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Global existence and convergence of solutions of
Calabi flow on surfaces of genus h > 2

By

Shu-Cheng CHANG

Abstract

In this paper, based on  a  kind of Harnack estimate for the Calabi flow on surfaces, we show the long-
time existence and convergence of solutions of 2-dimensional Calabi flow on surfaces  (E g o ) o f  genus
h  > 2  with any arbitrary background metric go.

1. Introduction

Let (E , g o )  b e  a Riemann surface with a given conformal class [go] on E .  We
consider the following so-called Calabi flow on (E , [g o ]):

agi.;(1.1)   =  (AR)go c [go].Ot

In fact, if y = ellg o ,  fo r  a  smooth function

2 : E  x [0, oc) R,

Then equations (1.1) reduce to the following initial value problem of fourth order
parabolic equation on (E . [go ]):

{(3,1
at 2 A  R

À(P, 0 ) = 110(P)

g =

e2 1 ° dpo = dpo ,
E

where A = Ag, A O  A go , R is the scalar curvature with respect to  the metric g. Ro
is the scalar curvature with respect to  the metric go, 0 0 is  the volume element of
go, dp is  the volume element o f  g.
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F or the  background  m etric g o  w ith  constant G aussian curvature. P . T .
Chrukiel proved that the  following result ([Chru]):

Proposition 1.1. Let (E , g o )  b e  a R iem ann surface w ith the constant Gaussian
curvature metric g o . For any given sm ooth initial v alue 20 ,  there ex ists a  smooth
solution 2(0 of  (1.2) on E  x  [0, (Do). Furthermore, the metric g = e 2 2 ( t) go  converges
to one of  the  constant curvature metrics.

In Chrukiel's proof, the crucial step is the so-called Bondi mass loss formula.
i.e.

d
e 3 2<  0

at . z

if the background metric go  has constant G aussian curvature. In general, it is not
true for any arbitrary background metric go.

Here we generalize his results to the case of surfaces (E, go )  of genus h > 2
w ith  any arbitrary  background metric go . T h e  key  step  is , fo r  any arbitrary
background metric go ,  the Bondi m ass m ay not decay, b u t w e have a  kind of
Harnack estimate (Lemma 2.2) on the Bondi m ass SE e3 2  dtto  a s  following:

d
(1.3) — e3 2 dpo Cl (go, Ro) + ?(go, Ro) J e d tio •dt

That is

T heorem  1 .2 . Let (E . g o )  b e  a c lo se d  R iem ann surface w ith any  arbitrary
background m etric g o . Fo r an y  g iv en  sm o o th  in itial v alu e  20, i f  2 ( 0  hav e a
uniformly lower bound on E  x  [0, T), then there exists a smooth solution 2(0 of  (1.2)
on E x  [0, oo). Furthermore, there exists a  subsequence of solution, say 2 (0 , such
that g = e 2 2 ( tj ) g0  converges to a  constant curvature m etric gx  a s  ti

Rem ark 1.1. The similar results hold for the 3-dimensional Calabi flow . W e
refer to [CW ] for details.

Next, in case of closed Riemann surfaces with genus h > 2 , we are able to
control the uniformly lower bound on  2 (0  under the Calabi flow (1.2) (Lemma
4.2). Then, inspired by the papers of R . S. Hamilton GFID and M. Gursky ([G]).
we are able to show the long time existence and convergence of solution of (1.2) on

with genus h > 2. Therefore we recapture the uniformization theorem on closed
surfaces with genus h > 2. T h e  significance of this approach is that the method
may lead to a  proof of the uniformization theorem on surfaces with finitely many
conical singularities, which we will deal with in  th e  forthcoming paper.

M ore precisely, we have

Theorem  1.3. Let (E, g o )  be a closed surface of genus h > 2 with any arbitrary
background metric q0 . For any given smooth initial value 20 , there exists a smooth
solution 2 (0  o f  (1.2) o n  E  X [O, ) .  Furtherm ore, there ex ists a  subsequence of
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solution, say ).(ti ), such that g = e 2 )-(1i ) go converges to the constant negative curvature
m etric g ,  a s  t; o o .

One may think the problem here to be more difficult compared to the second
order parabolic equations, due to a  lack of the maximum principle for fourth order
parabolic equations.

In the paper of [Chru], the key 0-estim ate is the so called Bondi-Mass loss
formula for the background metric go with constant Gaussian curvature. In  our
present paper, for any arbitrary background metric go, the key 0-estim ate is the
Bondi-mass type estimate (1.3).

We briefly describe the methods used in  o u r  p ro o fs . In section 2. we will
derive the  key estimate o f  (1.2) from  Bochner formula (Lemma 2.2).

In section 3, based on Lemma 2.2, we derive a  kind of Harnack estimate as in
Lemma 3.2, that is, if we assume the uniformly lower bound on 2, then )(1) has an
uniformly upper bound and then the uniformly bounds on  a ll  Wk, 2  norms which
will imply the  long  time existence o f  (1.2). Moreover, inspired by Hamilton's
work ([H]), we are able to prove convergence of a subsequence of the solution of
(1.2).

Hence, in  order to  show  the m ain Theorem 1.3, all w e need is to  find an
uniformly lower bound o n  2  in  case  of L ' o f genus h  > 2  as in section 4.

Acknowledgments. I would like to express my thanks to Prof. S.-T. Yau for
constant encouragement, Prof. B . Chow for valuable comments.

2. Bondi-Mass type estimate for the Calabi flow

F or g = e 2 2 g0, Ro = R g ,  w e have the following formulae fo r (1.2):

(2.1) R  = R „ = e - 2 ) - (Ro— 2d 0 2)

(2.2) A R = e - 2 ) - 40R. where d o =  4 .  4  =  A „

(2.3) dit =  e2 )- d,uo , where dpo =  d y . dit = dp„

aR(2.4) =  A R = —RA R — A 2 R

(2.5) j di/ = e2 2  dpo = e2À " dito  = dflo .
z z !-

R em ark 2.1. (2.5) implies the volume w ill be fixed under the flow (1.2).

T hen  w e  have

L em m a 2.1. Under the .f low  (1.2), we have

Pr 0  < T  <
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Proof From the Bochner formula on surfaces and (2.4), we have

1 d
2 dt

R2 = j [ -  -1 R 2 ( R )+ R(R A R +  A 2 R)] dJ I
E 2

= [( A R) 2 - VR12 ]4
z

2

= 2
.

[Vi V R  - -
2  

( A R)g i i ]
z

This implies th e  Lemma.

Lemma 2.2. Under the flow (1.2), f o r any arbitrary background metric g o , we
have

d
e32  d/.10 C 1  ±  C2 e- a

a t  E

P ro o f  From (2.1) and (2.2), we have

d 3
e3 2  dj 1 3  = J [e -

2 0 (e -
2 '1 Ro) -  2e-

2 ) 40(e-
2 2 4o )]d/to.at

First we compute

3 I e 3A[e -2 ;t • 0 ,  - ; t \]_.7e 2  AcIA) =  - 3 e -  (40A) 2 dpo  -  3 I c- A zIoill ( )112 d,Lio.

Now let f  =  e , then

- 3  e3 2 [e- 2 2 A0(e - 2 2 4 ()))idtio

= -3 (A0 j) 2 dpo — 6 I f - 3 1 Vfl 4 d1t0 + 9 I f - 2 4 01.1 f i2dPo.

Integrating by parts and from the Bochner-Lichnerowicz formula

. .401'(?):112I v °2 1.12 + ,601 .> + Rck

we have

ziof 1.f1 2(1110 (40.f ) 2 dito .1.-11v02.1.12dPo

2
J .f R( .0°7.1, (V)7.1.)dtio + .1- 3 161 (1110.
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Then

-3 f e3 '[e - 2 2 .610(e- 2 '40.1)]dpo

= - 3  f f - I (A0f) 2 00 — 6  1./- 3 1 f14 d,tio + 9  f - 2 4 of I / f1 2 (itt0

o o
= 3 f r i [( 4 01) 2 — 2Iv 2 f12 ]00 — 6 i.r 1 Re(vf ,Vf)dtio.

1
F or n = 2, we have Re(go) = -

2 
Ro, that is

-3 e3 '[e - 2 40(6. - 2 4o;)ldilo = 3 e[(4oe - ; t ) 2
 —  2V 2 e - '1 12 ]dito -  3 j Roe 12d1o.

All these

d

imply

(2.6)
dt 2

3

e - d i l °  — e3 '[e - 2 ' 40 (e- 2 ) -  Ro ) - 2e - 2 Â  z10 (e- 2 À  /104 0 0

o 3 o o= 3 j e_ ) 2Ro d/10 -  IC' <V .1,V Ro>d,u0

+ 3 I eA [(4oe- ) 2 -  2 V2 e- A l2 ]dp0
o

Roe- '1V ;, 12 d Po

3  c) [(tI o e- ' ) 2 - 21V 2 e- 1 2 ]d po -  -3 e - ) . < (V)7 Ro>dpo .2
But for n = 2,

o
(Ao e'') 2 -  21V2 e'Y O.

3 , o o
yt
d  e 3Â dtio- e- A  <V /1, V Ro>d duo

< '112 Ro d tto  + -3 e - ''(Ao/)Ro2

2  e- ) - (40 )R0j e - ' ( R o  -  e 2 ;t R)R0

=  -  je R R o d Ito +  je - ) -  R(
2
)
. d/1()

▪ C 'd u o +  C  R 2 du + fe - A  R0
2 du o

▪ C + j e R dpo.

Then

But
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O n the  other hand,

240e - ) t  = e - ; 1 (-2.610).+ 21 2) = el ( e 2 1 R - Ro)+ 21V),1 2 ].

Then

V ;t12 Ro ditto <  C  e - A 1V 21 2 dito

< C  e - 4 ( - e 2 )'R + Ro)dpo

<  - C  e AR ditto +  C  e - Â  Ro

These imply

d
—
dt

< C + C je

e " duo < C  +
z

C2 J

d, 10.

dito.
z

Corollary 2.3. Under the flow  ( I .2), if . w e have the untfOrmly bound on

fE e d f l o fo r  a ll 0 < t < T.

Then

C l ;  d / to  _< C3 + G IL

3. H arnack-type estimate and asymptotic convergence

In this section, based on Lemma 2.2. we will show the Harnack-type estimate
(Lemma 3.2) and the 0 -b o u n d  of solutions of (1.2) if w e assume the uniformly
lower bound on .1. Thus, from Lemma 4.1 of [Chrul, we will have the uniformly
bounds o n  all W k., norm s which shows the long-time existence of solutions of
(1.2). Finally, inspired by Hamilton's work ([F11), we a re  a b le  to prove con-
vergence o f  a  subsequence o f the  solution of (1.2).

From  now  on, the constant C  will denote th e  universal constant which is
independent o f  t, fo r t c [0, co] and  m ay vary from  line to line.

L em m a 3.1. For a fixed conformal class (Z. [go]) it/ti, bounds on Volume and

SE  R 2 dp, u'
;t >  -C ,

then

- - ' À (.40 .1.) 2 (1/10 <  C.
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P ro o f  Since L. R 2 d it < C , we have

e.- 2 À (R 0 —2/10),)
2

0 0 C.

But 2 > — C , this imp ies the  Lemma.

Now we will derive the Harnack-type estimate of (1.2).

Lemma 3.2. A ssumptions being the sam e as  in  Theorem  1.2, under the .flow
(1.2), we have

fe3  dit o < C ,

f o r all 0 <  t < cc.

Remark 3.1. From  Corollary  2.3, one has

je  d j i 0 <  C3 + Czit.

P ro o f  From  Lem m a 2.2 and (2.6), we have

d
(3.1) —, e3). d1u0C ' C" e- ) ` dpo —  C"' e. )- [21 V2—  (A0e -

) ) 2 ]da t y

< C "  C "  e [ 2  V 2 — (40e - À )2 ]d,uo .

Suppose

s u p  e3 ' dit o = co.
[o, x)

Then there exists a  subsequence {s} with si o c  s u c h  t h a t

I
.

e3 dp 1 — >  00, '''' 0  t= s)

and

f— e31 d ito  (Si) >0.

But from (3.1), one has

(3.2) e.) [2I V2 e - Â  2  — (40e - ) ') 2 ]d P A , /

Furthermore, from (3.2) and 2 > — C , one has

• o
1[21 V2 e - 1 12 — (A o c, - ) 1 2 ](/ 1 C.

(d
c•It z



370 Shii-Cheng Chang

B ut the Bochner formula says

1f[1V 2 C A l2 - (40e - '1) 2 ]dp0 =  - -
2  

R0lVe - 2 12 dit0-

It follows that

I. [ o 1 o
1V2 er-

2

12 -  -,,R0lVe - 2

o
and  then, since 21V2 e>  ( z I oc- A )2

2] 
dito I c

(zlo e'r - 12 0 l1V ef1 • C.

o
Now, since 40e- ) -  = V)2), we compute

e- 2 2 1V214 4 0C  + 2 f  e - 2 2 z1021V2 2 dpo + e- 2 )`Rof V/1.12 4 0z
C + —

4

e- 2 2  
(40/1) '7 4 0  ei f e - 2 A 1 V21

4 00
El E . 1

0
± —I e 2 2 (Ro) 2 0 o  e, I  e- 2 '1 1 V7 ),I4 dpo

8 2 ,

, 0
< C(1 ,1 -

\

(E l  + £2) C2A1VAI4dp).
e l  8 2)

Choose small c i , E2, then

0
V214 0 0 < C.

Now

01 V Al 2 (//to = f e  — 1 1V/112 0 o
. z

f e 2,1 4 0 ) 1/2 ( e-2.a.l villadii
20

\.

< C .

O n the other hand, since A > - C a n d  f e2A  d itto <  C , w e have 2 E L 2 .
Then, from Moser's inequality

/1.)e3(Â-2) dpo C exp(11(.1 - W1.2) C•
and
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j  3 2  I I
C'

fo r a ll 0 < s; <  c o .  This leads to  a contradiction.

Then

Lemma 3.3. A ssumptions being the sam e as in  Theorem  1.2, under the flow
(1.2), there ex ists a constan t C = C(11;t0110/, ,, go) such that

11),(t) II kv,.2C , 0 < t <  co,

in particular,

su p  12(p, t)1 < C, 0 < t < oo.
p E

P ro o f  Now from Lemma 2.1, one obtains

I e

2
(40.1— —

2

Ro) dp o C ,

and  then

  

6/5
dpo =  e1 6 1 5 ) ; -

 

6/5

 

J.

1
4 2 40/1 — —1 Re2 )

dpo

     

2/5 1 23 /5
< e3 2 dpo

_7 )

e (40), —  —2 R0)

< C.

This leads to

002 114,5C .

Moreover, for 0 = A — 2, where 2 = ̀ fx 2 
dpo , by applying Sobolev inequality

,f, d,u0

11011w2,6,5

Now based o n  Moser inequality, one has

C.

All these imply 

JAM W 2 (/ 9

and

sup  12(p, t)1 C.
pe.E,
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Finally, from { n Ro) dp oC ,  w e have

11;( t) w,„

Moreover, we have

Lemma 3.4. A ssumptions being the sanie a s  in T heorem  1.2, under the f low
(1.2), there ex ists a  constant C = C(11 )1011 2 go), 2  such that

o
II v ( p ,

 ) II L2C ,

Vt e [0, oo].

Remark 3.2. A s soon as  we have the W2, 2-estimate a s  in  Lemma 3.3, the
higher-order derivatives estimates will follow on  the  line of section 4 of [Chru].

P ro o f  T h e  exactly sam e m ethod a s  in  [C h ru , se c tio n  4 ], w e  have the
uniformly bounds o n  all W k , 2 n o r m s .  M ore precisely, the  key estimate is the
following:

From  Lem m a 4.1 of [C hru], for every / e N, / > 1, there exist a constant
C <  cc such that

0

—
e 4 — Vd + 2 ) 1 112., + Ci100v2.2 .

This, Lemma 3.3 and [Chru. Lemma 4.2] will imply the L e m m a . For details,
we refer to [Chru, section 4].

Then the  long-time existence of solution of (1.2) follows easily.

Corollary 3.5. A ssumptions being the same as  in Theorem  1.2, under the f lou'
(1.2), there ex ists a  subsequence {ti }  such that

1
V R)g

as  ti  —+ cc.

P ro o f  Since

— 1 d  R 2 dp = 2 f [V i Vi R — ( A R)g u i d,u.
2 dt, . 2

Then
21Jo [v1v 1 R — (A R )gu ]  dpdt <

Hence there exists a  subsequence {t1 } such that

1 2
[V iV J R —  (  A R)g,J ] d1i ,0

(3.3)

0
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a s  ti  —4 cc. B u t  from the  previous lemma, we have

C

fo r  a ll 0  <  t < c c .  T h e n  th e  Lemma follows easily from the interpolation in-
equality ([A]).

Next, let
1

=V i V JR  —  A R)g i i .

Inspired by Hamilton's work ([H]), that is, from the previous corollary, there
exists a  subsequence {t1 } such that

= 0.

a s  t• co.
The same notation as in [H], a metric gu  w ith M u =  0  is  a soliton solution for

the Calabi flow on surfaces. Then we have the same result as [H, Theorem 10.11:

Lemma 3.6. O n a com pact surface, assum ptions being the sam e as in  Theorem
1.2, there are no so //ton  other than constant curv ature.

P r o o f  A s  pointed o u t  b y  B . C h o w , o n e  m a y  use the Kazdan-W arner
identity  ([F]). That is , fo r any conformal vector field V,

V •VR d  = f (d iv V )R  d1 i = 0 .

Now if g  is  a soliton solution for the Calabi flow, then V  R is a  conformal
vector field. Thus

0 f(A R) R = — 1117 R1 2 d ,u.

This implies

R  r

R d,t/
where r =

fEdli

Then

Theorem 3.7. O n a com pact surface, the sam e assum ptions as in  Theorem  1.2,
there ex ists a  subsequence o f  so lutions )1(0  o f  th e  Calabi f low

OZ 1
—
0 /  

= —
2  

A R

such that e 2 Â ( 0  go conv erges to  a  constant curv ature m etric a s  t;  —> (x).

Then Theorem 1.2 follows easily.
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Remark 3.3. I n  view  o f  th is  section, w e reduce th e  p roof o f  o u r  main
Theorem 1.3 to finding a  uniformly lower bound on A which we will deal with in
the final section.

4. Find a  bound on .1

In  view of the section 3, we reduce the proof o f our m ain Theorem 1.3 to
finding a  uniformly lower bound on A  in case of  E  w ith  genus h > 2. In the
following, we will follow the  notion  as in  [G].

Definition 4.1. W e say that A(t) satisfies the property (*) if  there is a point
x c E , positive constants p, e, C such that, for g = e 22 g0

(*) e-E1(1) dpo < C, fo r a ll t.
B(x,p)

Lemma 4.1. For a f ixed conformal class (E,eIlg o )  w ith hounds on Volume
an d  SE R 2 dp and  /1. satisfies the property  (* ) ,  then there are  positive constants
CO3 60 such that

(4.1) e-6")- dito <  C .
z

A s a consequence, there is a  constant Co such that

(4.2) >  -  Co.

P ro o f  First w e observe, for 0 < 6 < -
1

-  2 '

doe -
26Ae -

26'1( - 264)/1, ± 4(52 1 V;12 ) e-
26'1[6(e2A -  Ro) + 4 6 2 1V 2 121•

Then

(4.3) !
c

e _,5,1, 12d ito 2 e iv ;t 12 d

EJ E

=  _ 6_ I .  e 2
( '  

- 6 ) A  R d po + 6-  '  e - 2 6 2 R0 eitio4 . E 4  z

I 6= _ -  e- ''' R d p + -
4  E  

e  2t5À Ro dilo4 , z

< CJe d p  +  C  R 2 dp  +  -1  e  26A Ro
z z 4  E

=  C e( 2 - 4 ° ;` dpo +  C  R 2 0 + 6-
4  

f
E  

e-2 6 À .R0 dito
z

6 -26,1
C + R 0  L ,

 z

e d po.
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Now let 21 denote the first non-zero eigenvalue of z1 0 , by Rayleigh inequality,
w e have

(4.4) e-26'1d1i0 < (

$
I

 (
e$E

- 6
 d%d

i o
1
)
1 ° )2 e - 6 À 1 2 d 1 1 0

( fi e- 6 '1 d i l 0 ) 26
+ C +

4 .1 ,
11RollL

eE
<  

(SE 0 0 )

But for (5 < e, one has
1/2

Je litto = e - 61 dp0 +  ( f e ( f d i t
f Bp Ei; Bp

and then, for a n y  > 0

(f ( L ,
-26'1

(SE dP 0 ) CM+ ( 1  + q )  (5 ;40)
J e

d 1 1 ° .

This implies

(fBi, d,u0)f e_262 00+
11RollL, Le-26'1 dii°•

e*- 2 ( 'I d itto  <  C(q) (1 ± 
dr1) (SE ,uo)

Then choose 11,6 small enough and  take 60 = 26, which giving us (4.1).
To see that (4.2) follows from (4.1). Let G(x,.) denote the Green's function

for Ago with singularity at x E E .  Then G(x..) 0  and 11G(x, .)114 C . for any
p < oo.

Now

(4.5) e-(60/2)1(x) 5 e - ( 6 ' ) / 2 ) À f  G(x, .)40(e - ( 6 0 /2 )À )d1t0f dp o

< C - G (x, .)e - ( 5 ')/2 )A - 6 0 + ( 1 '  1 ' 14 2 dPo2 4

<  C -  G(x,. )
e(2- 050/2nA R e- (60/2)'1Rol dtio

 4 4
)1/q

C +  C GPe- ( 6 (112)P2 dp) Rq dp

e- 6 °Â 0 0 ) 1/2+ CO  G2 dp0 ) 1/2

1/g
CO GP e- ( 6 ) /2)P 'l Citi)1/P (JR (' dp)

1/2

fo r  -
1

+ -

1 

= 1.
P
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F o r !  <  < 2  and -
6 0

p = - 2 ,  w e have2

e- ( r5"/2 ) '1(x) C +  C ( i  GP 0 0 ) 1/P <  C.

This completes the proof of Lemma.

Lem m a 4.2. Fo r a f ix ed conform al class w ith the hounds of  the volum e and
J'2. R2 d,u o n  E  w ith genus h > 2 , then .1(t) satisf ies (*).

Remark 4.1. In [G], Gursky proved the fo llo w in g : Let (M , go) be  a  closed
ii-manifold w ith the Yamabe constant Q < 0, n > 3. For g c [go ], say g =

If S di V and Sm RP dp < )62 , p> -

2 '  
for some positive constants V,fl, then there

exists H  = H(V, i6) such that ), > - H .  W e w ill fo llow  the ir p roo f. T ha t is, we
m ay  p ro ve  the Lem m a 4 .2  by  assum ing  there  is  a  m etric w ith negative scalar
c u rv a tu re . On the other hand, since the genus h > 2, and (background) metric is
d iffe ren t from  th is m etric  w ith  negative  sca la r curva tu re  by  a  fixed conformal
factor, then L em m a 4.2 holds in general as soon  as w e have the bounds of the
volume and SE  R2 dp.

P ro o f : F ro m  (4.3), w e  m a y  t a k e  =  -
1

'  
then

2

o 1
e- ( 1 1 2 ) 1 2 dpo <  C  +  E C )  Ro c [to .

But for E  w ith genus greater than one, as in [G, section 5] or [CY]. we may
assume th a t  -R o  >  ko > O. then

koi du o - 1 d,tto <8C
z . z

and then

dito

From  the previous section, Lemma 4.1 and Lemma 4.2, Theorem  1.3 follows
easily.
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