J. Math. Kyoto Univ. (JMKYAZ)
40-2 (2000) 315-336

On the coordinate rings of quiver varieties associated to
extended Dynkin diagrams

By

Yasuhiro OMODA

1. Introduction

P. B. Kronheimer [Kr] has constructed quiver varieties from Extended Dynkin
Diagrams of types of A,. D,, E,. These quiver varieties are important objects for
the study of simple singularities. Let p be the quotient map of Cartan subalgebra
by Weyl group. The semiuniversal deformations of simple singularities are con-
structed on the quotient space of Cartan subalgebra by Weyl group of corre-
sponding types. Then these quiver varieties are the pull-back of semiuniversal
deformations of simple singularities by the quotient map p. These quiver varieties
are obtained as the symplectic quotients of symplectic vector spaces by a reductive
group. So the coordinate rings are invariant subrings of polynomial rings with
respect to the action of the group. In general it is difficult to find a minimal set of
generators of an invariant ring and the relations between them. In this paper we
show that it is possible for the case of quiver varieties which were constructed by
P. B. Kronheimer. Moreover surprisingly we can show that the obtained relation
is unique and irreducible. In this research we used the invariant theory of quivers
by Le Bruyn, and Procesi, C [BP] and of matrices of low degrees by K. Nakamoto
[Nal,2].

The author wishes to express his hearty thanks to A. Ishii, A. Kono,
J. Matsuzawa, K. Nakamoto, I. Naruki, and K. Saito with whom he had valuable
discussions.

2. Preliminary |S2]

2.1. Simple singularities [S1, 2]. Let I" be a finite subgroup of SU(2). I is
isomorphic to one of following groups:

cyclic group of order n,
binary dihedral group of order 4n,
binary tetrahedral group,
binary octahedral group,
binary icosahedral group.
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We call a singularity which C?/I" have at 0 simple singularity. For S = C?/I", we
write a minimal resolution of S by

n:S—S.
Hence the exceptional fibre 7='(0) is:
' (0)=CU---UC,.

Here each C; is P' and intersection matrix C:= (C;-C;) is Cartan matrix of
following type A(I).

ro| G| Db
AT | Auoy | Dusa | Eo | B | B

By this correspondence we call C>/I" simple singularity of type A(I).
Let C* be multiplicative group. We define the action of C* with weight
(Wi ...owy) on V=C"

to(xpex) = ("X, X))
for (xy,..... v,)eV, reC*.
Moreover when C* acts on W = C" with weight (d,.....d,,) and
fV-W

is C*-equivariant map, we say that f is a quasi-homogeneous map of weight
(dy..... dpiwy,...owy).  Next proposition is well known.

Proposition 1.  Assume that f € C[X, Y.Z] is a quasi-homogeneous polynomial
of a weight (d:wy.waw3) in the next list.  Hence if SpecC[X.Y.Z]|/(f) have an
isolated singularity, f = 0 represents a simple singularity of the corresponding type.

d W) "y w3
Ay | 2(n+1) ] 2 n+ 1 n+1
D, 4n—=1)| 4 | 2(n—=2)| 2(n—1)
Es 24 6 8 12
E; 36 8 12 18
Ey 60 12 20 30

2.2. Quiver [S2]

Definition 1. We call two finite sets 4, V' with two maps /, ¢ from 4 to V
quiver. i.e. It is just an oriented finite graph.

Example 1. |1 e—e2
In this case 4 has only one element {a}, V is {1.2}, h(a) =2 and t(a) = 1.
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When a quiver is given, we fix « = (¢;;i€ V,2; € N) and put V; =C*. We
introduce following notation:

R(V. A.a) := 6—) Homc( Vi V/,(,,)),

aeA
GL(V. A, o) := Il;cy GL(V}).
We define an action of GL(V,A4.«) on R(V,A,a) by following way:

g- {fu} = {g/I(a)fu gl—((ll)}’
for g = {g;} € GL(V. A, %),{f,} e R(V.4,2).

For {f,} e R(V.A,2) and (aj.az,....a5) € Ax---x A, if ha)) =t(az).....
h(as—,) = t(as). we can consider the map:

fﬂ.‘ © ~/;’.v—l 00 “’l : V/(fll) = Vi(ay,)-

Moreover if t(a;) = h(ag), we call the composed map cycle. Hence following
theorem is proved by [BPJ:

Theorem 1. The invariant ring CIR(V.A.2)]"""""% is generated by the
Sfunctions which give the traces of cycles.

2.3. Quiver varieties |[N]. Suppose a finite graph is given. We assume
that no edge may join a vertex with itself. Let A be the set of pairs consisting
of an edge together with an orientation of it. Let #(a) (resp. /i(a)) be the outgoing
(resp. incoming) vertex of ae A. For ae A we denote by a the same edge as
a with the reverse orientation. Moreover let V' be the set of vertexes of the
graph. Hence we obtained a quiver. Choose a subset 2 = 4 such that QUQ =
A, QNQ = &. Such a choice of the subset is called an orientation of the graph.
The choice of the orientation is not essential. Our constructions are essentially
independent of . From now on we consider only such a quiver with an ori-
entation. Let V be {0.1,...,n}. Let TcGL(V,A4,0) be scalar. Hence T acts
trivially on R(V,4,a). Let PGL(V,A.a) be GL(V.A.a)/T, Lie{PGL(V.A.x)}
Lie algebra of PGL(V.A.x) and (Lie{PGL(V,A.x)})" the dual space of Lie
algebra Lie{PGL(V,A,x)}. Then PGL(V,A.«)-invariant holomorpic symplectic
form (.) and corresponding moment map yc are given as follows:

Sl Agad) =D ela) ir(fuga)

=y

te @ MV, A,2) = (Lie{ PGL(V, A, 2)})" = @jcv M,,

eI = Bierr (=2 e snres A 1uts)

for {£,} - {ga} € R(V, A.)

where ¢(a) = 1 if ae Q, e(u) = —1 if ae Q. Let Z be the dual space of the centre
of Lie{PGL(V,A.x)}. Then we define the Quiver variety for {¢c € Z:
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Mo = 1M Ce)JPGL(V. A, %),
Here u¢!({c)//PGL(V.A.2) is categorical quotient.

Remark 1. Note .#¢ and u¢' (Z)/PGL(V. A, a) are essentially independent of
a orientation of the graph.

We define the action of C* on R(V, A4,a) by scalar action. Then this action
preserves s (Z), and u¢'(0). Moreover this action commutes with the action
of GL(V,A,x). So we may consider Clu¢' (Z2)) 4% and Cluc! (0)] L A2 a5
graded rings.

Definition 2. For a given graph we put d; = | if vertex i is joined to j, and
dj =0 if vertex 7 isn’t jointed to j and d; = —2. We define D := (dj).

We have:
Proposition 2. dimuc! (Z)/PGL(V,A,2) > n+ 2 — 'aDo.
Proof.
dimu (Z) ) PGL(V. A, a) > dimu (Z) — dimPGL(V, A, )
> dimR(V. A, o) — 2dimPGL(V, A.a) + dimZ
=n+2- "aDa

2.4. McKay’s observation [M|. Let I be a finite subgroup of SU(2). Let
Ro.Ry...., R, be irreducible representations of I". Here Ry is the trivial repre-

sentation. Let Q be the natural 2-dimensional representation which is obtained
from a inclusion: I < SU(2). We put for i.j=0,1,...,n

n; ;= dimcR;
mj; = dimc Homp(R;, R; @ Q)
cj 1= 20 — my;
(i.j=0,1.....n)
Hence Mckay observed following fact.

Theorem 2. C = (c¢;) is a Cartan matrix associated to Extended Dynkin
diagram of type A(T).

Let R be the regular representation of I
(End(R) ® Q) = Hom (R,R® Q)
= Homp <Z C"® R;. (Z C"i () Rj> ® Q)
i=0 =0

=@ {Hom(C",C")® C"}

ij
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Hence above theorem says that (End(R)® Q)" is R(V, A,a) which is obtained

from following quiver of type A(I") and a. We call following quivers McKay
quivers.

0
V={0.1..... n}
A, Z,x x=(1,....1)
1 2 n—1 n
‘ 0 I " V={0.1..... n}
5:1 A — e O
1 2 ; n-3 n-2 Il;l “=(1'1’2'2"""2’1’1)
o4
l} V =1{0,1,2.3.4,5.6}
Es M_JH . x=(1.2,3,2.1.2.1)
0 1 2 5 6
N [7 v =1{0,1,2,3.4.56.7}
E . i
L S S x=(1,2.3.4,3.2,1.2)
N |8 V =1{0.1,2,3,4,56.7.8}
Es o o
T T s 2= (1.2.3,4.5,6.4.2,3)

Here the numbering on diagrams indicate vertexes.

2.5. Hyperkahler quotient and simple singularities [Kr]. Natural represen-
tation Q of I' has a [-invariant quaternionic structure. We equip regular
representation R of I" with a I'-invariant Hermitian inner product. Let (End(R))"
be the set of all Hermitian maps of End(R). Thus following module has I-
invariant right quaternionic structure.

M := End(R) ®¢ Q = (End(R))" ® g H

Here H is quaternion. Let U(R) denote the unitary group acting on End(R) by
conjugation. and let

u(r) :

{ge URR)|gy=yg eI}
U(I)NSL(R)

SU(T) -
Because of R~ @, {R; ® C"} we have

ur) = I[, v
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The compact group U(I") acts on M and on
M(I) = (End(R) ® Q)"

preserving the quaternionic structure. We obtain a U([")-equivariant hyper-kdhler
moment map

fg : M(I) = u(I')” ®x Hy

where Hy = RI @ RJ @ RK denotes the pure quaternions, and where u(I")" is the
dual of the Lie algebra u(I") of U(I') acted on by U(I") via the coadjoint action.
Since the diagonal scalars:

T= {(A,....l)e [Tu@)lre U(l)}

act trivially on M(I') and since u(I")" may be identified with u(I") by means of the
trace form (A4, B) — tr(AB*), the target of sy, may be identified with su(I") ® g Ho,
where su(I') is the Lie algebra of SU(I"). We put

c= {(,uo, o ty) € @ u(ay) | w4y € u(l) Z’, oA = 0}.
Then ¢ is the r-dimensional centre of su(l'), i.e.
c= (su(F))U(r).

Then U(I") acts on a fibre uy' (), (=1 +¢J + K ec®Hy, and the real
differential geometric quotient x5! ({)/U(I") is a hyper-kahler quotient (at least at
its smooth points it carries the structure of a hyper-kahler manifold). Kronheimer
showed that for all { € c® Hy, the quotient u'({)/U(I") is a complex-analytic
surface with at most isolated (simple) singularities, in particular

1 (0)/U(I) = C¥T.

Moreover, there is a natural identification of c®@ C = ¢ ® J ® ¢ ® K with a Cartan
subalgebra h of type A(I") such that the complex r-parameter family

' (e ®C)/U(IN —»¢®C

realizes a pull-back (via h — h/W) of the semiuniversal deformation of C?/I", and
shifting this family into the /-direction provides a simultaneous resolution

15 (€ ® C)/UT) — iy (G +¢® C)/UT)

l l

~

c®C — (l+ce®C
(for generic (| €¢)

2.6. The invariant theory of (n,n)-matrices (n = 2.3). We denote the set of
all (n.n)-matrices by M,. We define GL(n)-action on M, x --- x M, by
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Lgxgh).

for g e GL(n), (xy....,: X;) € My XX M,.

We denote the coordinate of M, x M,, x M, by (A, B,C) in the form of (n,n)-
matrices and the coordinate of M, x M, by (A4, B) in the form of (n, n)-matrices.
Hence next theorems are proved in [Nal], [Na2].

g(xr,...0xy) = (gxi19™

Theorem 3. C[M; x M, x Mz]GL(Z) is generated by {detA.detB,detC, trA,
trB,trC, tr(AB), tr(BC), tr(CA). tr(ABC)} and there is a unique relation between
these generators as follows,

{tr(ABC)}* — P {tr(ABC)} + 0> = 0,
where Py = trAtr(BC) + trBtr(CA) + trCtr(AB) + trAtrBirC,
0, = detBdetC(trA)? + detCdetA(irB)* + detAdetB(1rC)*

+ detC{tr(AB)}* + detA{tr(BC)}? + detB{tr(CA)}*
— detCtrAtrBtr(AB) — detAtr BtrCtr(BC)

— detBtrCtrAtr(CA) — 4detAdet BdetC

+ tr(AB)tr(BC)tr(CA).

Theorem 4. C[M; x M;]GL(3 ) is generated by {detA.detB.1rA. trB.tr(AB),
tr(A?).tr(B?).tr(A?B), tr(AB?), tr(ABAB), tr(ABA*B*)} and there is a unique re-
lation between these generators as follows,

{tr(ABA?>B*)}? — P3{tr(ABA*B*)} + Q3 = 0.

Here P3. Qs are polynomials of {detA.detB. trA, trB.tr(AB), tr(A?),tr(B?).tr(A*B).
tr(AB?).tr(ABAB)}.

See [Na2] for detail.

3. The structure of Clug! (2)]%""**) or Clug! (0)) LA

We recall the definition of Z, i.e. the dual space of the centre of
Lie{PGL(V,A,2)}. In this section we determine a minimal set of generators of

Cluc(2)] GLV.A2) By theorem | we may consider only the traces of cycles as
generators of these rings. Then these generators are homogeneous elements.

Definition 3. Let f, g are homogeneous elements of C[/(E‘(Z)]GL(V‘A'“) with

degree k. We say f'is equivalent to g when f — ¢ is contained in the ring which is
generated by all homogeneous elements with degree /(< k) in C[/(E'(Z)]GL”'A'“)
and we write f ~ g.

When we By A4;; we denote the coordinate of Hom(V,). Vi) in (%.%)-
matrix form for any ¢ = (i e—e j). We denote a unit matrix in M, by E,. We



322 Yasuhiro Omoda

only show the proof of the case of type D, in detail. Since the proof of other
cases is similar as type D,, we will describe only outline.

3.1. type A,. Since GL(V.A,a) = (C*)""" we have uc'(Z)=R(V.A. ).
The action of an element 1 = (1y,....1,) € (C*)"*" on R(V. A4.a) is given by - 4,
= tjt7'4; ;. We have fundamental invariants: z; = 4, ;4;; (j = i+1 mod n+1),
x=Ao1...-Au1.nAno, ¥ = Aon-..Au=1.nAno. The relation of these invariants is
only xy = zp...z,. The weight of each invariant {z;, x, y} is {2,n+ 1,n+ 1}, and
the relation is quasi homogeneous polynomial with weight (2(n+1):2,....2,n+ 1,
n+1). In paticular C[ug!(0)] !4 = Clx. y,z]/(xy = z"*"). It is simple sin-
gularity of type A,.

3.2. type D, (n>4)

Theorem 5. For Mckay quiver of type D, C[,u’C'(Z)]GL( V-A2) s generated by
(n + 3) generators and there is a unique irreducible relation between these generators.
Moreover this relation is a quasihomogeneous polynomial with weight (4(n —1);
2,....2.4.2(n—2),2(n = 1)). In particular Clu¢! (0))CE A1) s generated by 3
generators and the relation between these generators represents simple singularity of
type D,. We write down generators;

ay = tr(Az.0A40.2).
) = Ir(Az,]ALz).

ay = tr(A32A42.3).

a2 = tr(Ap-2.n-3An-3,n-2),
ap1 = tr(Ap—1n—2A4n-2.0-1)-
ay = tr(Ap 2 An-2.1).
X = tr(A20A4)2A42.140.2).
Y =tr(AyoAsz... Anan3Ann2Au_2nAn-3n-2 ... A34A23402).
Z = tr(A0A) 2421432 . An2n-3Ann 2An 20 An 302 A3442340.2).

In this Section 3.2 we will determine the minimal generators of
Cluc (2))°M" 42 for Mckay quiver of type D,. The graph of type D, has no
loop. So the degrees of the traces of cycles are even. At first we consider the
case of n>5. Now we write down the condition that u({4;;}) is in Z:

Aig1.iAi iy — Aic1iAi i)

1 .
25["(Ai+l,iAi.i+l —Ai_1 A i) E> B3<i<n-3). (1)
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1
Ao Az 0+ A1 2421 — A3 2423 = 5"‘(/40.2142.0 + A1 2421 — A3 2423)Ex. (2)
An,n~2An—2,n + An-l,n—ZAn—Z,n—l - An—},n—2An—2.n—3

1
= itr(An.n—ZAn—Z.n + An—l,n—ZAn—Z.n—l - An—-}.n—ZAn-Z,n—S)EZ' (3)
From now on we will determine generators up to equivalence relation inductively
on weight. From now on we use the word “weight” as the degree of homo-
geneous polynomial in polynomial ring C[R(V,A,«)]. Any trace of cycle whose
weight is 2 is tr(A; ;jA4; ;) for some edge a = (ie—ej). We put,

Ay = {A0,2a Al,ZA An~l.n—2a Ang-—Z}~

Let C4 be the set of cycles which contain neither A; ;4144 nor
Ait1iAiiv1 2 <i<n-3) and whose traces have weight >4.

Lemma 1. The trace of cycle which has weight >4 is equivalent to a sum of
traces of elements of Cj.

Proof.  The trace of cycle which has weight 2/ and contains no element of A4y
is equivalent to tr{(A3~2A2‘3)[} by relation (1). rr{(A3,2A2,3)’} is equivalent to a
union of traces of cycles which contain at least either 49> or 4, by (2). Soitis
necessary only to consider cycles which contain elements of Ay. In particular we
have only to prove proposition in the case of cycles which start from an element
of Ag. We order elements of 4, in the cycle by the order of appearance in cycle.
For example, for A2‘0A3‘2 coiAp—2n3An n—2An—2.0An-3.n-2...A3.442.3Ap.2, we put
down a4A432...Ay_2 y-303000A4,_3 4—2...A2307. If the cycle contains A; iy 1Ay
or Aip1iAiiv1 (2 <i<n-—3) between «; and a;4;, by inductive use of (1). (2) the
trace of the cycle is equivalent to a union of the traces of the cycles which contain
neither A; ;1A nor Ay jAiiv1 (2<i<n-—3) between o and 2;,.;. Then
lemma has been proved.

Lemma 2. [If an element of Ay appears two times in a cycle, the trace of it is
equivalent to 0.

Proof. 1t is obvious from the fact that oy = o) =2, =, = 1.

Lemma 3. [f any element of Ay appears at least one time in a cycle. then trace
of it is equivalent to 0.

Proof. By above lemmas up to equivalence the trace of cycle whose weight is
bigger than 4 and not equal to 2(n — 2), 2(n — 1), nor 2n is equivalent to 0. Then
it is enough to consider the following cycles:

A2.0Al.2A2,IA3.2 .. An~2.n—3An—l.n—ZAn~2.n—lAn.n—2An—2.nAn~3.n—2 cee A3.4A2.3A0A2~,

AZ«OAI,ZAZ, |A3,2 o All—z‘ll—]AM.II—ZAH—Z,IIAH—I.H—2AH—2<H—1AII—3.11—2 ‘e A3.4A2.3A0.2~
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A20432 . An-2.n-3An-1n-2An-2.n-1Ann-2An-2nAn-3n-2 . . . A3, 4423412421 40.2,
Ay oAz ... Aposn3Ann—2An_2 nAn_t n—2An-2.n-1An_3.n-2 ... A3.442.34) 2421 40.2.
But the traces of these cycles are equivalent to 0 by inductive use of (1), (2). (3).

Proposition 3. The trace of cycle whose weight is bigger than 4 and not equal
to 2(n —2) nor 2(n — 1) is equivalent to 0.

Proof. 1t is the summation of above lemmas.
Proposition 4. The trace of cycle whose weight is 4 is equivalent to
X = tr(Ay 0412421 40.2)
up to constant. The trace of cycle whose weight is 2(n — 2) is equivalent to
Y =tr(A20432. . An2n3Ann—2An-20An-3n-2 .- A3,4A42340,2)

up to constant. The trace of cycle whose weight is 2(n — 1) is equivalent to

Z = tr(Ay0A1 2421432 . A3 Ann-2An-2.0An-3.0-2 - - - A3.442.340.2)
up to constant.

Proof. By above lemmas and easy calculation. At first we consider only
cycles which begin from A4¢,. Then we have only two cycles whose traces have
weight 2(n —2) and whose traces are not equivalent to 0. i.e.

AZ,()A3‘2 .. An—Z,n—3An<n—2An—2,nAn—S,n—Z e A3,4A2,3A0.2~
Az 0ds .. An—2n-3An-1n-24n-2n-14n-3n-2- .. A3.4A42.340.2-

But the traces of these cycles are equivalent by (3). We have only six cycles which
begin from Ag, and whose traces have weight 2(n — 1) and whose traces are not
equivalent to 0. i.e.

A2,0Al.2A2, I A3.2 e An—Z.n—3A11,n—2An—2.nAn—3.u—2 s A3,4A2,3A0,2s
A2,0A3.2 s An—Z.n—}An.n—ZAn—Z,nAu—ln—Z B A3.4A2,3A2. 1 Al,2A0<23
Ay 0A12A421432 ... Ap2 =3 An1n—2An—2.n—1An3 n—2 ... A3442.340,2.
Az 0A32- . An—2n=3An-1 n—2An-2.n-14n-3.n-2 ... A34A42 341,241 4o 2.
A2.0A3,2 v An‘Z.n—BAn—l.n—ZAn—ln—l An.n—ZAn—Z.uAn—lu—Z s A3,4A2.3A0.2a
A?_‘OAS‘Z oo An—2.nf3An,n—-2An—2‘nAn~l.nvZAn—Z,n—I An—3.n—2 oo A3,4A2,3A0.2-

The traces of these cycles are equivalent by (1), (2). (3). When we consider cycles
which start from other 3-elements of 4, and whose traces have weight <4, we can
check by (1), (2), (3) that the traces of these cycles are equivalent to trace of above
cycle. Then we obtain proposition.
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Next we consider the case of n =4. This case is slightly different from other
cases, but more easy. So we write down only results. In this case the condition
of u({Ai;}) e Z is as follows,

Ao 2420+ A1 2A21 — A3 2423 — As 2424

|
= 5”(/40.2/42.0 + A1 2421 — A3 2423 — As2A42.4)Es. (4)

Proposition S. In the case of n =4 the generators of C[;tEI(Z)]GL( vid.x)

Just same elements as in the case of n >5 up to equivalence, i.e.

are

ay = tr(Az,040.2).
ay = tr(Ax14,2),
ay = tr(Az21453).
as = tr(As242.4).
X = tr(Az.041,242.140.2).
Y = tr(A20A432423A40,2).
Z = tr(A20A41,242.1 43242 340.2).

Next we state how to find a relation between these generators (n > 4). At
first we introduce following notation,

A = Ao242.0, (5)
B:=A)242,. (6)
C:= A3‘2 oo An—l,n—SAn.n—ZAu—Z.nAn—3.n—2 “e A2.3~ (7)

Since these elements are 2 x 2-matrices, the relation of Theorem 3 gives the relation
between generators {ay,....a,, X.Y.Z} of Clug'(Z))“*"* % If this relation is
irreducible. it is the unique relation because of dimu¢c (Z)/GL(V,A.%) > (n + 2).
It will be proved in appendix that this relation is irreducible.

3.3. type E

Theorem 6. For Mckay quiver of type E¢ Clug! ()41 s generated by
(n+ 3) generators and there is a unique irreducible relation between these generators.
Moreover this relation is a quasihomogencous polynomial with weight (24;2,...,2,6,
8.12). In particular C[pu¢! (0)]GL( Vo) g generated by 3 generators and the relation
between these generators represents simple singularity of type Eq.  We write down
generators.

ay = tr(A1,040.1).
ar = IV(AZ.IALQ)%

az = tr(A3242.3).
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asy = tr(As343.4).
as = tr(As2435).
ag = tr(Ae.5A4s.6).
X := tr(A3.242.3A45 242 545 242 5),
Y :=tr(A3 242345242543 242 345 242.5),
Z :=tr(A3 243345242 543242 343 242 345 242 545 242 5).

The graph of type Eg has no loop. So the degrees of traces of cycles are
even. The generators with weight 2 correspond to each arrow similarly as in the
case of type D,. Now we write down the condition that u({4;;}) is in Z:

1 .
Aip1,iAiip — Aic1,iAii-1 = ETV(AI‘HJAI‘,H»I —Ai_,iAi i) Es (i=1.3.5) (8)

|
Az 2Ay 3+ A2 5As2 — A1 2421 = 3”(/43,2/42,3 + Ay sAsy— Ai2421)Es (9)

We put,
A= A31423,
B:= A5,A45 5,
C:=A1242,.

From these relations next lemma follows:

Lemma 4. The generators with weight >4 are equivalent to following traces up
to equivalence:

tr(A"B .. ANBRY (k> 0,1 < j, <2). (10)
We have following equivalences for / > 2:

tr(A') ~ tr(B') ~ tr(C") ~ tr{(A+ B)'} ~ 0.

In particular:
tr{(A+ B)*} ~ 2 r(AB) ~ 0.
r{(4 + B)’} ~ 3{tr(A*B) + tr(AB*)} ~ 0.
By these equivalences:
1r(AB) ~ 0. tr(A*B) ~ —tr(AB?)

Since A, B, C are 3 x 3-matrices, by Theorem 4 we have only to consider fol-
lowings as generators with weight >4 of C[u¢! (Z)]GL(V‘A“"),

{detA.detB.tr(AB). tr(A%).1r(B*).0r(A>B). r(AB*), tr(ABAB). tr(ABA’ B*)}.
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Hence by above calculation we have only to consider

{X := tr(AB*), Y := tr(ABAB), Z := tr(ABA*B*)}

as generators with weight >4 of C[u¢' (Z)]GL(V‘A’“). Since these elements are

(3.3)-matrices, the relation of Theorem 4 gives the relation between generators
{ar,....a6.X. Y. Z} of Clu¢ (2)]CE A2 If this relation is irreducible. it is the
unique relation because of dimuc' (Z)JGL(V,A,%) > (n+2). It will be proved in
appendix that this relation is irreducible.

Remark 2. In this case we used vertex ‘2’ as start point of cycles. So we
used the invariant theory of (3, 3)-matrices. When we use vertex ‘1’ as start point
of cycles, we can use the invariant theory of (2,2)-matrices.

34. type E;

Theorem 7. For Mckay quiver of type E; C[,u‘C'(Z)]GL(V‘A‘“) is generated by
(n + 3) generators and there is a unique irreducible relation between these generators.
Moreover this relation is a quasihomogeneous polynomial with weight (36;2.....2,
8.12.18). In particular Clug! (0)]GL(V’A’“) is generated by 3 generators and the
relation between these generators represents simple singularity of type E;.  We write
down generators.

ay = tr(Ay040,1),
ay = tr(Az1412).
az = II‘(A3_2A2.3).

tr(A4y3A3,4).

I

day
as = tr(As 4A4s),
ag = tr(Ag sAs.6),
ar = tr(A7343,7).
X :=tr(A37A44.3A45 446545 644,543 447.3),
Y:=tr(A3.7A44.3A5 4A6 545644 543447 343744343 4A473).
Z:=1tr(A3744.3A43 447343744345 444 543 447 343 744 345 446 545 6 A4 543 447 3).

The graph of Type £; has no loop. So the degrees of traces of cycles are
even. The generators with weight 2 are corresponding to each arrow similarly as
in the case of type D,. Now we write down the condition that u({4;}) is in Z:

| .
Aig1,iAdiiv1 — Aic1iAi - = irr(Ai+],iAi,i+l —Ai_1iAii-1)E> (i=1,5)., (11)

1 .
Aip1,idi i — Aic1iAj o) = §tr(Ai+1,iAf,i+1 —Ai_1iAii-1)E3 (i=2.4). (12)
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|
A3 7473 = ifr(A3,7A7,3)Ez» (13)

1
A73A37+ A4 3Az.4 — Ar 3432 = ZfV(A7,3A3,7 + As3Az 4 — Ar3Asz2)Es. (14)

We put,
A= A7343 7,
B = A4 3434,
C:= Ay 343.

From these relations next lemma follows.
Lemma 5. The generators with weight >4 are as follows up to equivalence,
r(AB" ... AB%) (1 <i, <3). (15)

We put,
o= A3‘7A4'3A3_4A7.33

B = A3 7A443A5 444 543,447 3.
7= A37A43A54A6 545 644 543447 3.
Then «.f.y are 2 x 2-matrices. Hence above lemma is restated as follows.

Lemma 6. The generators with weight >4 are the traces of monomials of
a,f.y up to equivalence.

As in the case of Eg, for / > 2 we have:
tr(A") ~ tr(B') ~ tr{(A + B)'} ~ 0.
In particular
tr{(4 + B)*} ~ 2tr(AB) ~ 0,
tr{(A + B)*} ~ 3tr(4B?) ~ 0,
1r{(A + B)*} ~ 4tr(AB*) + 2tr(ABAB) ~ 0,
tr{(A+ B)’} ~ 5tr(ABAB?) ~ 0,
tr{(A+ B)®} ~ 3tr(AB*AB?) + 61r(ABAB*) + 2tr(ABABAB) ~ 0,
tr{(A+ B)"} ~ Ttr(AB*AB*) + Ttr(ABABAB?*) ~ 0.
Then moreover we have following equivalence relations:
troo ~ tr(AB) ~ 0.
1rf ~ r(AB*) ~ 0.
2try + tr(a®) ~ 2tr(AB®) + tr(ABAB) ~ 0,
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tr(xf) ~ tr(ABAB*) ~ 0,
3tr(B) + 6tr(ay) + 2tr(a*) ~ 3tr(AB*AB?) + 61r(ABAB*) + 2tr(ABABAB) ~ 0.
tr(By) + tr(a*B) ~ tr(AB*AB*) + tr(ABABAB?) ~ 0.
Hence we have by Cayley-Hamilton equation: a? — (tra)a + (det 2)E; = 0,
tr(oe?) = tr{af(tra)a — (det @) Ey})
= tr(a®)tra. — (det a)tro ~ 0.
(o) = tr{B{ (1ra)x — (det ) Ex}]
= tr(off)tra — (det a)trff ~ 0.
When we combine above relations,
tr( %) + 2tr(ay) ~ 0.
—tr(a’p) ~ tr(fy) ~ 0.

Since {«,f.y} are 2 x 2-matrices, by Theorem 3 the generators with weight >4 are
followings up to equivalence,

X = tr(y).

Y :=tr(ya),

Z = tr(affy).
Because these elements are 2 x 2-matrices, the relation of Theorem 3 gives
the relation between generators {a..... a, X, Y. Z} of C[/zzf'(Z)]GL(V‘A‘“). If

this relation is irreducible, it is the unique relation because of dimuc!(Z)/
GL(V,A,0) = (n+2). It will be proved in appendix that this relation is
irreducible.

3.5. type Eg

Theorem 8. For Mckay quiver of type Eg C[;tE‘(Z)]GL“/‘A‘a) is generated by
(n+ 3) generators and have a unique irreducible relation between these gencerators.
Moreover this relation is a quasihomogeneous polynomial with weight (60;2,. ... 2.
12,20.30). In particular C[u¢! ()] SF A2 s generated by 3 generators and the
relation between these gencrators represents simple singularity of type Eg.  We write
(IOH'N generarors.

ar = tr(A4,.040.1).
ay = tr(Ax141.2).
ay = tr(A3 242.3).

)

ag = 1r(As3434),
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as = 1r(As 4Ass).
ag = tr(Ae,5As.6).
a7 = tr(A7.6A46.7)-
ag = 1r(As sAss).
X :=tr(As 3Ae 5A7.6A6.7A45 643 545846 5A47,6A6.745,648.5),
Y :=tr(AsgAe sAs 6A3 545846 547.6A6.7A45,6A8 545 846 545 68,5
AsgAe.5A7.646.745.643.5).
Z = tr(As gAg sAs,6As 545 8A6 547,646,745 6 A8, 545846 545 ,648,5
AsgAe 5As.6As 5As5.846.547.646.745 648 545 846 547,646,7456438.5)-

The graph of type Eg has no loop. So the degrees of traces of cycles are
even. The generators with weight 2 are corresponding to each arrow similarly as
other cases. Now we write down the condition of u({4; ;}) € Z.

1
Aip1,iAi v — A1 iAo = §tr(Ai+I.iAi.i+l — Aiy,iAii-1)Ex,,
(i=1,2,3.4,6 and k; =2.3,4.5.4 for each i),
1

A 7476 = EIV(A6,7A7,6)EL

—

AsgAg s = 5 1r(As gAg s)E3,

3
Ag5As6 + Ag sAs g — AssAs 4 = %fr(As,sAs,e + Ag sAs s — Aa 5As.4)Es.
We put,
A= Ag sAs 3,
B := A 5456,
C:= A4 5454.

From these relations next lemma follows.
Lemma 7. The generators with weight >4 are equivalent to following traces.
r(AB" .. AB%) (1 <i;, <?2).
We put,
a:= AsgAe 5456438 5.
B = AssAe sA7.646.7A45.6A43.5.
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{«.p} are 3 x 3-matrices. Similarly as in other cases the generators with weight
>4 are equivalent to,

= ().
= tr(afioff),
= tr(afa’f?).
Since these elements are 3 x 3-matrices. the relation of Theorem 4 gives the relation
between generators {«,.... ag. X. Y. Z} of C[,ue'(Z)]GL(V'A‘“). If this relation is

irreducible, it is the unique relation because of dimuc'(Z))GL(V.A.%) > (n+ 2).
It will be proved in appendix that this relation is irreducible.

4. Appendix

In this appendix we will prove that the relation between generators of
Clu (2)] M4 s irreducible. The method of the proof are similar in the all
cases. So we give the detail of the proof only in the case of type D,. In the
other cases we give only the outline. It is not nessesary for proving irreducibility
to denote equation explicitly. But it is possible. So as a example we will write
down the equation explicitly in the case of type D,.

4.1. type D,. At first we consider the case n > 5. Since we want to use the
relation of Theorem 3 in order to determine the relation between the generators
{ay..... an. X.Y,Z}, we write the following generators of Theorem 3,

{detA,detB,detC.trA. trB.trC.tr(AB), tr(BC).tr(CA), tr(ABC)}

by the generators {ay,....a,, X, Y, Z} of C[;tE“(Z)]GL(V‘A‘“) in the D,-case (n > 5).
By definition of A4.B.C we have:

detA = detB = detC = 0,

r(AB) = X,
tr(AC) =
tr(ABC) = Z.

So we have only to describe t(C) and t(BC) by X.Y.Z. ay.....a,.
We put,

I = tr{An.n——ZAn—2,n(An—3,u—2Au—2.n—3)k}~
) ( n 3/1 'n "? by )
f/\' = ZHKX Z:n 1}

3<h<o <l <n— %( Z: l. Z =l Ni
(k=1,....n—4)
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where
1
Ai ::§(c1i+| — a;) (i=3,....n=3).
Hence
n—4

(€)= filk
k=1

We write down [7.

k [1/2+1]
k=1 P
I = E (=An=2)" 11 Hiy E E Pyt
=0 = 0w (i#1),0<s0. Y7 (si+6)-1=1}

where
|
Iz = 5 ([’n +dy-1 — an«Z)-

/+|H/\»_/ = /C!//l(k - - 1)'

Suppose s; # 0, then we have

* si—k i ti—k k
(ﬂ;l’m”’ - a(Z‘=I )al(lZIAl )(”'(An—Ln—ZAn—Z,n—lAn,u—ZAn—Z.n) .

n—1

In the case of s; =0 we have

Y sk * -k
a,(,_zl:”' +I)a,(,z'“" +l)(rr(A

)k—l

Slyeeesly
®, e = /1—14n—ZAn—Z,n—lAn,n—'_’An—Z,n

Next we must calculate (A, ,—2An—2.n—1Ann—2An_2.,). At first:

1
tr(A2,3A432A42.3A32) =2X + 5((1,2 + a% + a_%) —ajas.

So:
1
[r(An—Z,u—3An—3,i:—ZA/1—2,11—3A’1—3,11—2) = 5 ((1121—2 - (l_%) + tr(A2V3A3v2A2e3A3*z)
L o5 5 5
=2X —ajar + §(a| +a;) + “n—z)'
Moreover:

l bl bl 2 2 1
”'(An—l,n—lAn—Z.n—lAu.n—ZAn—ZJl) =X + Z ((I]' + ["_7 —d,_ + (l") - 5 (alal - anan—l)-

So we determined 7r(C). Next we describe #(BC). By similar calculation we
have:
n—4

1
tr(BC) = 3(a| 4+ ay — day2)tr(C) — Y + Zf,\.]ﬂ/\.H.
- k=1
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We determined tr(BC). Hence we determined a relation between generators
{ar,....ay, X. Y.Z} from the relation of theorem 3. We write down this
equation.

1 n—4 . n—4
0=2%— z{i(zx tai —aa — wa2)Y filk — (@ —a)Y +ar Y filks
k=1 k=1

| n—4 n—4
+XY{§(411+(12—a,,_2)Zﬂﬂ— Y+kark+l}' (16)
k=1 k=1

When we look at this relation with respect to weight, we can find that this relation
is given by a quasihomogeneous polynomial. In the case of type D4 we can write
down a relation of generators {a;....,as. X.Y.Z} by similar calculation:

1
0=272_ Z{X(m +a3)+ Y(aa —ay) — ayaray + alaf — 50104(614 +a3—ay —ay)

1
+Zal[(al — az)2 — (a3 —a4)2]} + X2y - XxY? +anY

1 1
— §a4XY(a4 +a3s—da;—a) +ZXY{(c1| - (12)2 — (a3 — a4)2}. (17)

Clud (0))°H" 4% s the ring which is quotient of Clug (Z)]“"V"** by ideal
(ay..... a,). Thus Clug! (0)) """ 4% is generated by X, Y, Z. Hence by cal-
culation: if n is odd,

rC = (1r(AB))" I/,
tr(CA) = —tr(BC).
if n 1s even,
trC =0,
1(CA) = —tr(BC) + (1r(AB))" 212,
Moreover the unique relation between X, Y,Z is:
ZP—xU-D2z XY =0 (n:odd). (18)
Z2+ X" —XxY? =0 (n : even). (19)

These relations are irreducible and represent simple singularity of type D,. These
equations are obtained from equation (16), (17) by restriction to

{ay =+ =a, =0}

Hence if equations (16), (17) are not irreducible, equations (18), (19) are not
irreducible either. But it is contradiction. So equations (16), (17) are irreducible.
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4.2. type Es. We want to use the relation of Theorem 4 in order to de-
termine the relation between generators {aj,.... a,. X.Y,Z}. Hence we have
only to express generators of Theorem 4 by generators {a;,....uq¢.X.Y.Z} of
Cluc (0)) A% This case is more easy than the case of type D,, because the
method in determining generators in this case includes no inductive method. At
first we only write down the result.

detA = detB = 0.
trA = s,

trB = us,

1
trAB = % (3a|2 — a% - 2(:% — 6(15 — 2(152 — 6a§ + 8asus),

|
1r(A4?) = i(a§ +al),

1
1r(B?) = E(ag +a?),

—_—

1 1
3tr (A’B) = §(—a2 + a3 +as) + 5(!2(—(!2 + a3+ as)’ + 5(—a2 + a3 + as)(a} + a?)

1 1 1 1
+§((12 + al)3 +§(a2 — a])3 — g(a_; + a4)3 — g((l} - (14)3
1

|
— g((lj +”6)3 ——(as — (16)3 —-3X.

8
r(AB?) = X,
tr(ABAB) = Y,

tr(ABA*B*) = Z.

We will explain the method to find these equalities. At first by relation (8):

1 n
tr(A") = tr{A4_3A3,4 +§(a3 - 04)52}

1 1 ,,
= ?((13 +ag)" + ﬁ(”-‘ —as)",

tr(B") = IV{A(».sAs.o +%(as - 6'6)52}
1 P "
= i(tls + ag) +§;(as —de)".

] n
r(C") = TV{AO,IAL() +§(f12 - ‘11)52}

1 H l H
= ?((12 +ap) +ﬁ(”2 —ay)".
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Next if we calculate (A4 + B)?. /(4 + B)®. we obtain above equalities similarly as
when we determined generators in Section 3.

Next we consider Clug!(0)]%H" 4% Clug (0)] 9" ** is generated by
{X,Y.Z}. The unique relation between X.Y Z is:

Zz+XZZ+%Y3=0.

This equation is obtained by the restriction to
{a| :~~=a(,=0}

the equation which is obtained from the relation in Theorem 4. This equation
is a nontrivial quasihomogeneous polynomial with weight (24:6.8,12). So this
equation represents simple singularity of type Eg and is irreducible. The equation
which is obtained from the relation of Theorem 4 is quasihomogeneous polynomial
with weight (24;2....,2,6.8,12). Hence the relation which is obtained from the
relation of Theorem 4 is irreducible.

4.3. type E;. This case is similarly as the case of type E. In this case we
have only to calculate tr(A"), tr(B"), tr(C"), tr(A +B) (1=2..... 7).

Next we consider Clug!(0)]9"" 4% Clue! (0)]“E 4 s generated by
{X,Y.Z}. The unique relation between X, Y.Z is:

Z2+ XY+ v =0
This equation is obtained by the restriction to
{(11 :~-~:a7:0}

the equation which is obtained from the relation in Theorem 3. This equation
is a quasihomogeneous polynomial with weight (36:8,12,18). So this equation
represents simple singularity of type E7 and is irreducible. The equation which
is obtained from the relation of Theorem 3 is quasihomogeneous polynomial with
weight (36:2.....2,8,12.18). Hence the relation which is obtained from the
relation of Theorem 3 is irreducible.

4.4. type Eg. This case is similarly as the case of other types. In this case
we have only to calculate 1r(A4"). tr(B"). tr(C"), tr(4+ B)' (I =2.....9).
Next we consider Clug! (0)]“"" 4 Cluc!(0))“" 4% is generated by
{X,Y.Z}. The unique relation between X,Y,Z is:
1 1

2 ly3 L oys
Z 8Y 32X 0.

This equation is obtained by the restriction to
{al ="'=a320}

the equation which is obtained from the relation in Theorem 4. This relation
is a quasihomogeneous polynomial with weight (60:12,20.30). So this equation
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represents simple singularity of type Eg and is irreducible. The equation which
is obtained from the relation of Theorem 4 is quasihomogeneous polynomial with
weight (60;2,...,2,12,20,30). Hence the relation which is obtained from the
relation of Theorem 4 is irreducible.
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