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Global existence and convergence of solutions of
Calabi flow on surfaces of genus /1 > 2

By

Shu-Cheng CHANG

Abstract

In this paper, based on a kind of Harnack estimate for the Calabi flow on surfaces, we show the long-
time existence and convergence of solutions of 2-dimensional Calabi flow on surfaces (X, gy) of genus
h > 2 with any arbitrary background metric go.

1. Introduction

Let (X, go) be a Riemann surface with a given conformal class [go] on 2. We
consider the following so-called Calabi flow on (2 [go]):

89
(1.1) % = (4R)gj, gij € [9o)-

In fact, if g = e?*gy, for a smooth function
A:2x[0.00) > R,

Then equations (1.1) reduce to the following initial value problem of fourth order
parabolic equation on (X [go]):

ol 1
E_EAR
A(p,0) =4

(1.2) (p.0) = 4o(p)
gzeugo
J et d;tO=J dug.
\ J2 z

where 4 = 4,, 49 = 4,,, R is the scalar curvature with respect to the metric g, Ry
is the scalar curvature with respect to the metric go, du, is the volume element of
go. dp is the volume element of g¢.
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For the background metric gy with constant Gaussian curvature, P. T.
Chrusciel proved that the following result ((Chrul):

Proposition 1.1. Letr (X,gy) be a Riemann surface with the constant Gaussian
curvature metric go. For any given smooth initial value Ay, there exists a smooth
solution A(t) of (1.2) on £ x [0.00).  Furthermore, the metric g = ¢** gy converges
to one of the constant curvature metrics.

In Chrusciel’s proof, the crucial step is the so-called Bondi mass loss formula,

d [ M duy <0

dt)s

if the background metric gy has constant Gaussian curvature. In general, it is not
true for any arbitrary background metric g.

Here we generalize his results to the case of surfaces (X, go) of genus i > 2
with any arbitrary background metric go. The key step is, for any arbitrary
background metric gy, the Bondi mass may not decay, but we have a kind of
Harnack estimate (Lemma 2.2) on the Bondi mass [ e** dy, as following:

1 , R
(1.3) :TJ e duy < Ci(go, Ro) + Ca(go. RO)J e duy.
> z

That is

Theorem 1.2. Letr (X.g9) be a closed Riemann surface with any arbitrary
background metric g¢o. For any given smooth initial value iy, if A(t) have a
uniformly lower bound on X x [0, T), then there exists a smooth solution A(t) of (1.2)
on X x [0,00). Furthermore, there exists a subsequence of solution, say A(t;), such

that gy = ez’l(’/)gg converges to a constant curvature metric g, as tp — oC.

Remark 1.1. The similar results hold for the 3-dimensional Calabi flow. We
refer to [CW] for details.

Next, in case of closed Riemann surfaces with genus 7 > 2, we are able to
control the uniformly lower bound on A(f) under the Calabi flow (1.2) (Lemma
4.2). Then. inspired by the papers of R. S. Hamilton ([H]) and M. Gursky ((G]).
we are able to show the long time existence and convergence of solution of (1.2) on
X with genus 1 > 2. Therefore we recapture the uniformization theorem on closed
surfaces with genus /2 > 2. The significance of this approach is that the method
may lead to a proof of the uniformization theorem on surfaces with finitely many
conical singularities, which we will deal with in the forthcoming paper.

More precisely, we have

Theorem 1.3. Let (2. go) be a closed surface of genus h > 2 with any arbitrary
background metric go. For any given smooth initial value Aq, there exists a smooth
solution A(t) of (1.2) on X x [0,c). Furthermore, there exists a subsequence of
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solution. say A(t;), such that g = gy converges to the constant negative curvature
metric ¢, as tj — o0.

One may think the problem here to be more difficult compared to the second
order parabolic equations, due to a lack of the maximum principle for fourth order
parabolic equations.

In the paper of [Chru], the key CY-estimate is the so called Bondi-Mass loss
formula for the background metric gy with constant Gaussian curvature. In our
present paper. for any arbitrary background metric gy, the key C’-estimate is the
Bondi-mass type estimate (1.3).

We briefly describe the methods used in our proofs. In section 2, we will
derive the key estimate of (1.2) from Bochner formula (Lemma 2.2).

In section 3, based on Lemma 2.2, we derive a kind of Harnack estimate as in
Lemma 3.2, that is, if we assume the uniformly lower bound on /4, then A(¢) has an
uniformly upper bound and then the uniformly bounds on all W} , norms which
will imply the long time existence of (1.2). Moreover, inspired by Hamilton’s
work ([H]), we are able to prove convergence of a subsequence of the solution of
(1.2).

Hence, in order to show the main Theorem 1.3, all we need is to find an
uniformly lower bound on A in case of X of genus /> 2 as in section 4.

Acknowledgments. 1 would like to express my thanks to Prof. S.-T. Yau for
constant encouragement, Prof. B. Chow for valuable comments.

2. Bondi-Mass type estimate for the Calabi flow

For g = ¢*gyg. Ry = R,,, we have the following formulae for (1.2):

(2.1) R =R, =c¢*(Ry—24y2)
(2.2) AR = ¢ AgR.  where 4y =4,,. A=4,
(2.3) du = e** dy,. where du, = dy,,. dp=dy,
0 )
(2.4) “du= AR dp. R _RAR- AR
ot ct
(2.5) l du = J o2 duy = J e duy = J dp.
z b5
Remark 2.1. (2.5) implies the volume will be fixed under the flow (1.2).

Then we have

Lemma 2.1. Under the flow (1.2), we have
R* du < C(Ry, 49),

for 0<T < .
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Proof. From the Bochner formula on surfaces and (2.4), we have

1d N
—"i[R%m=J PER%AR%+MRAR+Aﬁm}m
z z

:JKARV—meﬂmt
z

2
=2 [ [V,VjR - l(AR)gij] du.
Je 2

This implies the Lemma.

Lemma 2.2. Under the flow (1.2), for any arbitrary background metric go, we
have

ij e duy, < C + CZJ e du.
df > x

Proof. From (2.1) and (2.2), we have

d 3 : ;
—Je“ duy = Ejeu[e‘z‘Ao(e‘z‘Ro) —2¢7 % Ag(e Ao 1)) d g,

First we compute
-3 [eu[e_uAO(e_qui)]d;zo =-3 I.e"A(Ao/l)za';tO -3 JC’_AAOM g/ﬁlzd,uo.
Now let f =e™* then
-3 J eFe ™ Ap (e Ay A))dug
=3[ oo = 6 [ £V g 49 [ 172401 1V P
Integrating by parts and from the Bochner-Lichnerowicz formula

] o 0o 00 0 0
Al VAT = VA7 + KV VAf) + Re(VF.VS).

we have

. ) 20 ()7 R
J 1724011V g = %Jf“ (dof ) duo — §J £V

. -
- _% ] f—l R"(&f‘v&f')dﬂo + gJ f_3| §f|4‘1/‘0'
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Then

-3 J e P Ag(e™H Ao h)]d
-3 jf-' (dof)2dpy — 6 jf-ﬂ v/ dgo + 9 jf‘onfl v/ |2
—1 2 O? 2 [ -1 U 0
=3 jf (dof)? — 2V dy — 6 J £ RV gy,

1 .
For n =2, we have Rc(go) = ERO, that is

S, . , , 0 0
-3 J()3"[e_ZAA()(e_Z‘AO/‘t)]dﬂO =3 [.{3"[(4106_‘)2 2|V e HHduy — 3 J Roe | VA2 du,.
All these imply

Iy
(2.6) —J e dyy = Je“[e-%o(e-ﬂko) —2e7* Ag(e7** Ao2)|d gy

L0 3( 0 0
=3 Je“| VAI"Ro dpy — 3 [e‘ (VA V Roddpy
o . o [ S0
+3 Ie‘[(AOe“)’ —2|V2e | Hdu, — 3J Roe™*|VA|~dy,

. 0 3( ., 0 0
=3 JM[(AOe-*)Z —2|V2e M duy — 3 l VAV Ryddyy.
But for n =2, .
(doe?)? = 2|V2 2 <.
Then
d 3 .0 0
- [e”dﬂo <-3 [e"‘( Vi,V Ryddu,

3( 0 3¢ .
< — 3 I e_'{| V/1|2R0 dpy + EJ e (40A) Ry duy.
But

2 Je-"-(A(,,l)RO duy = J e*(Ry — ¢** R)Ry dy,
=- JeARR() duy + J ()_)‘Ré du
< CJd,uO + CJ R* du + Je";‘R(z) dug

< CH+ |e™*RE duy.
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On the other hand,

. .\ 0 0
24pe™ = e H(=2404 + 2| VA]?) = ¢ (€™ R — Ro) + 2| Vi]}.
Then

o[ 0, T
¢ VAR diy < C e |VA|"d

<C l eTH(—e¥R + Ro)d

IA

—CJ e’R duy + CJe_’lRo dug

<C+C I ¢ "Ry du.

These imply

[ ;
—‘—‘ M duy < Cy + CZJ e~ duy.
d[' 3 ¥
Corollary 2.3. Under the flow (1.2). if we have the uniformly bound on
Jye*duy for all 0 <1 <T.
Then

[ ¥ duy < Cy + Cat.
Jx

3. Harnack-type estimate and asymptotic convergence

In this section, based on Lemma 2.2, we will show the Harnack-type estimate
(Lemma 3.2) and the C’-bound of solutions of (1.2) if we assume the uniformly
lower bound on A. Thus, from Lemma 4.1 of [Chru], we will have the uniformly
bounds on all W, > norms which shows the long-time existence of solutions of
(1.2). Finally, inspired by Hamilton’s work ([H]), we are able to prove con-
vergence of a subsequence of the solution of (1.2).

From now on, the constant C will denote the universal constant which is
independent of 1. for 7€ [0, 0] and may vary from line to line.

Lemma 3.1. For a fixed conformal class (Z.[go]) with bounds on Volume and
Jy R*du. if

iz -C.

then

J e (Agi) dpy < C.

pa
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Proof. Since [ R*du < C. we have
[ e (Ry — 2402)*dy, < C.
Iz

But 4 > —C, this implies the Lemma.
Now we will derive the Harnack-type estimate of (1.2).

Lemma 3.2. Assumptions being the same as in Theorem 1.2, under the flow
(1.2), we have

Je“ duy < C,

for all 0 <t < 0.

Remark 3.1. From Corollary 2.3, one has
ch' duy < Cy + Cqt.

Proof.  From Lemma 2.2 and (2.6), we have

/ . o - o 4
(3.1) (—J eMduy < C'+C" l e " duy —C" ] 2| V2 e P = (doe™)Hdy,
dt 2 JX .
N () ] . b)
<c"-c" [e"[Zl VZe ™ |” — (doe™ ") du,.
Suppose

sup je“’ dpy = 0.
[0.00)

Then there exists a subsequence {s;} with s5; — oo such that

l e dpyli—y, —

d 3 .
(E L_c d,uo>(5_/) > 0.

But from (3.1), one has

and

. 0
(32) ARV e = (doe™)Jdp) -, < C.

Furthermore, from (3.2) and A > —C, one has

. 0
|21V (o g, < €
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But the Bochner formula says

0
1 0
J” V2 e P = (doe™) g = _§JR0| Ve | duy.

It follows that

[ o
1 o
J [| V2eH? - 5 Rol V€_2|2] dugl,—, < C

0
and then, since 2|V e |? > (doe™)?

. 0 .
J[(Aoe‘")z — Rol Ve g,y < C.

0
. s _; R 2
Now, since dope™* = e *(—doi+ |VA|"), we compute

0 ) 0 ' 0
J AV duy < C + ZJ A A VAP duy + J e Y Ro| Vi du,
z z >
41 - 2 214
< CH—| e Mdod)duy +e | e VA dy,
&z Jz

2 0
+ —I e (Ro) duy + & [ e VA du,
& Jr Jz
11 -2 0 4
<Cl—,— |+ (1 +e)| VA dy.
& & I

Choose small ¢;,¢,, then

( 0
J eV duy < C.

Now

0, 0
J |VAI"duy = I et VAT dy,
£ Js
12 /. 0 12
< ([e” d,u()> (J ) e-2*|v/1|“dﬂ0)
<C.

On the other hand, since 1> —C and [e* du, < C, we have Ae L*.
Then, from Moser’s inequality

|07 duy < Cexp(i2 =D, ) = €

27

and
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Je”‘ dpl,—y, < C,

for all 0 <s; < co. This leads to a contradiction.
Then

Lemma 3.3. Assumptions being the same as in Theorem 1.2, under the flow
(1.2), there exists a constant C = C(||Aol|y, ., g0) such that

12O, <€, 0<t< o0,
in particular,

sup [A(p,0)|<C, 0<1<o0.
peM,

Proof. Now from Lemma 2.1, one obtains

. ) I 2
]e_zA (A()/{ — §R0> d/l() < C,

e’ (A()/l — %Ro)
. 2/5 1 2

< (J eBZ d/t0> (J 6—27- (AOA — §R0> d,llo>

<C.

and then

J. 6/5 6/5

1
Ao/ — 3 Ry du

dpy = J el6/3)7

3/5

This leads to
||A())~||L(‘/5 <C.

Moreover, for ¢ = i — 4, where 1 = k )“ZZZO, by applying Sobolev inequality
b
”(/5“14/2_(,/5 <C.
Now based on Moser inequality, one has
7l < C.
All these imply
lly,. . < C.

and

sup |[A(p,1)| < C.

pe,
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. oy,
Finally. from | e 2 (Agi — 5 Ru)zd/zo < C., we have

4(1)]

Wz 2 S C’

Moreover, we have

Lemma 3.4. Assumptions being the same as in Theorem 1.2, under the flow
(1.2), there exists a constant C = C(||2o|l s, .- 90). | =2 such that

0
IV A(p. 0l < €.
Vi e (0. oo].

Remark 3.2. As soon as we have the W, ,-estimate as in Lemma 3.3, the
higher-order derivatives estimates will follow on the line of section 4 of [Chrul].

Proof. The exactly same method as in [Chru, section 4], we have the
uniformly bounds on all Wj > norms. More precisely, the key estimate is the
following:

From Lemma 4.1 of [Chru], for every /e N, / > 1, there exist a constant
C < oo such that

2 2
1, + Cligll, ,-

/ 0 0 -
(3.3) Sl v < v
dt 2
This. Lemma 3.3 and [Chru. Lemma 4.2] will imply the Lemma. For details,
we refer to [Chru, section 4].
Then the long-time existence of solution of (1.2) follows easily.
Corollary 3.5. Assumptions being the same as in Theorem 1.2, under the flow

(1.2), there cxists a subsequence {t;} such that

1
IV,'V/‘R - “(A R)!/i/ — 0

2

as tp — o0,
Proof.  Since

ld(| _, 1 2
_-4 2 vR- AR .
2.dt) s R dp=2 L [V,V,R 3 (A )g‘,] du

Then

[ “ [ [V,V,R - %(AR);/U] _a';lcll < .
Jo Jx

Hence there exists a subsequence {#} such that

. 1 2
I [V,V/R — ;(AR)‘/U] d/‘l/:l, -0



Calabi flow on surfaces 373
as t; — c. But from the previous lemma, we have
14w, < €

for all 0 <7< oo. Then the Lemma follows easily from the interpolation in-
equality ([A]).

Next, let
M; =VV;R —%(AR)gir
Inspired by Hamilton’s work ([H]), that is, from the previous corollary, there
exists a subsequence {f;} such that
M, = 0.

as tj — 0.
The same notation as in [H], a metric g; with M; = 0 is a soliton solution for
the Calabi flow on surfaces. Then we have the same result as [H, Theorem 10.1.]:

Lemma 3.6. On a compact surface, assumptions being the same as in Theorem
1.2, there are no soliton other than constant curvature.

Proof. As pointed out by B. Chow, one may use the Kazdan-Warner
identity ((F]). That is, for any conformal vector field V,

J V-VRdu= J(divV)R du=0.

Now if ¢ is a soliton solution for the Calabi flow, then VR is a conformal
vector field. Thus

0= [(AR)R du=— J IV R|%dp.

This implies

>
If
~

where r = M
Jsdu

Then

Theorem 3.7. On ua compact surface, the same assumptions as in Theorem 1.2,
there exists a subsequence of solutions A(t;) of the Calabi flow

/|
—~ =—_AR
at 2A

2/ .
such that €"”(’/)go converges 1o a constant curvdture metric ds f,‘ — 0.

Then Theorem 1.2 follows easily.
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Remark 3.3. In view of this section, we reduce the proof of our main
Theorem 1.3 to finding a uniformly lower bound on A which we will deal with in
the final section.

4. Find a bound on A

In view of the section 3, we reduce the proof of our main Theorem 1.3 to
finding a uniformly lower bound on A in case of X with genus h>2. In the
following, we will follow the notion as in [G].

Definition 4.1. We say that A(7) satisfies the property (*) if there is a point
x € X, positive constants p,e. C such that, for g = e*gy

(%) J e duy < C, for all r.
B(x,p)

Lemma 4.1. For a fixed conformal class (X, e*gy) with bounds on Volume
and |y R?>du and 2 satisfies the property (), then there are positive constants
Co,00 such that

4.1 [ ™™ du, < C;.
z
As a consequence, there is a constant Cy such that

(4.2) iz —Co.

]
Proof. First we observe, for 0 <J < ,

[\)

. %) 0 )4 A .
Ao P = 7PN 26405 + 40| V)»|2) = e 2*5(e** R — Ry) + 4(52| Vi|2].
Then

(4.3) J lVe M2y = 6° e_ZMIVA| du

N
[\1

‘ 5 :
ez('_””R duy + ‘—J e 2 Ry du,
Jr z

. 5 :
e“”"R du+ —J e 2 Ry duy
4)

Jz

f'l
— me« s

™~

S .
ek du + CJ R? du+ a [ e ¥ Ry dy,
Jr

J d,uo + CJ R? du+ ZJ e ?* Ry duy
z

<C+ Z“RO”L, J e dpy.
£
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Now let 4, denote the first non-zero eigenvalue of 4y, by Rayleigh inequality,
we have

du 1 0
4.4 e P i——" —J Ve 92d
@) | e < B | Vet P

(Jye™* duy)?
(J dro)

But for J < ¢, one has

X 1/2 1/2
J e duy = J e duy + J e dpy < C+ J e 2 dy, J duy | .
z B By B By

and then, for any # >0

4 ~28)
+;17]||R0||L,, Le duy.

(Jy e duy)? (Isl to)
7 N ()

This implies

J —26/1 d/‘O-

(J; dn
T )

Then choose #,6 small enough and take &y = 25, which giving us (4.1).

To see that (4.2) follows from (4.1). Let G(x,.) denote the Green’s function
for 4,, with singularity at xe 2. Then G(x..) >0 and ||G(x,.)||Lp < C, for any
p < .

Now

| e o < cn+ 1 4m) J g+ Rl [ P di
z

[ e /D% gy,

—(d0/2)A
@) =

- [ 6t ) aute @
ey G0 . 85,0
< C— | G(x,.)e /9" _TAOA + ZlVM duy

Jo}
< € [(Gla) [ 0 R - Qe Ry

. 1/p 1/q
<C+ C( J GPe™ /2P du) (J RY dﬂ)
. 1/2 /¢ 1/2
+ C(J Gz dﬂo) (J 8_501 dﬂo)
, I/p /4
<C+ C(J GPe™0o/20% dﬂ> (J RY d,u) ,

1 1
for —+-=1.
P 9
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19}
For 1 <¢ <2 and —70/7:—2, we have

o I/p
ey <+ C(J G’ d,lt()) <C.

This completes the proof of Lemma.

Lemma 4.2. For a fixed conformal class with the bounds of the volume and
R*du on X with genus h > 2. then A1) satisfies (x).
- R* dyu . ;

Remark 4.1. In [G], Gursky proved the following: Let (M,gg) be a closed
n-manifold with the Yamabe constant Q <0, n > 3. For g€ [go], say g = e**go.

If fdu <V and [, R" du<p® p> g for some positive constants V, 8, then there

exists H = H(V,[) such that A > —H. We will follow their proof. That is, we
may prove the Lemma 4.2 by assuming there is a metric with negative scalar
curvature. On the other hand, since the genus /i > 2, and (background) metric is
different from this metric with negative scalar curvature by a fixed conformal
factor, then Lemma 4.2 holds in general as soon as we have the bounds of the
volume and [ R? dpu.

1

Proof. From (4.3). we may take J = > then

- ‘ L
i [Ve VD4 2dy, < C + §Jz e "Ry dy.

But for X with genus greater than one, as in [G, section 5] or [CY], we may
assume that —Ry > ko > 0, then

ko , e’ dyy < —I ¢ Ry duy < 8C
Jz Jz

and then

[ et duy < Co.
5

From the previous section, Lemma 4.1 and Lemma 4.2, Theorem 1.3 follows
easily.
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