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1. Introduction

P. B. Kronheimer [Kr] has constructed quiver varieties from Extended Dynkin
Diagrams of types of if„, A„ E .  These quiver varieties are important objects for
the study of simple singularities. Let p  be the quotient map of Cartan subalgebra
by W eyl group. The semiuniversal deformations of simple singularities are con-
structed o n  th e  quotient space of Cartan subalgebra b y  W eyl group o f  corre-
sponding ty p e s . Then these quiver varieties a re  th e  pull-back of semiuniversal
deformations of simple singularities by the quotient map p .  These quiver varieties
are obtained as the symplectic quotients of symplectic vector spaces by a  reductive
g ro u p . So the coordinate rings are invariant subrings of polynomial rings with
respect to the action of the group. In general it is difficult to find a minimal set of
generators of an invariant ring and the relations betw een them . In this paper we
show that it is possible for the case of quiver varieties which were constructed by
P. B . K ronheim er. Moreover surprisingly we can show that the obtained relation
is unique and irreducible. In this research we used the invariant theory of quivers
by Le Bruyn, and Procesi, C [BP] and of matrices of low degrees by K. Nakamoto
[Na1,2].

T h e  au tho r w ishes to  express h is  h e a r ty  th a n k s  to  A .  Ish ii, A . K ono.
J. Matsuzawa, K. Nakamoto, I. Naruki, and K . Saito with whom he had valuable
discussions.

2. Preliminary 1S21

2.1. Simple singularities IS1, 21. Let F  be a finite subgroup of S U (2 ). F  is
isomorphic to one of following groups:

C'„ cyclic group o f  order n,
D „  binary dihedral group o f order 4n,
T  binary tetrahedral group,
0  binary octahedral group .
I  binary icosahedral group.

C om m unicated  by P rof. Kono, A ugust 5, 1999
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We call a singularity which C 2 /F have at 0 simple singularity . For S  = C 2 /F , we
write a minimal resolution o f S  by

S  -> S.

Hence the exceptional fi bre  n - 1 (0) is:

7t- I  (0) = C I U • • U C„.

H ere each Ci i s  P I and  in tersection  m atrix  C :=  (C1 • C1)  is  C artan m atrix of
following type A (T ) .

Cu D„ 0

A (F) D„+ , E6 E7 E8

By this correspondence we call C 2 / F  simple singularity of type A (T).
Let C x  b e  m ultiplicative group. W e define the action of C x w ith w eight

, iv„) o n  V  = C":

t • (x i  ......................vt,)......( t" .... , . . . ,

for (XI .........vn) c V, t  e

Moreover when C x  a c t s  on  W  =  C '"  with weight (d i , •  , d „,)  and

f  : V  -* W

is  C '<-equivariant m ap, w e say  that f  is  a  quasi-homogeneous map o f  weight
(d1 .................. d „,;w i,.. . ,w „) . Next proposition is well known.

Proposition 1 . A ssum e that f  c C[X, Y, Z ] is a quasi-homogeneous polynomial
of  a  weight (d;w 1,1v,, w3 )  in  the ne.vt list. Hence if  S pecC [X ,Y ,Z ]l(f ) have an
isolated singularity„ f  = 0  represents a simple singularity of the corresponding type.

d it' i w, w3

A„ 2 (n + 1) 2 n + 1 n +1

D„ 4(n  - 1) 4 2(n - 2 ) 2(n - 1)

E6 24 6 8 12

E7 36 8 12 18

E8 60 12 20 30

2.2. Quiver 1S21

Definition 1 . We call two finite sets A , V with two maps h , t  from A  t o  V
quiver. i.e. I t  i s  j u s t  a n  oriented finite graph.

Example 1. 1 • -4 • 2
In this case A  has only one element 10 ,  V  is  {1, 2}, h(a) = 2 and  t(a) = 1.
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When a  quiver is given, we fix a =  (ai ; i c V , x  E  N ) an d  p u t Vi = We
introduce following notation:

93( V, A , )  := Homc(V t(„), Vh ( a ) ),
aeA

GL(V , A  , a) := i E vGL(V i).

W e define an action of GL (V , A ,1) o n  9i( V, A , a) by following way:

g • { f }  s Igh(of, gi7,101,

for g = Ig i l E GL (V , A ,1), f fa l  c 91( V, A, a).

F o r  {L }  E ̀ '.11( V , A , a) a n d  (al a2, , as )  E A  x  ••• x  A , i f  h (al)  = t(a2) .......
h ( a i )  =  t ( a s ) ,  we can consider the map:

fa  o o o f  :  1 /0 1 )  

Moreover i f  t(ai) = h(a s ) ,  w e ca ll th e  com posed m ap cycle. Hence following
theorem is proved by [BP]:

Theorem 1. T he inv ariant ring C[%(V , A, a)] G 1 - ( 1 .'A 'a )  i s  g e n e ra te d  b y  the
liinctions w hich give the traces of  cycles.

2.3. Quiver varieties i n  Suppose  a  f in ite  g rap h  is  g iv en . W e  assume
that no  edge may join a vertex with itself. Let A  be the set of pairs consisting
of an edge together with an orientation of it. Let t(a) (resp. h(a)) be the outgoing
(resp. incoming) vertex of a E A .  F or a c A  w e denote by a  the  same edge as
a  w ith the reverse orientation. Moreover le t  V  b e  th e  se t  o f  vertexes of the
g ra p h . Hence we obtained a  quiver. C hoose a  subset Q OE A  such that Q U Q =
A , Q n  =  Ø . S u c h  a  choice of the subset is called an orientation of the graph.
The choice of the orientation is  no t essen tia l. Our constructions are essentially
independent o f Q . F ro m  n o w  o n  we consider only such a  quiver with a n  ori-
e n ta tio n . L e t V  be  {0,1, ... ,n}. L et T  G L (V , A  , a) be  sca la r. H ence  T  acts
trivially o n  93( V, A, a). L et PGL(V , A . a )  b e  GL (V , A  1)1 T  L ie{ PGL (V . A .1)}
L ie  algebra o f  PGL(V , A , a)  a n d  (L ie{ PGL(V , A , a )})*  th e  dual space  of Lie
algebra L ie{ PG L (V , A  ,I)} . Then PGL(V , A . a)-invariant holomorpic symplectic
form  ( )  and corresponding moment map p c  a r e  given a s  follows:

V a l ,  { g a })  = '(a) tr( (1g„)
aeA

: 93(V, A, ot) (Lie{PGL(V , A , a)} )* • v  M ,

11c ({ .f'a}) = E c a v a h )

fo r {L } , {g„} c 91( V, A, a)

where e(a) = 1 if a e Q , c(a) = —1 if a c Q .  Let Z  be the dual space of the centre
o f  Lie{PGL(1/, A .1)} . Then we define the  Quiver variety for C c  E  Z:
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,lf  :=  f t -c l (Cc )§ PGL(V , A, a).

Here irc l (Cc )// PGL(V . A  , a) is categorical quotient.

Remark 1. Note ..11o and ,a-c-,1 (Z)// PGL(V . A . a) are essentially independent of
a orientation of the graph.

We define the action of Cx  o n  91(1/, A, a) by scalar a c t io n . Then this action
preserves j rc l (Z ) ,  and p-

c
1 (0). Moreover this action commutes with the action

, 1 ) (V,of GL(V, A, a). So we may consider C [p
(z )]GL(V , A-

c
la n d  C L i c ( 0 ) i G L  A,

c
ia s

graded rings.

Definition 2. F or a  given graph we put du =  1 if vertex i is joined to j ,  and
= 0 if vertex i  isn't jointed to j  and di, = —2. W e define D := (du ).

We have:

Proposition 2. dinmV (Z)§ PGL(V , A , a) > n + 2

Proof

dinurc i (Z)§ PGL(V , A, a) (Z) — dimPGL(V, A, a)

> dim92(V, A  , a) — 2diniPGL(V.A .c) + dimZ

= n + 2 — t aDa

2.4. McKay's observation IM I. Let F  be a  finite subgroup of S U  (2 ). Let
Ro, R 1 R u be irreducible representations o f  F .  H ere Ro is  the trivial repre-
sen ta tion . L e t Q  be  the  natural 2-dimensional representation which is obtained
from a inclusion: F  c  S U  (2 ). W e put fo r i, j = 0, 1 , . , n:

:= dim c R i

dinic  Hom r R 1 0  Q )

cu := 2x5ii —

(i, j 0, 1, , n)

Hence Mckay observed following fact.

Theorem 2. C  = (C O  is a C artan  m atrix  associated to Ex tended Dy nk in
diagram  of type (F).

L et R  be the  regular representation o f F.

(End(R) Q ) F  =  Hom r (R, R 0 Q)

= H o m  (r C " '  0 R i , CI} 0121 0  Q
1=0 j=0

M tn  (C "i , Chi) 0 C"''' }
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Hence above theorem says that (End(R)101 Q)" is  91(V, A, oc) which is obtained
from following quiver o f type  r-n, (F )  and oc . We call following quivers McKay
quivers.

V  = { 0,1 ....... n}

= (1, , 1)
n — I I?

A„
1 2

0 n

D„
1 2 3 n - 3  n - 2  n —  I

0 4

j) 3

E6 )
0 I 2 5 6

E7C i i ) O C I D

0I 2 3 4 5 6

8

 C*
I

0 1 2 3 4 5 6 7

V  = 10.1 .......

= (1 ,1,2,2, .2,1,1)

V = {0, 1, 2, 3,4, 5, 6 }

=  (1 ,2 ,3 .2 ,1 .2 ,1)

V  = {0, 1,2, 3,4, 5,6.7}

c = (1 ,2 ,3 ,4 ,3 ,2 ,1 ,2)

V  = {0, 1,2, 3,4, 5, 6, 7.8}

a = (1 ,2 .3 .4.5,6,4,2,3)

Here the numbering on  diagrams indicate vertexes.

2.5. H yperkahler quotient and simple singularities ll(r1. Natural represen-
ta tio n  Q  o f  F  h a s  a  F -invarian t quatern ionic  structure . W e equip regular
representation R of F  with a F-invariant Hermitian inner p roduc t. L e t (End(R)) h

b e  th e  se t o f  all H erm itian m aps o f  E n d (R ) . Thus following module has F -
invariant right quaternionic structure.

M := End(R) C) c  Q  (E n d (R )) h  O R  H

Here H  is quatern ion . L e t U(R ) denote the unitary group acting on End(R) by
conjugation, and let

U (F) := {g e U (R) I gy  = yg v y E

SU (F) U(F) n SL(R)

Because o f R  (D i {R ; 0  C "}  w e  have

U(F)f i .  U (ni)

SU (F) {(A0  A,,) e  U(F)I n i det(A i) = 1}
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The compact group U (F) acts o n  M  and on

M (F) := (End(R )C)Q) r

preserving the quaternionic struc tu re . We obtain a  U(F)-equivariant hyper-kdhler
moment map

M ( F )  u ( r ) * (DR Ho

where Ho = R I  R J  R K  denotes the pure quaternions, and where u(F)* is the
dual of the Lie algebra u(F) o f U (F) acted on b y  U (F) via the coadjoint action.
Since the diagonal scalars:

T = U(ot,)12E U(1)}

act trivially on M (F) and since u(F)* may be identified with u(F) by means of the
trace form (A , B )1 — >  tr(A B "), the target of pH  may be identified with su(F) OR Ho,
where su(F) is the L ie algebra o f  S U ( F ) .  W e put

C = {( A0 C1 u (1 )  i l t  G oc„tti =  0}.

Then c  is  the r-dimensional centre of su(F), i.e.

c =  (sti(F)) u ( r ) .

T h en  U (F)  ac ts o n  a  f ib re  ni i
- 1 (C), = C1/ + C2./ + C3K E C H o , a n d  th e  real

differential geometric quotient icH l (C)/U(F) is a  hyper-kahler quotient (at least at
its smooth points it carries the structure of a hyper-kahler m anifo ld). Kronheimer
showed that fo r all E c C) Ho ,  the quotient icu l U ( F )  is  a  complex-analytic
surface with at m ost isolated (simple) singularities, in  particular

/CH
I (0)IU(F) C 2 I F.

Moreover, there is a  natural identification of c  C ) C = e0 J C )cO K  with a Cartan
subalgebra h  o f type A (F) such that the complex r-parameter family

(c C)/ U(F) — > cC)C

realizes a  pull-back (via h —> h/ W) of the semiuniversal deformation of C 2 /T , and
shifting this family into the  /-direction provides a  simultaneous resolution

(C  C)/U(T ) C C )/U (T )

c C) C CI c C

(for generic CI E c)

2.6. The invariant theory of (n, n)-matrices (n 2 ,3 ). We denote the set of
a ll (n. n)-matrices b y  M ,, .  We define GL(n)-action o n  M„ x • • • x M„ by
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g (x i,. . . ,x )  := (g x ig  I , • • • , gx .,g I ),

for g e GL(n), (x i . . . .  ,x s ) c M,„ x • • • x M„.

W e denote the coordinate of M „ x  M „ x  M ll b y  (A , B , C) in the form  of (n.n)-
matrices and the coordinate of M,, x M n b y  (A , B) in the form of (n,n)-matrices.
Hence next theorems are proved in [Na!], [Na2].

x  A / 2  x  A 4 -21 GL(2)Theorem 3. C [M 2i s  g e n e r a t e d  b y  I d e t A , d e t B , d e t C ,  t r A ,
trB ,trC,tr(A B ),tr(B C),tr(CA ),tr(A B C)}  and there is a unique relation betw een
these generators as follows,

{ tr(ABC)} 2 -  P 2 { tr(A BC)}  + Q 2 = 0,

where P2  = trA tr(B C)+ trB tr(CA ) + trCtr(A B )+ trA trB trC,

Q 2 = detBdetC(trA ) 2 + detCdetA (trB) 2  + detA detB(trC) 2

+ detC{ tr(A B)} 2 + detA { tr(BC)} 2  + detB{ tr(CA )} 2

- detCtrA trB tr(A B )- detA trB trCtr(B C)

- detB trCtrA tr(CA ) - 4detA detB detC

+ tr(A B)tr(BC)tr(CA ).

Theorem 4. C [M 3 x  M3] G L (3 ) i s  generated by  { detA ,detB .trA ,trB ,tr(A B ),
tr(A 2 ),tr(B 2 ),tr(A 2 B),tr(A B 2 ),tr(A BA B),tr(A BA 2 B2 )}  an d  there is a unique re-
lation betw een these generators as follows,

{tr(ABA 2 B 2 )} 2 -  P 3 {tr(ABA 2 B2 )}  + Q 3 = O.

Here P3, Q3 are polynomials of  { detA .detB ,trA ,trB ,tr(A B ),tr(A 2 ),tr(B 2 ),tr(A 2 B),
tr(AB 2 ),tr(A BA B)} .

See [Na2] for detail.

3. The structure of CLu-cl 
( z

) ]

G L ( I', A , a )

O r CLICci (0)1 GL( I  A. x)

W e  re c a ll the definition o f  Z ,  i.e. the d u a l s p a c e  of the centre of
L ie{ PG L (V ,A ,a)} . In this section we determine a minimal set of generators of

[ fc c i (z )1GL(V, A. x) By theorem 1 we may consider only the traces of cycles as
generators of these rings. Then these generators are homogeneous elements.

Definition 3. Let f ,  g  are homogeneous elements of C[ii-cl ( z ) ]  GL( r, A. a) with
degree k. We say f  is equivalent to g when f  -  g is contained in the ring which is
generated by all homogeneous elements with degree /(< k )  in C[p -

c
l ( z ) L ( V . A . a )

and we write f  g.

W hen w e B y A 1,1 w e  d en o te  the coordinate o f Horn( V„) , Vh ( „) )  in xj)-
matrix form for any u  = (i • -> • j). We denote a unit matrix in M „ by E „.  We
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only show the proof of the case of type i ) „ in  detail. S in c e  the  proof o f other
cases is similar as type b„, we will describe only outline.

3 . 1 .  type Since GL(V , A , a) =  (Cx )n± 1 ,  w e have 1 1 (Z )  =
The action of an element t  = (t0,... , t„) (C ) " 4-1 on 91( V A , cx) is given by t
= ti t ï l fl id . W e have fundamental invariants: z i = A 1,1A1, ( j  =  i +  1 mod n +1 ).
x = A 0,1 A n-i,nA n, 0, y =  A 0,,, • • • A n-i,nA n ,o . The relation of these invariants is
only x y  = z o .. .z n . The weight of each invariant {zi, x ,  y }  is {2,n + 1,n + 1}, and
the relation is quasi homogeneous polynomial with weight (2(n + 1); 2.......  2,n + 1,
n +  1 ) .  In paticular C[trd 

( 0 ) ]  G L ( V ,  A ,  a )

C[X, y, z] I (x y  = z "± I ). I t  is  simple sin-
gularity of type A .

3 . 2 .  type Ii,, (n  > 4)
(z)]GL(v.A ,x)Theorem 5. For M ck ay  quiver of type b„ C[ftV is generated by

( n + 3) generators and there is a unique irreducible relation between these generators.
M oreov er this relation is a quasihom ogeneous polynom ial w ith w eight ( 4 ( n  -  1);
2, ... 2, 4, 2(n - 2), 2 ( n  -  1 ) ) .  In particular C[tiV  ( 0 ) 1 GL(V, A .1 ) is generated by  3
generators and the relation between these generators represents simple singularity of
type D „ .  W e write down generators;

ai = tr(A 2 ,0 A 0 ),

= tr(A 2,1211,2),az

a; tr-  ( A 3 .2 A 2 .3 ),

an _2 = tr(A  ri -2, n-3A ,—  3, n-2 ),

(4 _ 1  =  tr(A n- I , _2A ,,_2 , n -1 ) ,

a„ = tr(And,-2A11-2.11),

X  =  tr(A2,0A1,2 ,42,1A0,2),

Y  = tr(A 2,0A 3.2 ... A n-2 , n-3A  n , n -2A  n-2 ,nA n-3 , n-2  • • • A 3 ,4A 2,3A 0,2) •

Z = tr(y42,0A  I,2A 2, I A3,2 • • • A n- 11- 3A  n,n - 2 A  - nA  n - n- 2 • • • A 3,4A 2,3A 0.2)-

I n  this S e c t io n  3 .2  w e  w ill  d e te rm in e  th e  m in im a l genera to rs of
c L i c c i (z )iGL(V , A, a) for M ckay quiver of type b n . The graph of type b„ has no
lo o p .  So the degrees of the traces of cycles are e v e n . A t first we consider the
case of n >  5. Now we write down the condition that ,u({A,,,}) is in  Z :

A i+ id- — A i –  i A I

1
=  -

2  
tr(A i A •  •  -  A- 1)E,+ ,1 1- I, - (3 < i  <  n  -  3). (1)
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1 „
2A2, 1 — A3 A2,3 —  —

2  
troo,2A 2 0 241,2A2,1 —  A3,224),3)E2. (2)

A n,n— ')A n-2,n A n - 1 ,n - 2 A n - 2 ,n - 1  —  A n-3,n — 2A n-2, n-3

1 ,
= —  trO n,n-2A n-2  n + A,1 _ 1 , n— 2A 11 2  -  I  —  An--3n, -2 A n -2 ,n -3 )E 2 .-  . 1 1  2 (3)

From now on we will determine generators up to equivalence relation inductively
o n  w eigh t. F rom  now  o n  w e use the word "weight -  a s  t h e  degree o f  homo-
geneous polynomial in polynomial ring C[93(V, A, a)]. Any trace of cycle whose
weight is 2  is  tr(A J A I , , )  for some edge a = ( i  • -> • j) .  W e put,

A o  = { A 0,2, A 1,9 An— An,u-2 }

L e t  C 4  b e  t h e  s e t  o f  c y c l e s  w h ic h  c o n ta in  n e ith e r  A i, i+1 A id- nor
A i + i , i A 0 + 1  ( 2  i n  -  3 )  and whose traces have weight > 4 .

Lemma 1. The trace of  cycle which has weight > 4  is equivalent to a sum  of
traces of  elem ents of  C4-

P ro o f  The trace of cycle which has weight 21 and contains no element of Ao
is equivalent to tr{ (A 3,2A 2,3) I }  by relation (1). tr{ (A 3 ,2 A 2 ,3 ) 1}  is equivalent to a
union of traces of cycles which contain at least either 240. 2 o r  A 1,2 by (2). So it is
necessary only to consider cycles which contain elements of A o . In  particular we
have only to prove proposition in the case of cycles which start from an  element
of A o .  We order elements of A o  in the cycle by the order of appearance in cycle.
F or example, for A2,0A3, 2 • • • An-2,n--3An, n -2 A n A n -3 ,n -2  •  •  •  A 3 ,4 .1 f  ,3 A 0 ,1 , we put
dow n a4A3., Au_2.n-3/30c2A,-3,,,-2 • • • A2,30ci • If the  cycle  contains A  i+ 1 A i+ 1 .

or A i+1,;Ai.i+1 (2 i n  -  3 )  between oci a n d  ai+ 1, by inductive use of (1 ), (2 ) the
trace of the cycle is equivalent to a union of the traces of the cycles which contain
neither A i , i + i  A i+ 1 .  i n o r  A i+I.; A  t+1 (2 i n  -  3 )  between Œi a n d  xj+ 1. Then
lemma has been proved.

Lemma 2. If  an elem ent of  A o appears two times in  a cycle, the trace of  it is
equivalent to O.

P ro o f  It is obvious from the  fact that ao = Œi = = =  1.

Lemma 3. I f any element of A o appears at least one time in a cycle, then trace
o f  it is equiv alent to O.

P ro o f  By above lemmas up to equivalence the trace of cycle whose weight is
bigger than 4  and not equal to 2 ( n  -  2 ) ,  2 ( n  -  1), nor 2 n  is equivalent to O. Then
it is enough to consider the  following cycles:

A 2,0/11,2A 2,1 A 3, 2 . . . ,n -3  A n-1,n — 2A  n— ?,n-1A  n.n — 7 An— ,  , n . .  A 3, 4 A 2. 3 A0 . 7,

A 2,0A  1 , 2 A- ) , 1 A 3 , 7 . A„_2,n-3A •,-2A ,-2,,-1  A A3.424,.3Ao.2
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A 2,0A 3,2 • • • A n-2,n-3A n-i,n-2A n-2,,,-1 A n,n-2A ,2,,,A n-3,,-2 • . . A 3,4 , 42.3 ,  4 L2A2.] A 0 . 2 ,

A2,0213,2 • A n - 1 , n - 3 A n , n - 2 A n - 2 , n A n — I , n - 7 A n— , ,n—  i A r i - 3 ,1 1 - 2  •  •  A 3 A 2 ,  3A  1 ,2 4  ,1 A 1 1 ? •

But the traces of these cycles are equivalent to 0  by inductive use of (1), (2). (3).

Proposition 3 .  The trace of cycle whose weight is bigger than 4 and not equal
to  2 ( n  — 2 )  nor 2 ( n  — 1 )  is equivalent to O.

P ro o f  I t  is  the summation of above lemmas.

Proposition 4 .  T he trace of  cycle whose weight is 4  is equivalent to

X  = tr(A 2 ,0A 1 , 2A 2.1A 0,2)

up  to  constan t. T he trace of  cycle w hose w eight is 2 ( n  — 2 )  is equivalent to

Y  = tr(A 2 ,0A 3 ,2  • • • A  11- 2 ,1 ?- 3 A n ,n - 2 A  n - 2 ,1 1 A  n - 3 ,1 1 - 2  • • A 3 ,4 A 2 ,3 A 0 .2 )

up to  constant. T he trace of  cycle w hose w eight is 2 ( n - 1 )  is equivalent to

Z  = tr(A 2 ,0 ,4 1 ,2 A 2 , A 3 ,7  •  •  •  A  i t - 1 7 - 3 A n - 2 . n A n — n - 2  • • • A 3,4A 2.3A 0,2)

up to constant.

P ro o f  By above lemmas and easy calculation. A t first we consider only
cycles which begin from A 0 , 2 .  Then we have only two cycles whose traces have
weight 2(n — 2) and whose traces are not equivalent to O. i.e.

A 2 ,0 A 3 ,2  •  •  •  A  Ii-2 ,1 1 -3 A n  n — , A n— , , n A n - 3 , n - 2  • • • A 3,4A 7,3A 0,2•

A 2 ,0 2 1 3 ,2  ... A n -2 ,1 1 -3 A n -1 ,1 1 -2 A n  — ?,1 1 -1  A n -3 ,1 1 -2  • . 2
1

3,4A 2,3A 0,2-

But the traces of these cycles are equivalent by ( 3 ) .  We have only six cycles which
begin from A 0 ,2  and whose traces have weight 2(n — 1) and whose traces are not
equivalent to O. i.e.

A2,0A 1 ,2 A 2 ,1  A 3 ,7  . •  •  A 1 1 -2 .n -3 A  ii ,n — , A n - 2 ,n A n - 3 ,1 1 - 2  • • • A 3,4A 2,3A 0,2 ,

212,0A3,2 • • • An — ?,t1 -3A — 2A n— , ,n  A It — 3,n-2  • • A 3 A 2 ,3 A 2 , I A 1,2A 0.2•

A 2 ,0 A 1 ,2 A 2 , IA 3 ,2  •  •  A  11- 7 ,n -3 A  1 7 -1 .1 1 -2 A 1 1 -2 ,n  - iA n -3 ,n -2  • •  A 3 A 2.3A 0. , •

A 2,0A 3,2 • • • A n - 2 ,1 t - 3 21 11- 1 , , , - 2 A n - 2 ,1 1 - 1 A 1 1 - 3 , 7- 2  •  •  •  A 3 ,4 A 2 ,3 A I A 0,2-

A 2,0,43,2 • • • A ,-?,n -3 A A n-2.,,A n-3,n-, • • • A 3,4A 1.3A 0.2,

. • • A A n-, n-- A,,_ 3 , _2  • . . A 34A 2.3A 0.2.

The traces of these cycles are equivalent by (1 ) , (2 ) , (3 ) . When we consider cycles
which start from other 3-elements of Ao and whose traces have weight < 4, we can
check by (1), (2), (3) that the traces of these cycles are equivalent to trace of above
cycle. Then we obtain proposition.
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Next we consider the case of n = 4. This case is slightly different from other
cases, but more easy. So w e w rite dow n only results. In  this case the condition
of it(fA i i I) E  Z  is  a s  follows,

A0, 2A2,0 A1,2A2, I A3,2A2,3 A4,2A2,4

1 ,
= —

2  
tr00.242,o +  A 1,2A 2,1 - A 3 ,2 /1 2, 3 — A4, 2 21 / ,4 )E 2 . (4)

, A. Y )Proposition 5. In the case of  n  = 4  the generators of  CLu-cl(Z)] GL( V

a r e
just sam e elem ents as  in  the case  o f  n  > 5  up to equiv alence, i.e.

a l = tr(A 2 ,0 A 0 ,2 ),

az = r,242,1 4 2 ) ,t (

a3 = tr(A3,2242,3),

a4 -  t r (A 4 ,2 A2 ,4 ),

X = tr(A2,0411,2A2, 1 A 0,2),

Y  = tr(A 2,0A 3,2A 2,3A 0,2),

Z  =  tr(A2.0A1,2A2,1,43.2A7.3,40,2)•

Next we state how to find a relation between these generators (n > 4). At
first we introduce following notation,

A  := A0,2A2,0, (5)

B  :-= 42A 2,1, (6)

C A3,2 • • • A n-2 ,n -3A n .n -2A n-2 ,nA n-3 .n -2  • • • A2.3. (7)

Since these elements are 2 x  2-matrices, the relation of Theorem 3 gives the relation
xbetween generators {a l , , an , X , Y, Z } o f  C L u  (z)1 GL(V, A , )

c
- 1 t h i s  relation is

irreducible, it is the unique relation because of dimp -
c

l (Z )§ GL(V , A  , a) > (n + 2).
It w ill be proved in  appendix that this relation is irreducible.

3.3. type E6

Theorem 6. For M ck ay  quiv er of type E6 C[/Lc
-1 ( z )]GL (I A  • 1) is generated by

(n + 3) generators and there is a unique irreducible relation between these generators.
M oreover this relation is a quasihomogeneous polynomial w ith weight (24; 2, ... , 2, 6,

a)8, 12). In particular C[11 -
c  (0)] GL( V, A, is generated by  3 generators and the relation

betw een these generators represents simple singularity  of  ty pe E6. W e write down
generators.

= tr(A 1,0 /10 , 1 ),

(1 2  = tr(A2,1 A1,2),

(1 3  = tr(A 3 ,2A 2 .3 ).
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a4 =  tr (A4,3A 3,41,

a5 = tr(A 5, , A2,5),

06 = tr(A 6,5A 5,6),

X  := tr(A 3.2A ),3A 5,2A 2,5A 5,2A 2.5)•

Y  := tr(A 3,2A 2,3A 5,2A 2,5A 3,2A 2,3A 5,2A 2,5),

Z := tr(A 3,242,3A 5,2A 2,5A 3,2A 2,3A 3,2A 2.3A 5,2A 2,5 , 45,2A2,5)•

The graph of type E 6 has n o  lo o p . So the  degrees of traces of cycles are
e v e n . The generators with weight 2  correspond to each arrow similarly as in the
case of type b„. Now we write down the condition that 1 ({A 1,1})  is  in  Z:

1
— = —

2  
tr(Ai-pLiAi,i+i — ( i  = 1. 3, 5) (8)

A3,2A2,3 A2,5A5,2 A1,2A2,1 — -

3  
Ir(A3,2A2,3 + A2,5A5,2 AI,2A2,1)E3 (9 )

W e put,

A  :=  A3,2A2,3 ,

B A5.2A2,5,

C  :=  A l2A 2,1.

From these relations next lemma follows:

Lemma 4. The generators with weight > 4  are equivalent to following traces up
to equivalence..

tr(A l ' B  j' . .A B ') ( k  >0 ,1  < < 2). (10)

W e have following equivalences for / > 2:

tr(A I ) tr(B I ) tr(C I ) tr{ (A  + B ) 1 } —  0.

In particular:

tr{ (A  + B ) 2 } — 2 tr(A B ) 0,

tr{ (A  + B ) 3 }3 { t r ( A 2 B )+ tr(A B 2 )}  —  0.

By these equivalences:

tr(A B ) 0, tr(A 2B ) — tr(A B 2 )

Since A , B ,  C  a re  3 x  3-matrices, by Theorem 4  w e have only to consider fol-
lowings a s  generators with weight > 4  o f C[irci ( z )]GL(V, A, a)

IdetA , detB , tr(A  B ), tr(A 2 ), tr(B 2 ), tr(A 2 B), tr(A  B 2 ), tr(A  BA B). tr(A BA 2 B2)}.
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Hence by above calculation we have only to consider

{X :-= tr(A B 2 ) , Y  := tr(A B A B ),Z  := tr(A B A 2 B 2 )}

a s  generators with weight > 4  o f  C[irci 
( z ) ] G L ( V ,  A , 1 )

Since these elements are
(3 ,3)-m atrices, the relation of Theorem 4  gives the relation between generators

, x{a i , , a6. X , Y , Z }  of C[p-cl (z )] GL(V A , ) If this relation is irreducible, it is the
unique relation because of dinut -

c
l (Z ) // GL (V , A, a) > (n  + 2). It will be proved in

appendix that this relation is irreducible.

Remark 2. In  this case we used vertex '2 '  as start po in t of cycles. So we
used the invariant theory of (3 ,3 ) -m a tr ic e s . When we use vertex ' I '  as start point
of cycles, w e can use the invariant theory o f  (2,2)-matrices.

3.4. ty p e  -E 7

Theorem 7. For M ck ay  quiver of  type E7 C[a-cl(z )]Gt.(v , A, a) is generated by
( n + 3) generators and there is a unique irreducible relation between these generators.
M oreover this relation is a quasihom ogeneous polynomial w ith weight (36; 2 2 

, 8. 12, 18). In  particular C[1 -,1 (0)] G L ( V . 4 ) i s  generated by  3  generators and the
relation between these generators represents simple singularity of type E 7 . W e  w rite
down generators.

al = tr(A i,oA o,i),

a2 = tr(A 2,1A  1,2)

a 3t r(A 3 ,2 A 2 .3 ) ,

a4 tr(A 4,3A 3,4),

a 5 = tr(A 5,4A 4,5),

06  = tr(A6,5 4 6 ) ,

0 7 -  t r( A 7 ,3 A 3 ,7),

X := tr(A3,7A4,3A5,4A6,5A5,6A4,5A3,4A7,3),

Y:=tr(A3,7 ,4 4.34 4 A 6 ,0 5 ,6 ,4 4, 03.4A7,3A3,7 ,4 4,3A3,4A7,3) ,

Z  := tr(A3,7 43A3,4A7,3A3.743A5,4244,5A3,4A7,3A3,7 4345,4A6, 5 115.645A 3.4A 7.3).

The graph o f T ype  -E 7  has n o  lo o p . So the degrees of traces of cycles are
e v e n . The generators with weight 2  are corresponding to each arrow similarly as
in the case of type b„. Now we write down the condition that ,u({A 1,j } )  is in Z :

1
= -

2  
tr(Ai+ 1,;Ai,i+ i  -  A1_1,1A1,1_1)E2 ( i  = 1, 5). (11)

1
tr(A1+1,1A1,1+t - ( i  =  2 ,4 ). (12)
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1
A3,7A7,3 ir(A 3,7A 7,3)E21 (13)

1
A7,3 , 43,7 A 4 ,3 A 3 ,4  -  A 2 ,3 ,4 3 ,2  -  

4
/r(A7,3A3,7 A4,3A3,4 A 2,3A 3,2)E 4. (14)

W e put,

A :—  A7,3A3 , 7,

B := A4,3A3,4,

C  :=  A 2 ,3 A 3 .2 .

From these relations next lemma follows.

Lemma 5. The generators w ith weight > 4 are as follows up to equivalence,

tr(AB i ' ...A B ik) (1 < is < 3). (15)

W e put,
:=  A 3 ,7A 4,3A 3,4A 7,3 ,

fi :=  A 3,7A 4,3A 5,4A 4,5A 3,4A 7,3 ,

y := A3,7 414,3A 5,4A 6,5A 5,6A 4,5A 3,4A 7,3.

Then . f l .  y are  2 x 2-m atrices. Hence above lemma is restated a s  follows.

Lemma 6. The generators w ith w eight > 4  are  the traces of  m onom ials of
113.y  up to equivalence.

A s in the case of E 6 ,  for / > 2 we have:

tr(A I ) — tr(B I ) — tr{(A + B) 1 } — O.

In  particular

tr{ (A  + B) 2 } 2tr(AB) 0,

tr{ (A  + B) 3 } 3tr(AB 2 ) — 0,

tr{ (A  + B) 4 } 4 t r( A B 3 ) +2tr(A BA B) — 0,

tr{ (A  + B) 5 } 5 tr(A B A B 2 ) 0 ,

tr{ (A +B ) 6 }  — 3tr(AB 2 AB 2 ) +6tr(A B A B 3 ) +2tr(A B A B A B ) O .

tr{ (A + B ) 7 }  — 7tr(AB 2 AB 3 ) +7tr(A BA BA B 2 ) — O.

Then moreover we have following equivalence relations:

tra tr(AB) O.

trI3 tr(AB 2 ) — 0,

2try + Ir(Œ 2 ) — 2tr(A B 3 ) + tr(A BA B) 0,
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tr(43) tr(ABAB 2 ) 0,

3tr(/32 ) +6 tr(ay )+2 tr(a 3 ) —31r(AB 2 AB 2 ) + 6tr(A BA B 3 ) +2tr(A BA BA B) —

tr(fiy) + tr(a 2 13) tr(AB 2 AB 3 ) + tr(A BA BA B 2 ) O.

Hence we have by  Cayley-Hamilton equation: ot 2 — (tra)a + (det cx)E2 = 0,

tr(1 3 )  =  tr[a{ (tra)a—  (det o()E21]

/ 2 \= tr(a gra—  (det oc)trg — 0,

tr(a 2 fl) = tr[f if (tra)a—  (det a)E2 1]

=  tr(o(fi)troc — (det a)trf3 — 0.

W hen we combine above relations,

tr(# 2 ) +2tr(ay) —  O.

—tr(a 2 ,6) tr(fiy) — 0.

Since { x,fl,y} are 2 x 2-matrices, by Theorem 3 the generators with weight >4 are
followings up to equivalence,

X  := tr(y),

Y  := tr(y ),

Z := tr(afly).

Because these elements a re  2  x  2 -m atrices, the  re la tion  o f Theorem  3 gives
the  re la tion  between generators {a l ........................ a7, X, Y , Z }  of C [p -

c
l (z)] Gt.( vA.y) .

th is  relation is  ir re d u c ib le , it  is  th e  unique relation because o f  dimp -
c

i (Z )//
GL(V, A, a) (n + 2). I t  w i l l  b e  p r o v e d  i n  a p p e n d ix  th a t  th is  re la tion  is
irreducible.

3 .5 .  type E 8

Theorem  8. For M ck ay  quiver of  type E'.8 C[uV  (Z)]
G L ( V , A , a )  

is generated by
(n + 3) generators and have a unique irreducible relation between these generators.
M oreover this relation is a quasihomogeneous polynomial w ith weight (60; 2  
12 ,20 ,30 ). In particular 

C [ u V ( 0 ) ] G L ( V , A )  

is generated by  3  generators and the
relation between these generators represents simple singularity of  type E g . We write
down generators.

al =  tr(Al.0A0.1),

ct2 = tr(A7,1 A 1.2)

a3 — tr(A3,2.47,3),

LEI =  tr(43A3,4),
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X  := tr(A

a5 = tr(A 5 ,4A4.5 ),

a6 tr(A6,5A5,6).

= tr(A 7,6A 6,7),

a8 = tr(A 8 .5 A 5. 8),

8 A6 , 5 A 7 , 6 A6 , 7115,6A8,5145,8 14 6,5A 7,6A 6,7A 5,6A 8,5),

Y  := tr(A 5,8 24 6 ,5A 5 .6A 8 ,5A 5 .8A 6 ,5A 7 .06 ,7A 5 ,6 4 5 A 5 , 8 24 6,5A5,6A8,5

A5,8 , 46,5A7,6A6,7A5,6A8,5),

Z := tr(A 5,8A 6,5A 5,6A 8,5A 5,8A 6,5A 7,6A 6,7A 5,6A 8,5A 5,8A 6,5A 5,6A 8,5

A5,8 ,46,5245,6 4 5 ,45,8A6,5A7,6A6,7A5,6 118,511 5,8A 6,5A 7,6A 6,7A 5,6A 8,5).

The graph of type E8 h a s  no loop. So the degrees of traces of cycles are
e v e n . The generators with weight 2 are corresponding to each arrow similarly as
other cases. Now we write down the condition of p({A,, J }) c  Z,

116,5 115,6

W e put,

0+1 —

( i  =  1, 2,

A8,5A5,8

1
—3

3, 4, 6 and k i =  2. 3, 4, 5 ,4  for each i),

1 ,
A 6 ,7 A 7 ,6  =  -

2  
trV16,7A7,6)E2,

1
A5,8/18 , 5  =  —tr(A5,8248,5)E3,

3

1 
114,5215,4  =  6  tr 0 6 ,5 A 5 ,6+ A8,5A5,8 /44,5A5,41E6.

A

B :—  A6 , 5A5,6,

C 244,5 115,4.

From these relations next lemma follows.

Lemma 7 .  The generators w ith w eight > 4  are equivalent to follow ing traces.

tr(A B l ' . . .A B ik) (1  < is <  2).

W e put,

:=  A 5 ,8A 6,5A 5,6A 8.5 .

/I :=  A 5,8A 6.5A 7.6A 6,7A 5,6A 8.5 .
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O A  are  3 x 3-m atrices. Similarly as in  other cases the generators with weight
> 4  are equivalent to,

X  := tr(I3 2 ),

Y  := tr(ocflocf3),

Z := tr(ccficc 2 132 ).

Since these elements are 3 x 3-matrices, the relation of Theorem 4 gives the relation
between generators {a, ....... as. X. Y. Z} of C[icci ( z )]G L(V, A. x) If this relation is
irreducible, it is the unique relation because of dinm -c l (Z )// G L (  A, oc) > (n ± 2).
It w ill be proved in  appendix that this relation is irreducible.

4. Appendix

I n  th is  append ix  w e  w ill p rove  tha t the  re la tion  between generators of
c [ jr c i ( z ) ]  GL(V, A , is irreducible. The method of the proof are similar in the all
c a se s . So we give the detail o f the  proof only in  the case of type b„. In the
other cases we give only the ou tline . It is  no t nessesary for proving irreducibility
to denote equation explicitly. But it is possib le . So a s  a  example we will write
down the equation explicitly in  the case of type b„.

4.1. type b„. At first we consider the case n > 5. Since we want to use the
relation of Theorem 3  in  order to determine the relation between the generators
{al a„ X . Y  ,Z } , we write the  following generators o f  Theorem 3,

IdetA ,detB,detC, trA , trB, trC, tr(A B), tr(BC), tr(CA ), tr(A  BC)}

l ( z )lG L ( V, A , a)by the generators {a i , , a„, X , Y , Z} of C[tt -c i n  t h e  Do -case (n > 5).
By definition o f A, B . C w e have:

detA  = detB  = detC = 0,

tr(A B) = X ,

tr(A C) = Y ,

tr(A B C) = Z .

So w e have only to describe tr(C ) a n d  tr(B C) by X , Y , Z, a„.
W e put,

( — E L N .3 3  2 i)  •  •  •  (—  
fk  :=

3 Lç./ 1 < 4< _ ti1 < - 3 E in = k  
2

,, ) • • • )1'4)

(k  = 1, , n — 4)



We write down Fk.

Fk 2n-2
1=0

where

n-4

tr(C ) =

1c=1

[112+11
k-1

1+I Hk-1

0 1), 0 -çsi

(p' ,

i = 1  
(Si+1;) —  1=11
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where
1 ,

:=  -
2  

ta i + i  -  ai ) (i =  3, ... , n -  3).

Hence

1
n-2 —  —

2  
(a , + an-1 -  011-2)

= k! 1!(k - 1 - 1)!.

Suppose si 0 ,  then w e have

Jo,
a

( isi - k)
11-1

In the case of s i =  0  w e have

—k)

(p, "

11 —k+1) k —1

Next we must calculate tr(A„_ ] ,„_,A„_ 2 ,,,_ IA , „ _ 2 A „_ 2 ,„ ) .  At first:

± _
1 

( a 2 + 61,2 + a 2tr(A7,3A3 2A7.3A3 = 2X 3 ) -- 2 I

So:

1 ,
tr(A„_7 , 3 A  3  2 A  2 l A ) )  =  —  (a,-, -  a - )  + tr(A7 3 A 3 7A, 3 A 3 , 2 )

7 — 2 3

1 2 2=  2 X  - (ti n ) +  - ( +  a , + a -  , ) .
2 I

Moreover:

X
12 2 1

tr(An-t,,,-2An-2,n-1An,n-2An A-2, 11 ) = + + a , - + a -,-, )  - -  anan-1)•

So we determined t r (C ) .  Next we describe t r (B C ) .  By similar calculation we
have:

1
n-4

tr(BC ) =  - ( a  + (17 - au _7 )tr (C ) - Y +>_:,f),T4 i.
k=1



1
+ X Y { -

2  
(ai + az  - an-2) ii-Ek - Y +

k=1 
fkrk+,} •

n -4 7 — 4

k=1
(16)
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W e determ ined t r(B C ) . H ence w e determ ined a  re la t io n  between generators
X , Y , Z}  f r o m  th e  r e la t io n  o f  theorem  3. W e w rite  dow n  th is

equation.

0 =  Z 2 -  Z {  -
1  

(2X + 4  -  a 1a2 -  a i a„
2 2

n -4

(al - a 2 ) Y + ai
n -4

k=1
fk r k+1

When we look at this relation with respect to weight, we can find that this relation
is given by a  quasihomogeneous polynom ial. In the case of type D 4 we can write
down a relation of generators { a i   a4. X  Y, Z }  by similar calculation:

{
, 1

0 = Z 2 -  Z  X  (al + a3) + Y (az - ai ) - al aza3 + aia -  -  -aia4(a4  + a3  - az  - ai)4 2

+  -
1

ai Ra i -  a l ) 2 -  (a3  -  a4 ) 2 1 +  X 2 Y XY 2 +  a iX Y
4

1 1
-  -a4X Y (a4 + a3  - 2)  +  X Y {  ( a i - a 2 )2 —  (a3 a 4 )2 1. (17)

2
[ t r c i ( 0 ) ]  GL(V,A,1) i s  th e  r in g  w hich is quotient o f  C[trcl(z)] GL( 17 ,A,a) by ideal

(a i . . . . . a,,).T h u s  C[p-cl ( 0 ) ]  GL(V,A,1) is generated by X , Y , Z .  Hence by cal-
culation: if n  is odd,

trC = (tr(A B)) ( n - 3 ) 1 2 ,

tr(CA ) = -tr(B C),

if  n  is even,

trC  = 0,

tr(CA ) = -tr(B C) (tr(AB)) ( n - 2 ) i2

Moreover the unique relation between X ,Y ,Z  is:

Z 2 -  X ("- - 1 ) 1 2 Z  -  X Y 2 =  0 (n : odd), (18)

z 2  x n 1 2  x y 2  
(n : even). ( 1 9 )

These relations are irreducible and represent simple singularity of type D „.  These
equations are  obtained from equation (16), (17) by  restriction to

{a i =  • • =  a„ =

Hence if  equations (16), (17) a re  not irreducible, equations (18), (19) a re  not
irreducible either. But it is contradiction. So equations (16), (17) are irreducible.
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4 .2 .  ty p e  14 .  W e w ant to  use the relation of Theorem  4 in  order to de-
termine the  re la tion  between generators {al ....... an. X , Y , Z } .  H ence w e have
on ly  to  express generators o f  Theorem 4 by generators { a i , a6. X. Y. Z }  of
c [ t i _c , ( 0 ) ]  GL(V,A,a) This case is more easy than the case of type b„. because the
method in determining generators in  this case includes no inductive m e th o d . At
first we only write down the  result.

detA  = detB  =

trA = (13,

trB  = a5,

trA B  = —

1 

(3a 2  — a, — 2a —  6a -2a —  6ag + 8a 3a5 ),
24 1-

1
tr(A -, ) = —2  (ai +

1 ,
tr(B 2 ) = + 4 ) ,

1
3tr (A 2 B) = —

9
(—a2 + a3 + a5) 3 al(— a, a33

a5 )2 ±  —
1  

(—a2 a3 + a5)1ai2
1 3 1 3 1 3

I+ —
8  

(a2 + )- + —
8  

(a2 — — —
8

(a
3

± (14) — (a3 — a4) 3

8 -

— —8 v./5 \ 3 I+ a6 )—  g a 5 3— a6) — 3X.

tr(A B 2 ) = X,

tr(A B A B ) = Y,

tr(A BA 2 B2 )  = Z.

We will explain the method to find these equalities. A t first by relation (8):

1
tr(A n ) tr{ A 4.3 A3

,
,4  +  —2 -  ( 7 4 ) E 2 }

1
=  (a3 a 4 ) "  +  (a3 -  a a r ,2" 2"

{
n1 ,

tr(B ")  = tr A6,5A5,6 ± — vi5 —  a6)E -)2

1 1
= — (a5 + a6)" + — (as — a6)".2" 2"

I
tr(C n )  =  tr{ A 0 (,1A1,0 ±  —

2  
(i2 -  al ) E2

1 1
= —  (a2 + a 2" (a z  - a ir2" 
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Next if we calculate tr(A  + B) 2 tr(A  + B ) 3 , we obtain above equalities similarly as
when we determined generators in Section 3.

(o )] Gc( A,a) [irc l (0 )]G L (V ,A ,x )N e x t w e  c o n s id e r  CLu-c li s  g e n e r a t e d  b y
{X, Y, Z } .  The unique relation between X . Y  .Z  is:

1Z2 + X -Z y -  0.
8

This equation is obtained by the restriction to

{a l = • • • = a6  = Of

the  equation which is obtained from the relation in Theorem 4. This equation
is a nontrivial quasihomogeneous polynomial with weight (24: 6, 8, 12). So this
equation represents simple singularity of type E6 and is irreducible. The equation
which is obtained from the relation of Theorem 4 is quasihomogeneous polynomial
with weight (24; 2, ... , 2, 6, 8, 12). Hence the relation which is obtained from the
relation of Theorem 4  is irreducible.

4.3. type E 7 . This case is similarly as the case of type t 6 .  In  this case we
have only to calculate tr(A "), tr(B "), tr(C"), tr(A  + B ) 1 (1 —  2....... 7).

(o ) ]  GL(V,
' A . c  Di v (0 )] GL(V, A, a) •sN e x t w e  c o n s id e r  C[/./V generated by

{X, Y , Z } . The unique relation between X , Y, Z  is:

Z 2 X 3 Y  + Y 3 =0 .

This equation is obtained by the restriction to

{ai= • • • = a7 =  Of

the equation which is obtained from the relation in Theorem 3. This equation
is  a  quasihomogeneous polynomial with weight (36; 8, 12,18). So this equation
represents simple singularity of type E 7  and is irreducible . The equation which
is obtained from the relation of Theorem 3 is quasihomogeneous polynomial with
weight (36; 2, ... , 2, 8, 12,18). H ence the  re la tion  w hich  is ob ta ined  from  the
relation of Theorem 3  is irreducible.

4.4. t y p e  t 8 .  This case is similarly as the case of other ty p e s . In  this case
w e have only to calculate tr(A "), tr(B "), tr(C"), tr(A  + B ) 1 (1  = 2, .... 9).

(0 )]  GL( V, A, a) .C [1..cc i (0 )1 GL(V, A. a)N e x t w e  c o n s id e r  C [irc ii s  g e n e r a t e d  b y
{X, Y , Z } . The unique relation between X , Y  , Z is:

1 1
Z 2 — 

8  
Y3

 —  

32 
X 5 = 0.

This equation is obtained by the restriction to

{a i =  • • • = a8 = 01

the  equation which is obtained from the relation in  Theorem 4. This relation
is a  quasihomogeneous polynomial with weight (60; 12, 20, 30). So this equation
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represents simple singularity of type E 8 and  is irreducible . The equation which
is obtained from the relation of Theorem 4 is quasihomogeneous polynomial with
weight (60; 2, ... , 2, 12, 20, 30). Hence the relation w hich is obtained from  the
relation of Theorem 4  is irreducible.
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