right)(\log \tau)^{2 \theta \beta-1}\|\tilde{F}(\lambda) g(\tau)\|^{2} \frac{d \tau}{\tau} \frac{d \lambda}{\lambda} .
\end{aligned}
$$

The conclusion of lemma 2.4 follows from (2.14).
Q.E.D.

## §3. Proofs of Theorems.

First, let us prove Theorem 2, because the proof of Theorem 1 is parallel to that of Theorem 2.

Proof of Theorem 2. The differential operator $\mathscr{B}=\mathcal{A}^{2}$ is formally positive and selfadjoint. Let us denote by $(B, \mathrm{D}(B))$ the Friedrichs extension of $\mathscr{B}$ in $L^{2}(\Omega)$, defined in the following way:

Let $\mathcal{V}$ be the vector space consisting of all functions $u \in L^{2}(\Omega)$ satisfying $\mathcal{A} u \in L^{2}(\Omega)$ (where $\mathcal{A}$ is operated to $u$ in distribution sense). The domain of definition of $B$ is
$\mathrm{D}(B)=\left\{u \in \mathcal{V}\right.$; there exists a function $f \in L^{2}(\Omega)$ such that

$$
(\mathcal{A} u, \mathcal{A} v)+(u, v)=(f, v) \quad \text { for all } v \in \mathcal{V}\}
$$

where (, ) denotes the scalar product in $L^{2}(\Omega)$.
Now, we define $B u$ by $f-u$ in the above definition of $\mathrm{D}(B)$. It is evident that $(B u, v)=(\mathcal{A} u, \mathcal{A} v)$ for all $u \in \mathrm{D}(B)$ and for all $v \in \mathcal{V}$. In particular, $(B u, u)=\|\mathcal{A}\|^{2}$ for all $u \in \mathrm{D}(B)$.

Now, it is clear that, for $u \in \mathrm{D}\left(B^{\infty}\right), B^{p} u=\mathcal{A}^{2 p} u$ and

$$
\left\|\mathcal{A}^{2 p} u\right\|=\left\|B^{p} u\right\| \quad \text { for } p=0,1,2, \cdots
$$

Next, let us denote by $B^{1 / 2}$ the positive square root of $B$. Then, since $\|\mathcal{A} v\|^{2}=$ $(B v, v)=\left\|B^{1 / 2} v\right\|^{2}$ for all $v \in \mathrm{D}(B)$, we see that, for $u \in \mathrm{D}\left(B^{\infty}\right)$,
$\left\|\mathcal{A}^{2 p+1} u\right\|^{2}=\left\|\mathcal{A} B^{p} u\right\|^{2}=\left(B \cdot B^{p} u, B^{p} u\right)=\left\|B^{p+1 / 2} u\right\|^{2} \quad$ for $p=0,1,2, \cdots$.
Hence, we can show the inclusion $\mathrm{D}^{\sigma}\left(B^{1 / 2}\right) \subset G^{\sigma}(\bar{\Omega}, \mathcal{A})$.

Now, we fix $\alpha_{1}>0$ and define $V=\mathrm{D}_{\alpha_{1}}^{\sigma}\left(B^{1 / 2}\right)$. The above argument and (ii) of lemma 2.1 imply that $V$ is a Banach space and contained in $G^{\sigma}(\bar{\Omega}, \mathcal{A})$. Furthermore, let us take a function $\phi \in C_{0}^{\infty}(\omega)$ satisfying $0 \leqq \phi \leqq 1$ in $\omega$ and $\phi \equiv 1$ in $\omega_{1}$. Then, the hypothesis of theorem 2, i.e., $G^{\sigma}(\bar{\Omega}, \mathcal{A}) \subset H^{\infty}(\omega)$, yields that $\phi u$ belongs to $H^{\infty}\left(\boldsymbol{R}^{n}\right)$ for any $u \in V$. Hence, the following holds by the closed graph theorem.

For any $s>0$, there exists a positive constant $C_{s}=C_{s}(\phi)$ such that

$$
\begin{equation*}
\widetilde{J}_{s}(\phi u) \leqq C_{s} N_{\alpha_{1}}^{\sigma}(u) \quad \text { for all } u \in V . \tag{3.1}
\end{equation*}
$$

(Recall that $\sqrt{ } \widetilde{J}_{s}(u)$ is equivalent to the norm in $H^{s}\left(\boldsymbol{R}^{n}\right)$. See (i) of lemma 2.2.)
Now, we can apply lemma 2.4 to $f(t)=\phi F(t) u$ for $u \in \mathrm{D}\left(B^{1 / 2}\right)\left(A=B^{1 / 2}\right)$, with $\theta=1, \beta=\sigma m$ and $\alpha \gg \alpha_{1}$. Then, we have

$$
\begin{aligned}
M(f) & =\int_{1}^{\infty}\|\phi F(t) u\|^{2} t^{2} \frac{d t}{t} \leqq \int_{1}^{\infty}\|F(t) u\|^{2} t^{2} \frac{d t}{t} \\
& \leqq e^{2}\left\|\left(B^{1 / 2}+1\right) u\right\|^{2}
\end{aligned}
$$

and for any $s>0$,

$$
\begin{aligned}
N(f ; s) & =\int_{1}^{\infty} \exp \left(-\alpha t^{1 / \sigma m}\right) \tilde{J}_{s}(\phi F(t) u) t^{2} \frac{d t}{t} \\
& \leqq C_{s} \int_{1}^{\infty} \exp \left(-\alpha t^{1 / \sigma m}\right) N_{\alpha_{1}}^{\sigma}(F(t) u)^{2} \frac{2 t}{t} \\
& \leqq C_{s}^{\prime}\|u\|^{2} .
\end{aligned}
$$

In the above inequalities, we have used lemma 2.1 and (3.1).
Therefore, since

$$
v=\int_{1}^{\infty} f(t) \frac{d t}{t}=\int_{1}^{\infty} \phi F(t) u \frac{d t}{t}=\phi u
$$

$\phi u$ belongs to $H_{\sigma m}^{\log }\left(\boldsymbol{R}^{n}\right)$. Furthermore, for arbitrary small $\varepsilon>0$, there exists a positive constant $C_{s}^{\prime}$ such that

$$
\begin{align*}
& \int_{1}^{\infty}(\log \lambda)^{2 \sigma^{m}}\|\tilde{F}(\lambda) \phi u\|^{2} \frac{d \lambda}{\lambda}  \tag{3.2}\\
& \quad \leqq \varepsilon\left(e^{2}\left\|\left(B^{1 / 2}+1\right) u\right\|^{2}+C_{s}^{\prime}\|u\|^{2}\right) \quad \text { for all } u \in \mathrm{D}\left(B^{1 / 2}\right) .
\end{align*}
$$

Hence, by (ii) of lemma 2.2, we obtain the following inequality.
For any $\varepsilon>0$, there exists a positive constant $C_{\mathrm{e}}$ such that

$$
\|\phi u\|_{\text {log } \sigma m}^{2} \leqq \varepsilon\left\|B^{1 / 2} u\right\|^{2}+C_{\varepsilon}\|u\|^{2} \quad \text { for all } u \in \mathrm{D}\left(B^{1 / 2}\right) .
$$

Since, $\phi u=u$ and $\left\|B^{1 / 2} u\right\|^{2}=\|\mathcal{A} u\|^{2}$ for $u \in C_{0}^{\infty}\left(\omega_{1}\right)\left(\right.$ note that $C_{0}^{\infty}\left(\omega_{1}\right) \subset \mathrm{D}(B)$ ), the last inequality gives Theorem 2.
Q.E.D.

Proof of Theorem 3. The following proof is quite analogous to the proof of G. Métivier [7] §5. But, we give the proof for the sake of self-containedness. Since the proof is long, we devide it into two parts.

Part 1 (preparation). Let $(A, \mathrm{D}(A))$ denote a maximally accretive realization of $\mathcal{A}\left(x, D_{x}\right)$ in $L^{2}(\Omega)$. The contractive semi-group generated by $-A$ is denoted by $G(t)(t>0)$. First, we prove the following lemmas.

Lemma 3.1. Let us put

$$
H(t)=e^{-\lambda t} G(t)-e^{-e \lambda t} G(e t)
$$

for positive constant $\lambda$. Then, we have

$$
\begin{equation*}
u=\int_{0}^{\infty} H(t) u \frac{d t}{t} \quad \text { for all } u \in \mathrm{D}(A) \tag{3.3}
\end{equation*}
$$

the integral on the right hand side being conver gent with respect to the norm in $L^{2}(\Omega)$.
Proof of Lemma 3.1. For $u \in \mathrm{D}(A), H(t) u$ can be written as

$$
H(t) u=\int_{t}^{e t} e^{-\lambda \tau} G(\tau)(A+\lambda) u d \tau
$$

Furthermore, since $G(t)$ is contractive, i.e., $\|G(t)\| \leqq 1$, we obtain

$$
\begin{equation*}
\|H(t) u\| \leqq 2 t e^{-\lambda t}\|(A+\lambda) u\| \tag{3.4}
\end{equation*}
$$

Hence, the right hand side of (3.3) converges with respect to the norm in $L^{2}(\Omega)$. Moreover, exchanging the order of integrations, we have

$$
\begin{aligned}
\int_{0}^{\infty} H(t) u \frac{d t}{t} & =\int_{0}^{\infty} e^{-\lambda \tau} G(\tau)(A+\lambda) u d \tau \int_{\tau / e}^{\tau} \frac{d t}{t} \\
& =\int_{0}^{\infty} e^{-\lambda \tau} G(\tau)(A+\lambda) u d \tau \\
& =(A+\lambda)^{-1}(A+\lambda) u=u .
\end{aligned}
$$

This proves (3.3).
Q.E.D.

Lemma 3.2. Taking a function $\psi \in C_{0}^{\infty}(\boldsymbol{R})$ satisfying

$$
\text { (i) } \psi \geqq 0 \text {, (ii) } \operatorname{supp} \psi \subset(1,2) \text { and (iii) } \int \psi(\tau) d \tau=1 \text {, }
$$

we put:

$$
T(t)=\int_{0}^{\infty} \psi(\tau) H\left(\frac{\tau}{t}\right) d \tau
$$

Then, we have

$$
\begin{equation*}
u=\int_{0}^{\infty} T(t) u \frac{d t}{t} \quad \text { for all } u \in \mathrm{D}(A) \tag{3.5}
\end{equation*}
$$

the integral on the right hand side being convergent with respect to the norm in $L^{2}(\Omega)$.
Proof of Lemma 3.2. By (3.4), we obtain immediately the following.

$$
\begin{equation*}
\|T(t) u\| \leqq \frac{4}{t} e^{-\lambda / t}\|(A+\lambda) u\| \quad \text { for all } u \in \mathrm{D}(A) \tag{3.6}
\end{equation*}
$$

So, the right hand side of (3.5) converges. Moreover,

$$
\int_{0}^{\infty} T(t) u \frac{d t}{t}=\int_{0}^{\infty} \psi(\tau) d \tau \int_{0}^{\infty} H\left(\frac{\tau}{t}\right) u \frac{d t}{t}=\int_{0}^{\infty} H(s) u \frac{d s}{s} .
$$

This proves (3.5).
Q.E.D.

In the proof of theorem 3, we make use of $T(t)$ with a function of the Gevrey class of index $\rho(1<\rho<\sigma m)$, that is,

$$
\begin{equation*}
\sup _{\tau>0}\left|\psi^{(k)}(\tau)\right| \leqq L^{k+1}(k!)^{\rho} \quad \text { for } k=0,1,2, \cdots \tag{3.7}
\end{equation*}
$$

with some positive constant $L$.
It is easy to see that, if we put $\tilde{G}(t)=e^{-\lambda t} G(t)$ (semi-group generated by $-(A+\lambda)$ ) then

$$
\begin{array}{r}
(A+\lambda)^{k} T(t)=t^{k} \int_{0}^{\infty} \psi^{(k)}(\tau) \tilde{G}\left(\frac{\tau}{t}\right) d \tau-\left(\frac{t}{e}\right)^{k} \int_{0}^{\infty} \psi^{(k)}(\tau) \tilde{G}\left(\frac{e \tau}{t}\right) d \tau \\
\text { for } k=0,1,2, \cdots .
\end{array}
$$

So, noting that $\|\tilde{\boldsymbol{G}}(t)\| \leqq e^{-\lambda t}$, we obtain by (3.7) that

$$
\begin{align*}
& \left\|(A+\lambda)^{k} T(t) u\right\| \leqq 2 t^{k} L^{k+1}(k!)^{\rho} e^{-\lambda / t}\|u\|  \tag{3.8}\\
& \quad \text { for } k=0,1,2, \cdots \text { and for all } u \in L^{2}(\Omega) .
\end{align*}
$$

Now, we denote by $W$ the Banach space which consists of all $u \in \mathrm{D}\left(A^{\infty}\right)$ satisfying

$$
\|u\|_{W}=\sup _{k \geq 0} \frac{\left\|(A+\lambda)^{k} u\right\|^{0}}{(k!)^{\sigma m} L^{k}}<\infty .
$$

Then, (3.8) yields
(3.9) $\quad\|T(t) u\|_{W} \leqq 2 L e^{-\lambda / t} \exp \left((\sigma m-\rho) t^{1 / \sigma_{m}-\rho}\right)\|u\| \quad$ for all $u \in L^{2}(\Omega)$.

On the other hand, since $W$ is contained in $G^{\sigma}(\bar{\Omega}, \mathcal{A})$, the hypothesis of theorem 3 implies that, for any $u \in w, \phi u$ belongs to $H^{s}\left(\boldsymbol{R}^{n}\right)$ (where $\phi \in C_{0}^{\infty}(\omega)$ is the same as in the proof of theorem 2). So, the following inequality holds by the closed graph theorem.

There exists a positive constant $C_{1}=C_{1}(\phi)$ such that

$$
\begin{equation*}
\tilde{I}_{s}(\phi u) \leqq C_{1}\|u\|_{W}^{2} \quad \text { for all } u \in W \tag{3.10}
\end{equation*}
$$

(Recall that $\sqrt{\widetilde{J}_{s}(u)}$ is equivalent to the norm in $H^{s}\left(\boldsymbol{R}^{n}\right)$. See (i) of lemma 2.2.)
Part 2. We take up the proof of theorem 3. According to lemma 3.2, we can write $u \in \mathrm{D}(A)$ in such a way that

$$
u=u_{0}+u_{1}
$$

where

$$
u_{0}=\int_{0}^{1} T(t) u \frac{d t}{t} \text { and } u_{1}=\int_{1}^{\infty} T(t) u \frac{d t}{t} .
$$

Now, let us show that both of $\phi u_{0}$ and $\phi u_{1}$ belong to $H_{\sigma m-\delta}^{\log }\left(\boldsymbol{R}^{n}\right)$, for any $u \in$ $\mathrm{D}(A)$. At first, (3.89) yields

$$
\left\|u_{0}\right\|_{W} \leqq 2 L e^{\sigma m-\rho} \int_{0}^{1} e^{-\lambda t t} \frac{d t}{t} \cdot\|u\|<\infty
$$

Therefore, we see by (3.10) that $\phi u_{0}$ is an element of $H^{s}\left(\boldsymbol{R}^{n}\right)$. To show that $\phi u_{1} \in H_{\sigma m-\delta}^{\mathrm{iog}}\left(\boldsymbol{R}^{n}\right)$, we apply lemma 2.3 to $f(t)=\phi T(t) u$ with $\beta=\sigma m-\rho$ and $\alpha>2(\sigma m-\rho)$. We have, for $0 \leqq \theta<1$,

$$
\begin{aligned}
M(f) & =\int_{1}^{\infty}\|f(t)\|^{2} t^{2 \theta} \frac{d t}{t} \leqq \int_{1}^{\infty}\|T(t) u\|^{2} t^{2 \theta} \frac{d t}{t} \\
& \leqq 16 \int_{1}^{\infty} t^{2 \theta-3} e^{-2 \lambda t} d t \times\|(A+\lambda) u\|^{2} \\
& \leqq 8(1-\theta)^{-1}\|(A+\lambda) u\|^{2}<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
N(f) & =\int_{1}^{\infty} \exp \left(-\alpha t^{1 / \sigma m-\rho}\right) \tilde{J}_{s}(f(t)) t^{2 \theta} \frac{d t}{t} \\
& \leqq C_{1} \int_{1}^{\infty} \exp \left(-\alpha t^{1 / \sigma_{m-\rho}}\right)\|T(t) u\|_{W}^{2} t^{2 \theta} \frac{d t}{t} \\
& \leqq C_{2}\|u\|^{2}<\infty .
\end{aligned}
$$

In the above inequalities, we have used (3.6), (3.10) and (3.9). Therefore, since

$$
\phi u_{1}=\int_{1}^{\infty} f(t) \frac{d t}{t}
$$

$\phi u_{1}$ belongs to $H_{(\sigma m-\sigma) \theta}^{\mathrm{log}}\left(\boldsymbol{R}^{n}\right)$. Now, for any given $\delta(1<\delta<\sigma m)$, we can choose $\rho$ and $\theta$ such that $1<\rho<\sigma m, 0<\theta<1$ and $(\sigma m-\rho) \theta=\sigma m-\delta$. This means that $\phi u_{1}$ belongs to $H_{\sigma m-\delta}^{\mathrm{log}}\left(\boldsymbol{R}^{n}\right)$ for any $u \in \mathrm{D}(A)$. Hence, the following inequality holds by the closed graph theorem.

For any $\delta(1<\delta<\sigma m)$, there exists a positive constant $C_{3}$ such that

$$
\|\phi u\|_{\log , \sigma m-\delta}^{2} \leqq C_{3}\left(\|A u\|^{2}+\|u\|^{2}\right) \quad \text { for all } u \in \mathrm{D}(A) .
$$

Since $\phi u=u$ and $A u=\mathcal{A} u$ for $u \in C_{0}^{\infty}\left(\omega_{1}\right)$ in the last inequality, Theorem 3 is now completely proved.
Q.E.D.

## §4. Examples.

In this section, we shall verify that some operators similar to $\mathcal{A}_{\gamma}$ in Introduction of the present paper violate at least one of (1.2) or (1.3).

Let $\Omega$ be a bounded open set in $\boldsymbol{R}^{2}$ which contains the origin $O$. Let us consider the following differential operators defined in $\Omega$ :

$$
\mathcal{A}_{1}=D_{x_{1}}^{2}+D_{x_{2}}\left(\phi\left(x_{1}, x_{2}\right) D_{x_{2}}\right), \quad \mathcal{A}_{2}=D_{x_{1}}^{2}+i \phi\left(x_{1}, x_{2}\right) D_{x_{2}}
$$

and

$$
\mathcal{A}_{3}=i D_{x_{1}}+D_{x_{2}}\left(\phi\left(x_{1}, x_{1}\right) D_{x_{2}}\right),
$$

where we denote $\phi\left(x_{1}, x_{2}\right)=\exp \left(-1 /|x|^{\gamma}\right)$ with $r>0$.
They are of elliptic or parabolic type degenerated at the origin in infinite order, and hypoelliptic in $\Omega$ (see Fediǐ [2]).

Proposition 4.1 (i). $\mathcal{A}_{1}$ violates the condition (1.2) with $\omega=\Omega, \sigma=1$ and $m=2$, if $r \geqq 1$.
(ii). $\mathcal{A}_{2}\left(\mathcal{A}_{3}\right)$ violates the condition (1.3) with $\omega=\Omega, \sigma=1$ and $m=2$, if $\gamma>2(r>1$ respectively).

Therefore, none of $D_{x_{3}}^{2}+\mathcal{A}_{j}(j=1,2$, or 3$)$ is hypoelliptic in any neiborhood of the origin in $\boldsymbol{R}^{3}$.

Remark. $\mathcal{A}_{1}$ is formally selfadjoint. $\mathcal{A}_{2}$ and $\mathcal{A}_{3}$ have maximally accretive realizations in $L^{2}(\Omega)$.

Proof. Let us verify the assertion (i). The proof of (ii) is parallel to that of (i).

First, let $h_{t}(t \geqq 1)$ be the family of linear transform in $\boldsymbol{R}^{2}$ defined by

$$
h_{t} x=\left(t x_{1}, \exp \left(t^{\gamma}\right) x_{2}\right) \quad \text { for } \quad x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2} .
$$

Furthermore, we put $\Delta_{t}=\operatorname{det} h_{t}=t \exp \left(t^{\gamma}\right)$ and denote

$$
\omega_{R}=\left\{\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2} ;|x|<R\right\} \quad \text { for given } R>0 .
$$

Notice that $u \circ h_{t}(x)=u\left(h_{t} x\right) \in C_{0}^{\infty}\left(\omega_{R}\right)$ for any $u \in C_{0}^{\infty}\left(\omega_{R}\right)$. So, we shall prove the assertion (i), by showing that the growth order of $\left\|u \circ h_{t}\right\|_{\log , 2}^{2}$ as $t \rightarrow \infty$ is not smaller than that of $\left\|\mathcal{A}_{1}\left(u \circ h_{t}\right)\right\|^{2}+\left\|u \circ h_{t}\right\|^{2}$.

It is easy to see that

$$
\begin{equation*}
\Delta_{t}\left\|u \circ h_{t}\right\|^{2}=\|u\|^{2} . \tag{4.1}
\end{equation*}
$$

Now, let us denote $h_{t} D=\left(t D_{x_{1}}, \exp \left(t^{\gamma}\right) D_{x_{2}}\right)$.
Then,

$$
\mathcal{A}_{1}\left(u \circ h_{t}\right) \circ h_{t}^{-1}(x)=\mathcal{A}_{1}\left(h_{t}^{-1} x, h_{t} D\right) u(x)
$$

and

$$
\begin{equation*}
\Delta_{t}\left\|\mathcal{A}_{1}\left(u \circ h_{t}\right)\right\|^{2}=\left\|\mathcal{A}_{1}\left(h_{t}^{-1} x, h_{t} D\right) u\right\|^{2} \tag{4.2}
\end{equation*}
$$

On the other hand, since the total symbol $\mathcal{A}_{1}(x, \xi)$ of $\mathcal{A}_{1}$ is equal to

$$
\xi_{1}^{2}+\phi(x) \xi_{2}^{2}-i \phi_{x_{2}}(x) \xi_{2} \quad\left(\phi(x)=\phi\left(x_{1}, x_{2}\right)\right)
$$

it is clear that, for $x \in \omega_{R}$,

$$
\left|\mathcal{A}_{1}(x, D) u(x)\right| \leqq\left|\partial_{x_{1}}^{2} u(x)\right|+\phi(x)\left|\partial_{x_{2}}^{2} u(x)\right|+C \sqrt{\phi(x)}\left|\partial_{x_{2}} u(x)\right|,
$$

where $C=\sqrt{2} \sup _{x_{\in \omega_{R}}}\left|\partial_{x_{2}}^{2} \phi(x)\right|^{1 / 2}$.
So, noting that $h_{t}^{-1} \omega_{R}$ is contained in $\omega_{R}$ if $t \geqq 1$, we obtain the following inequality:
For $x \in \omega_{R}$,

$$
\left.\left|\mathcal{A}_{1}\left(h_{t}^{-1} x, h_{t} D\right) u(x)\right| \leqq t^{2}\left|\partial_{x_{1}}^{2} u(x)\right|+\phi(t, x)\left|\partial_{x_{2}}^{2} u(x)\right|+C \sqrt{\phi(t, x}\right)\left|\partial_{x_{2}} u(x)\right|,
$$

where we denote $\phi(t, x)=\exp \left(2 t^{\gamma}\right) \phi\left(h_{t}^{-1} x\right)=\exp \left(2 t^{\gamma}-1 /\left|h_{t}^{-2} x\right|^{\gamma}\right)$.
In the last inequality, it is easy to show that $\phi(t, x)$ is uniformly bounded in $\omega_{R}$ as $t \rightarrow \infty$, if we take $R>0$ small enough. Thus, returning to (4.2), we obtain

$$
\begin{equation*}
\Delta_{t}\left\|\mathscr{A}_{1}\left(u \circ h_{t}\right)\right\|^{2}=O\left(t^{4}\right) \quad \text { as } t \rightarrow \infty . \tag{4.3}
\end{equation*}
$$

Concerning the left hand side of (1.2), we can write

$$
\left\|u \circ h_{t}\right\|_{\mathrm{iog}, 2}^{2}=\int\left\{\log \left(2+\left|h_{t} \xi\right|^{2}\right)\right\}^{4}|\hat{u}(\xi)|^{2} d \xi \times\left(\Delta_{t}\right)^{-1} .
$$

Hence, Fatou's lemma yields that

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} t^{-4 \gamma} \Delta_{t}\left\|u \circ h_{t}\right\|_{\log , 2}^{2}  \tag{4.4}\\
& \quad=\liminf _{t \rightarrow \infty} \int\left\{t^{-\gamma} \log \left(2+\left|h_{t} \xi\right|^{2}\right)\right\}^{4}|\hat{u}(\xi)|^{2} d \xi \geqq \int a(\xi)|\hat{u}(\xi)|^{2} d \xi>0,
\end{align*}
$$

where $a(\xi)=0$ if $\xi_{2}=0$, and $a(\xi)=16$ if $\xi_{2} \neq 0$.
Now, we can see that the condition (1.2) with $\sigma=1$ and $m=2$ contradicts (4.1), (4.3) and (4.4), if $\gamma \geqq 1$. This completes the proof of (i).
Q.E.D.

## Department of Mathematics Kyoto University

## References

[1] M. S. Baouendi and C. Goulaouic, Nonanalytic hypoellipticity for some degenerate elliptic operators, Bull. Amer. Soc., 78 (1972), 483-486.
[2] V. S. Fedií, On a criterion for hypoellipticity, Math. USSR Sb., 14 (1971), 15-45.
[3] T.Kato, Perturbation theory for linear operators, Springer Verlag, 1966.
[ 4 ] T. Kotake and M.S. Narasimhan, Fractional powers of a linear elliptic operator, Bull. Soc. Soc. Math. France, 90 (1962), 447-471.
[5] S. Kusuoka and D. Strook, Applications of the Malliavin caliculas Part II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), 1-76.
[6] G. Métivier, Une caractérisation des opérateurs elliptiques autoadjoints, Séminaire Goulaouic-Schwartz 1977-78, Ecole Polytechnique (Palaiseau).
[7] G. Métivier, Propriété des itérés et ellipticité, Comm. in PDE., 3 (1978), 827-876.
[8] Y. Morimoto, Non-hypoellipticity for degenerate elliptic operators, to appear in Publ. R.I.M.S. Kyoto Univ.
[ 9] Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators, Preprint.


[^0]:    * Received February 4, 1986

