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A certain class of distribution-valued additive functionals I
—for the case of Brownian motion

By

Tadashi NAKAJIMA

1. Introduction

Let B; be a one-dimensional Brownian motion and T be a distribution which
belongs to the class 91" . M. Fukushima has proposed a definition of the integral
fo’ T(B,)ds via Ito’s formula and showed that the integral is a continuous additive
functional of zero energy ([3]).

T. Yamada [11] and M. Yor [13] studied concretely principal values of
Brownian local time which are typical examples in the class of additive functionals
of zero energy.

It is well known that there is a one-to-one correspondence between the class of
positive continuous additive functionals of d-dimensional Brownian motion and the
class of Revuz measures ([7]. [8]).

R. Bass [l] showed that additive functionals A(a.t,w) for d-dimensional
Brownian motion are jointly continuous in ¢ and ¢, a.s. and represented A(«, 1, w)
as d-dimensional analogue to the Ito and Mckean [5] that states that any additive
functional 4, of one-dimensional Brownian motion can be represented as

A = J L u(dy),

where L; is the local time at y for the one-dimensional Brownian motion and y is
the measure corresponding to A4,.

T. Yamada showed that any continuous additive functional of zero energy has
a representation via convolution-type transform of the local time in the case of
one-dimensional Brownian motion and generalized a representation formula given
by R. Bass in the case of multi-dimensional Brownian motion ([12]).

In this paper, we show that Ar(a:t w) :jo’ T(X; — a)ds is a continuous
additive functional for some T € H,{’, where X, is d-dimensional Brownian motion
and this additive functional has jointly continuous modification in ¢ and t. a.s. and
has zero energy.

Our method is very simple. It is principally based on the Fourier transform
theory in distribution sense. The concrete estimate of the characteristic function
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of d-dimensional Brownian motion plays an essential role in the proof of our main
result.

The present paper is organized as follows. In section 2, we define distribution
valued additive functionals and prepare some notation.

In section 3, we discuss the existence and («, r)-joint continuity of Ar(a: t.w)
for d-dimensional Brownian motion.

In section 4, we discuss the energy of Ar(a:f,w) in the sense of M.
Fukushima [4].

In the forthcoming paper we will show that Ar(a:t w) for 1-dimensional
stable process with index o is a continuous additive functional for some T € H,f
and this additive functional has jointly continuous modification in @ and ¢, a.s. and
has zero energy. And we will show some representation theorems for Ar(a: 1, )
in that paper.

2. Definitions and preliminary results
Throughout the paper, we shall use the following notation.
R = the set of all real numbers.
N = the set of all natural numbers.

C = the set of all complex numbers.
R = {x=(x1.....x4) : x;eR for 1 <i<d}.
For peC., p denotes the complex conjugate of p.

2 = {¢(x) : ¢ is an infinitely differentiable function on R
and has a compact support}.

@' ={T: T is a continuous linear functional on Z}.
& = {¢(x) : ¢ is an infinitely differentiable function

and (1 + |x]*)¥D*¢(x) is bounded on R for any k and a}.
&' ={T: T is a linear continuous functional on #}.

Here we take the topology for these spaces in Schwartz’s sense.
Let (X;) be the standard Brownian motion on R or one-dimensional real
valued stable process with index o (0 < a < 2).

Lemma 2.1. Let TeZ'. ¢ @ and set T x $(x) =Ty, ¢p(x — y)>,. Then
ol

<AT(I.(U),¢> = 0 T * ¢(X\(w))ds

is well-defined and we have

/

Ar(t,w)e &'
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Proof. Since ¢ € 2. there exists a compact set K which includes supp{¢}.
Then there exists a compact set L = L,(w) such that

K+ Xi(w) c Li(w) (0<s<1).

And there exist the positive numbers C; and N such that |T = ¢(x)| < C.||¢||x for
every K +xe L. Here we denote ||¢|1,’:-/ = SUPyck p <N IDP(N)].
Then we have

[KAT(t,w), 9> <t sup |T * ¢(X,)| < tCr||4l|R-

0<s<t

This implies that A7(f,w) is an element of Z'.

Remark 2.2. In particular, in the case of T =T, = fe L} . we have
1
CAT(t.w), ¢) = J [ * d(X,)ds.
0
Moreover. let i be a Radon measure and we set

(1 D)) = | $x = utay).

Then we have

A1) = | (s )X,

We define 7, and 0, as following:
7 X (1) = X(w) + x
and
0, : X;(0,0) = Xp4y(w).
Clearly, we have
Lemma 2.3.
(2.1 CAr(t. 1), ¢) = A7 (1. 0). ¢(- + x))
(22) (Ar(s+1w).¢) = (Ar(s.w).¢) + (A7 (1. 0,0), ¢).

Lemma 2.4. Let T be an clement of Y. Then Ap(t.w) is also an element
of .

Proof. Ar(t.w) is a linear form clearly.

We note that T e %" if and only if there exist constants M and p e N such
that

(23) KT.9 < MIgll,  for any pe.

where |4, = sup,, <, \crs (14 x*)"[D*$(x)].
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For ¢ € &, we have

[KAr(tw) 3] <t sup [T x$(X,)|

0<s<r

=1 sup KT, ¢(X, — ¥)),l.

0<s<t

Then by (2.3) we get
KAr(t.0).9) <24, sup (1+[X,(@)]’)
<s<t

Therefore Ar(f,w) is a continous linear form.

We denote the Fourier transform of ¢(a) by @(4):

d(3) = j¢(a>e"‘~"' da,

and the Fourier inverse transform of y(4) by Z~'(y)(a):

7' (W)a) = Y(A)e " d2,

b
(2n)¢.

where x-y (xe R, y e RY) denotes the inner product.
Let T e.%". We denote the Fourier transform of T by T:

(T.¢> = <T.(1§> for any ¢ e ..

Definition 2.5. We say that T is an element of Hf (1 <p< o0, -0 <f<
) if and only if T is an element of %’ and the Fourier transform of T has a
version as a function T(A) on RY such that

T+ erLr.
Then we set
1T Wy = NT A+ A7) .
We note #~(T)(4) = (2n) T (~4) for T e HY.

Lemma 2.6. Let T be an element of H[{’ . Then Ar(t,w) is also an element
of Hf.

Proof. For ¢ €&, we have

CAr(t,w), ¢ = {Ar(t.w), >

1
= [ <T,1, [a_“""efX“"¢(x)dx> ds
Jo )

B L’ (T3 2m) 71 (™ $())(A)) ds
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~ !

= (2n)" CFNT) ™ g(2)y,; ds
Jo

J’ (T(=A)e™ 4 g(2)); ds

0

<J; T(—A)e™*ds, ¢(,1)>A.

!
Ar(t,w) = J T(=2)e % ds.
0

Thus we get

By T e HJ. we have

!
j X dsT(=2) (1 + A1) e Lr.
0

We state the following lemma, which will play an important role in the next
section. In fact, we will prove the boundedness of certain integrals by this lemma,
which will appear in theorem 3.1 and 3.4.

Lemma 2.7. We set

du
J = 2\p A
(T4 1 ™) (U [+ 217)7

Let 2p+2¢g>d and p=2qg>0 or p>02=>gq.
() If 2p<d and 2q < d, then

1
(24) J = (1 + MlZ)p-i-q—(d/Z) :

(2) If 2p=d, then
1 +log" |4
(2.5) g < Lloe 14
(1 + 145
where log™ |x| = max (log|x|.0).
(3) If 2p>d. then
1
(1+121%)"
Here we denote that "' f =< g"" means k < f/g < K for some positive constants k and
K, where f.g #0.

(2.6) J =

We will show the proof of this lemma in appendix.
Now let p, be the molifier:

mm=§&§.
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where

|
C(/exp<———>, |x] <1,
plx) = L

0. x| > 1,

and Cy is the constant which satisfies that [ p(x)dx = 1.
In the remainder of this paper, we denote

A5 (1) = Ar(t.0).p,)

and
Ar(a:tw) = Ap(t.1_,0).

We note that

(AT (1 w). ¢> = CAp(t,w). p, * $).

Here we emphasize 4% (a:t.w) is a function of «. We recall that p, — ) as
e — 0 and p, uniformly converges to one in wider sense tending ¢ to zero and
Al < 1.

In general. A% approximates the distribution 47r. However, under some
conditions we will prove that the limit is a function. which realizes the local time
associated to the distribution T, and study the («, 7)-joint continuity of A7(a : t.w).

3. Convergence and continuity theorems
In this section we write
I'v = {(41.42) : |A] < N, |4z £ N} for any N > 0.

Let P, be the probability measure of the d-dimensional standard Brownian motion
B,(w) starting from x and we denote p(z,x) the transition probability density
function. We notice that the characteristic function of B, is

2
E\.[e’w‘] = exp{— M—2|—s + iix}.

Theorem 3.1. Let | < p< oo and g satisfy |/p+1/q=1. Suppose that
B> (d—=2q)/q in the case where d >2q and that > (d —2q)/2q in the case
where d < 2g4.

Then we have for T € H/{‘ that

lim A5(a:t.w) = Ar(a: 1, w) in L*(dP,).

e—0

holds.

Proof.  Without loss of generality, we can assume that the Brownian motion
starts from zero.



Distribution-valued additive functionals

I = Ey[(A%(a: t.w))?]

t 1
=2E, U a’sj duT * p, (B, —a)T * p,(Bys — a)]
0 K

299

1 1
- 2jdyl jdyz [ dsj AT * p,(3)T * pa(3a) pls. 3y + @) plaa — 5. 32 — 11).

0

By Parseval’s equality with respect to dy, and dy;, we have

2 [ L =
=— [dftl J digj ds [ duT % p,(A)T * p,(42)

(2n)*.

—(A14+A2?/2)s= (A2l /2)u=s) ~i(Ay +32)

0 Js

x e

Note that T #p,(4) = T'(1)p,(4) holds. Then

= —2—l-J d/l] J d).z’f(il )ﬁs(;q )T(lZ)ﬁ”(/{z)e—iul+A:)<u

(27[)2[

! ' ) 5
XJ ds J due— Vil 205U 20 s)
0

s

By |e¢®| =1 we get

1 < z<sup wn) ||
[}<N .

F2AALY || dndis

l,‘\

Iy 0 0

JO
Now we set
- 1 k
J:Je_"'ds:— 1 —e™),
, k( )

where we suppose Re(k) = 0. If k| > 1, then 1+ |k| > 2.

! 1
(Mld/lz|f"(i|)f"(/12)|J dsJ due

—(hr+Aa|*/2)s= (42| /2)u

! 4 3 B
T(il)f(iz)lj ds[ due~ i+l 25— (Va2
0 (

Using |1 — e % <2,

we have
2 4
< — <
<SR
If k] <1, we have
2t
J<t<
Vi 1 + |k
Thus we get
1 L C
3.1 M ds| < : ¢ (k
(3.1) Lc d S o ke CRek) 20,
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where C = max (4.21). We obtain

2
1) < z( sup wn) 12“ iy
[Al<N JIy

AN || dndil FODTGDI + 121+ 22 (14 120

T(2)T(4)]

+2C%(]

2

()l ) (1) say.

2
=27 ( sup wn) I+ 20

A<N

By Hoélder's inequality we get

2/q
(3.2) I < ("T”H;‘)ZO 41 +|/1|2)_"(ﬂ/2)) )

[Al<N

Therefore I; is finite for any p.

Now we estimate [,({y). First we consider LR xRY) =1, We apply
Holder's inequality to /1.
(3.3) h:JMJﬁhﬁunﬂbmrua+bﬁ”u+uﬁy'

< (170,

< (ITlp)?

. 1/q
d Ay [cilz(l F AP+ 1) T A+ iz|2)‘“)

. 1/q
x ( j di, Idﬂz(l Tl — )P )1 lﬂ.lz)"’> .

We apply (2.6) to I,. If f satisfies

i—2 .
f> ‘ 2 4 in the case where d < 2gq
and
d—2q .
L> in the case where d > 2g4.
q

then I, is finite, therefore we can make />(/) small for sufficiently large M.
Now we note that sup.yl|p, —p| — 0 as &' =0 and |[p, —p.ll,, <2.
Since
ot

Af (a1, w) — Ai}'(a ctw)=| Tx(p, — p.)(Bs — a)ds,
Jo
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Ab(a:t.w) is a Cauchy sequence in L*(dP,) and A%(a:t,w) converges
Ar(a:t o) in L*(dP,).
If p =2 then we can improve Theorem 3.1 as follows:

Theorem 3.2. Suppose that > —1 in the case where d =1 and that >
(d —4)/2 in the case where d > 2.
For T € Hzﬁ , tending ¢ to zero,

Ab(a:t,w) — Ar(a: t,w) in L*(dP,).

Proof. For the proof, it is sufficient to show that (3.3) is finite.
We set

_ {(Mz) LIS +zz|}

b

L= JJA dadio| T(A)T(A2)|(1+ |4 + 421D 7 (1 + 42]2)

and

y
={(wz):%z

Then

+ ”A dhydia| TODT G + 1 + 12 (1 + )

=Jy, + J1,. say.

First. we estimate J;,. We have
2
(3.4) Jy, < C (Jmu (14123 dl)
< 1T )2 J1+|/1| )2
Next, we estimate Jy,.
JA,,=JJ diyd | TG+ [ PDPPIT (42)|(1 + 42} P?
A
< (L [ D) 200+ )20 4 20+ 1) 70+ 1))
=“ dadia TN+ [ PYPPIT )1+ 1)L, say.
A>

Let (41.42) belong to A;. Then we get |4 + 45| < 4| and 2|4 + 45| < [4]. If
f =0, then we have
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L<G(l+1|4+ iz|2)_2"/} for some positive constant C,.

If —1<f<0, then using Mz] <A +;tz| + |/11| < 3/2|/{|| and |41 < |4 + A2l +
|42] < 2]4;|, we have

L< GO+ AP +)4 + 4H)!
< G+ |4 + 1))
Hence, if f> —1 we get
L<Cs(1+ A + 4?27

where Cs = max (Cy, Cy).
Thus, by change of variables (4; + 4, = ¢ and 4 = A)

JAzscsjjdidﬂlmml ARPRIT (= D)+ = AP + ()2,

Using Schwarz’s inequality for the integration with respect to 4, we get
(35) I < Ol [ a1 + )

Thus we obtain a sufficient condition for the finiteness of I,

p=-1 and /3>?,2;4

by (3.4) and (3.5).
If p =1 we have the following theorem.
Theorem 3.3. For Te H ,ﬂ , tending ¢ to zero,
As(a:t,w) > Ar(a: t,w) in L*(dPy).
where we take > —1.

Proof. For the proof of this result, it is sufficient to show (3.3) is finite. By
Holder’s inequality we have

L< (1Tl 2N+ 1) 20+ 1227220 4+ 14+ 27
If p >0, then clearly /; is finite. We consider the case of f < 0. We set

L=(1+ 1" 217D+ A4+ L)

We consider 4, and A, which are appeared in Theorem 3.2. First, we consider
the case of (4;,42) belongs to A;. That is. || < 2|4, + 42|. Thus we have

(3.6) L < Co(1+ |4 12) D711 4 ) ap) )-8,
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Second, we consider the case of (4;.4;) belongs to A>. Recall that |} < 2|4,].
Thus we have

(3.7) L< GO+ L) A+ 1+ 4™
Therefore using (3.6) and (3.7), for the finiteness of I, we take f > —1.

Since the convergence of A% is in L2, we can take a subsequence {44} to converge
almost surely. Thus we take the limit Ar(a:7,w) as the almost everywhere
convergence of A%(a:t w).

Next we discuss the («,1)-joint continuity of Ar(a: t, w).

Theorem 34. Let T e Hf (1 < p<o0), where we take f as Theorem 3.1.
Suppose that § = min(1, (gf —d +2q)/2q) in the case where d >2q and that
d =min(1,(2gf —d +2q)/2q) in the case where d <2q. Then Ar(a:t.w) has
(a, t)-jointly continuous modification, which is locally Hélder-continuous with
exponent y, where 0 <y < 6.

Proof. We will estimate
E(A%(a: 1,0) — A(b : 5.0))*"]

and then we apply Kolmogorov—Centsov theorem to get the joint continuity.
Without loss of generality, we suppose that ¢ > s and Brownian motion starts
from zero and b =0.
We set

Eo[(A%(a: t,w) — 450 : 5,0))™]
< 27| Eo[(Af(a: t,0) = A5(0: 1, w))™)|
+ 27| Eo[(A5(0 : 1,0) — A5(0 2 5,))™"]]
=22I,| + 2*1,, say.

First we estimate /,.
I, = (2n)!de1 .. .dez,,
X (T * pn(y] - d) —Tx p.e(yl)) cee (T * /)1:(y2n - a) -T *ps(yZn))

! t 1
X J du, J duy . . J duzy p(tzy — Uan_1. Yo, — Yau_1) - - plur, yy).
1 1

0 u 42n—1

Then we set

Fo= 11T *p(yi = @) = Txp, (1)

i=1

and
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h
Py= TP —ui,yi=yiy)  (setting yy =g = 0).
i=I
We have

t I 14
I, = (2’1)' del cee deZNJ duy J duj .. J duzy Foy_ Py
0 t [

1) -1

X (T * pe(yZn - (l) - T Pg()’z,,))([’(lQn — Un—1, Yo — V2n-1 ))
By Parseval’s equality with respect to dy,,, we have

(2n)! [ ! ! !
I, = —djdyl [dyZH—I Jdbnj duy J duy .. J iy Fop_1 Pap_)
(27[) P 0 u [

U2on—1

—_— . S —
X T * p‘;(izn)e_(llﬂnl /2)(”211_“2114)’H)Qn'.l;n_[(el)»g,,%l _ 1)

(2n)! [ [ ! ! [
= 7 dyl cee d)’Zn—l diy | duy duy ... duzy o, 2Py
(27'[) D 0 uy Uy

X (T * ps(yZH—l - Cl) —Tx /)8(.}’211))(10(“2"—1 — Um-2, Vo1 — y2n—2)

% fp:(,12")e—(llznlz/2)(uz"—uz,._n)+i/12,.~,v3,,,1(ei/13,,<u -1

By Parseval’s equality with respect to dy,,—;, we have

| t t t
]‘, = ﬂjdyl N dez,,_z J(U.z,,q Jd/lz,, J dul ] du2 e J duz,,

(2m)* o Ju

X FZM—ZPZM—ZT * pE(ZZH)T * Pg(/bn—l)

o~ 22l /2)t2n=tt20 1) = (1Z2n+ An 1| /2) (-1 = 1020-2)

x ei(lln‘f’llnvl)'."Mfl(eilz,,'(l _ 1)(6‘”‘”-"" _ 1)

Using Parseval’s equality with respect to dys,—2...dy; in a similar way of above,
we get

] 1 t !
I, = (LT)'Ja’/M ... Jdlg,, J du, J duy ... J du,
I I

- (27,[) 2nd 0 , .

x T(2n) .. T(A)p,(A2n) .. 5, (A1)

X e_(lilnl2/2)(”211“”.’n—l )= (|A2n+242n- ||2/2)(M2,,_| —tia-2) == (At |2/2)“I

X (ethwa — 1)(ethm-ra — 1) ... (ethra —1).

By using Hoélder’s inequality, we get
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(2n)!

Ilul < (z—n)‘m

Tl > (N2l )

x (Jdil...Jd,{z,,(l+|/11|2)“"/’/2 (1 [Aga]P) 92

I 1 1
X (J dulj du; . J du,
0 uy Uzp—1

) . i q
e~ Al /2) (tan =120 1) = (A2t 221 |7/2) (Wanoy =tz 2) == ([ 440 [/ 2 )

/4
~ Iei/lg,,xl _ llflleiiz,,_ya _ ll‘l o leiiru _ l|‘1> .

We change the variables 4; (1 </ <2n) to g (1 <j<2n) as follows:
Moy = '12"
Mop—1 = Aan + Aan-i

My = /1211 + }v2n—l + -+ iI-

Then we get
(211) 20 A 2n
| < 2n )7,,(,(I|T||Hﬂ) (oell )

x ( dp, ---Jduz,,(l = 1)) gy — pt|?)

(1 + |pag,|*) 7

1 ' ' R 5 N 4
x ( du, J dits . . J duZ"e—(|n:,,l-/2><uz,,—u:",>—~~—<|u3|-/2)(uz—u.>—(|n,|-/2>ul)
JO I Uy

1/

« Iei/l:,.~a _ 1]q|e'(“’" | —Hap)-d lltl Cleflm= llq) q
(2n)! , )
< o (Tl " 0510

X <Jd/‘1 [dﬂzn(l + 1y — /‘2|2)_qﬁ/2 co (T gy — .Uzn|2)—qﬂ/2

2\—qB/2
X (1 + !/‘211' ) %/

! ! ! 5 5 q
« ( J dulj duz---J duz"e—uuz"|-/2>uz,.—~~~—<|m|-/2>m)
0 0 0

1/¢
x |eiu:.,-~ _ 1|‘I|e"(/l:,._|—uzn)<a _ 1|‘l o |ei(m—m)-u _ 1|‘1> ]
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Now we notice that the inequality (3.1) and for any 1 >/, >0

le@ — 1| < Kla|"(1 + |u|?)"/? for some positive constant K > 0.
Then we apply these inequalities to I,

(211) K

I < —=7
' l (2 )2"(1

2, o 2 2nl,
TN ) 2N ) ™ el ™
et 1+ =Py D1 2y 0

SO I o R O I S O O S P S ""/2”""/2))

where K| = (CK)*".
We first estimate of this integral. We set

1271 = [ (14 1 = s )P g 2y~
a - n 7 :
Now we apply (2.6) to this integral. If § satisfies

ap af 4l AW
2<q(1 2)+2>+22 22>d and 2(q<1 2>+2 >d,

then we get
2] = (1 + |ty |2) P+l
n—1 :

Therefore, by induction, we reach the integral
2\ —q(1-1,/2)—(gB/2
Jd/tl(lJrlml yal1=lo/2)=(ap/2)
For the finiteness of this integral, we set the following condition:

(990

Thus we obtain the condition

d—2q9+1, d-2(qg-1,)
(3.8) p> max( p ; 2
and
(3.9) L] < Cglal™™ (IITIIHﬂ)Z"(IIPsII 2,

where Cg is a positive constant and only depends on » and d.
Next we estimate /, in a similar way of I,. But we notice that for any /, > 0,
Re(k) > 0 and fixed ¢ > 0, there exists a positive constant K, such that
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5 1/(+1)
<K, |——— fi 0.1].

s
J e—ku du
0

Because it is easy to see that

S_/I/(]I+l)(l + |k|) 1/(l+1)

)
[[ean
0

is a bounded function on (s,|k|) € [0,7] x [0,00). Then we have

(2n)'K; ;

lI’l = (27z)2ml

2 lI [l 1 2 ) ?
= s 16 )

' - 2\-qB/2
X (Jdﬂl "'JdﬂZn(l + |:u| _/1212) [/3/2. : (l + |lu2n—l _:“2n| ) P

1/q
2\—q/(l,+1 2\—q/(l,+1 2\—(gqp/2)— l+1
X (1 + I,Ull ) t//( ) e (l |/12n—ll ) I/( )(l i |/12n| ) (I// ) ((I/( ))>

where Ky = K.
We apply (2.6) to the integral with respect to dg ...du, of I, Then we
obtain the condition

2
Jo2 42

L+1 " L +1
(3.10) f > max p —

for the finiteness of this integral and
3.11) 1] < Cile= P DT ) P (15,

where C, is a positive constant and only depends on n,¢ and d.
Therefore by (3.8) and (3.10) we make /, and /, satisty the following equalities:

d— 29 =

2q
T -2 l_a ¢ -7, = - a-
T d—2q(1-1,) and d d—2q+ql

[]+l

Since /, and /, are positive, if f satisfies the condition in Theorem 3.1, then we
obtain

(3.12) |Eo[(A%(a: 1,w) — A%(0 : s.0)) ™|

206 206 201 A 2
< Cam(lal™ + 11 = 1" YT )™ (15l )"

where we take ¢ as follows and Cgy = max(Cg, C)).

If d > 2q, then for f > (d — 2q)/q we take J as (¢ff — d + 2¢q)/2q > J by (3.8) or
(3.10) and if d < 2¢, then for f > (d — 2q)/2q we take d as (2qff —d + 2q)/2q =0
by (3.8) or (3.10).



308 Tadashi Nakajima

Thus tending ¢ to zero, we get (a.f)-joint continuity of Ar(a:t.w) by
Kolmogorov-Centsov theorem.

But we cannot still get the result corresponding to Theorem 3.2 and Theorem 3.3.
By Theorem 3.4, we can take the («.7)-jointly continuous modification of
Ar(a:t.w).
Now we discuss the existence and (g, 7)-joint continuity of Ar(a: ¢,w) in the
cases of p=o00 and p=2 for d = 1.

Example 3.5. We set d = 1.

If p=oo. we take T e HS where B> —1/2. Ar(a:t w) has (a.1)-jointly
continuous modification which is locally Holder continuous with exponent 0 < y <
min (1, (26 4+ 1)/2).

If p=2, we take TeHzﬂ, where > —3/4. Ar(a:t,w) has (a,1)-jointly
continuous modification which is locally Holder continuous with exponent 0 < y <
min (1, (46 + 3)/4).

Let T =38. Then T belongs to HY NH;'/>™ where ¢ >0. Ar(a:tw) is
the Brownian local time. Ar(a:t w) has (a,t)-jointly continuous modification
which is locally Hoélder continuous with exponent 0 < y < 1/2 in the case of T =
3o € HY and exponent 0 < y < 1/4 in the case of T =4y € Hz_l/z_ﬁ, where ¢ > 0.

Therefore we conclude that the exponent is 1/2 — ¢, which agrees to the result
in [6]. |
Let T =v.p.— Then T belongs to HY NH,*™ where &¢>0. Thus
Ar(a:t.w) has (a,lt)-jointly continuous modification which has the same exponent
in the case of T = 4.

4. Energy of Ar(a:t w)

In this section we will discuss the energy of Ar(a:t.w). First we define the
energy of additive functionals in [4].

Definition 4.1. For any additive functional A(«: t,w), we set
o 2
e(A) = ]}lrngE,,,[(A((l D hw))’]

whenever the limit exists. We call ¢(A4) the energy of A(a:t ,w).

For the Brownian motion and stable processes, we take m = dx.
To discuss the energy of Ar(a:t,w) we prepare the convergence theorem of
Aé(a: t,w) in L*(dP, x dx).

Theorem 4.2. Suppose that 2 < p < oo. For T € HF, tending ¢ to zero,
Ab(a:t.w) — Ar(a: t,w) in L*(dP, x dx).

where we take > (d —2q)/2q. Here ¢ is Holder conjugate of p.
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Proof. We only show that the following integral is bounded. The detail of
the proof is the same in Theorem 3.1.

(4.1) I = Eg[(A(a: t,0))?]
— | dxEL[(A5(a: t,w))?]

- .deO[(A}(a +x: )Y

1 !

= | dxEy [2J dsJ duT + p,(B; —a — x)T * p (B, —a — \)]
0 s

By Parseval’s equality with respect to x, we have

" ’ ——— .
[=202n)" Ja’/lEo“ ds J du|T * ,),:(1)1%-'*'(3-\’-3“]
JO 3

A

1 1 5
<2027) szj dsJ du| T (3)p,(2)|2e W7/
0 0

2,- (1220

<2(2n)™¢ zJ' di J’ du|T(2)p,(%)
0

Using | [ e du| <t for any Re(k) >0 and (3.1), for N >0 we have

(4.2) 132(27:)"0(; sup |,55(/1)|2[ dA|T(3)]?
|| <N <N

' . I
+C ;ZJ dA|T(3)|?
1615 e |T(4)| T

= 2(2n>“’r<r sup B+ 11502 R(12] = N)). say.
<N

By Hoélder’s inequality we get

1/q
hr= (“T”H;')ZO da(l + W)w) |
[Al<N

Therefore 1, is finite for any f.
Now we estimate (|4 > N). However it is enough to get the bound of
L(JA| = 0)=1. Applying Holder’s inequality to />, we have

1/q
(4.3) b < (IITHH;)ZG dA(l + |z|2)-‘/-‘f/‘) .

For the finiteness of this integral we get 2¢ +2¢f > d. Thus if B satisfies 8 >
(d —2q)/2q, then we can easily see that tending ¢ to zero, {A%(a:t.w)} is
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a Cauchy sequence in L*(dP, x dx) and Af(a:t .w) converges Ar(a:t.w) in
L?(dP, x dx).

If p=2, then (4.3) is
< (1T N+ 14187
Thus we have
Corollary 4.3. For T e HZ’j . tending ¢ to zero,
Ap(a:tw) — Ar(a: t.w) in L*(dP x dx).
where we take f§ > —1.

These results guarantee the existence of Ar(a:t.w) for T e H[f wider than
Theorem 3.1 and 3.2. Especially, A7(a:f.w) exists for any T e Hy'! for any
dimensions according to Corollary 4.3. However, the limit Ay(«: t, w) exists
almost everywhere P, not for all P.. Then we denote the limit by A‘T""(a (f.w) In
this sense.

Now we show that A% (a: 1,w) has O-energy for the same f.

Theorem 4.4.  Suppose that f > (d — 2q)/2q in the case where p > 2 and that
B> —1 in the case where p =2.
Then. for any T € HP. we have e(A$") = 0.

Proof. By (4.2) we have

En|(A%5(a:t, (0)2]

) 72
<20m (¢ swp | antoir + il | alTEL)
<N <N Jasy T+ |4

If B satisfies the condition, for sufficiently large N we make
17(2)

‘ di 5
Jasn 1+ 4]

small. For such N we take ¢ independent of p, as making

| 2

rJ AT

|[Al<N

small. These estimations are uniform in &. On the other hand we know
Af(a: tw) — AS(a st w) in LY(dP, x dx).

by Theorem 4.2 and Corollary 4.3.
Therefore we get

1 -
I}_WZE"‘"[(AT(“ Shw) ] =0.
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Appendix. proof of Lemma 2.7
Proof. We prove the case of p>¢>0. We set
L=+ + 2+ ),

A
Ay = {,u: ] < %}

Azz{,u:ht-l-ilﬁ %}

Ay ={p: |p| <204} — 4, — As,

and
As = (A, U AU A3) .

We will consider each case. First, we consider x which belongs to A4. Since
\ 1
lul < lpe + A1+ 1A] < e+ 2] + 5 |4
and
3
e+ 2 <+ 121 < 3 1l

we get |+ Al = |-
Second, we consider x which belongs to A3. Since

1
3 1Al < Il <214
and
1
§|/1| < |+ A <34

we get [4] =< [u+ A = |y
Third, we consider u which belongs to A;. Using

1. ,
il/tl < i+ 4 <34

we get |4+ pu| =< |4l
Last. we consider u which belongs to 4;. Using

1.
;)-I/tl < |u| < 2|4l

we get |4 =< |u.
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We consider the order of J in Lemma 2.7. First we suppose that || < 1 and
set

du du
J= 2\p 2 (/+ 2\p a 2\q
<2 (T4 ()P (U 12+ )T 2 (04 | D) (T4 A+ 1)

— I <)+ >2), say.
If |p| > 2 = 2]A], then x belongs to A4. Thus we get

[ du
J(y>2)xl — =1
8 2 (1 [y

If |u| <2, then we have

1 1

I>L> = :
(1422)"(1 4+ 2+ 1)%)¢  5r104

Thus we get J(Ju| <2) =< 1. Therefore for |A| < 1, we get J < 1.
Next we suppose that |A| > 1. We set

J(A,):J _ —  (i=1,23.4).
2 P 2 )

First, we consider J(A4).
du
ac (L L) (U124 )

_ ‘ du
Jag (U 4 27

s = |

|)Ll d
- M|2/7+2q

1
- (1 + l)»|2)p+(/—((//2).

Second, we consider J(A3).

i du
- |
(43) Jan (U 1D+ |2+ 1)

VJ du
= A}'(l + |)»|2)p+q
lil(l

- (1 + |1|2)])+([

1
= (1 + |/{|2)[)+(/—((//2).
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Now we consider the order of

K:J dx -
[ <a (1 + I\‘l )I

where a > 0.
For a fixed k > 0, we have

dx dx
K= J v J 2Np
<k (14 ]x]7)7 Ji<ivi=a (14 [x]7)

dx
=1+ TR
k<|x]<a lXI

If 2p > d, we have

If 2p =d, we have

K =1+Ilogu—logk < 1+1log"a.
If 2p < d, we have

1

- d=2p _ pd=-2p\ _ ,,d-2p _
K=1+(a k™) < a = —(1 2y .
Keeping this discussion in mind, we return to our original problem.

du
a (L )P (U 12+ )

J(Ay) =J'

_ 1 du
T+ W)"Jm (L4 1ul?)”
( 1

(142 2)[)+(/—(d/2) ’
1+ log* |4]
(141211

1
(1+ 125

[ du
J(Az) = J 2\p 2\q
Az (L1 )P+ A+ )

= 1 J du
T+ AP (U e+ A

2p<d

X

, 2p=d

2p > d.
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_ 1 J dv
(L4 A2 Ly (14 o)1
1

(1 1 A7) @m 2q<d
1 +logt|d
= —gzl—[ 2q =d
(1+ A1)
1
—. 2q >d
L (1+[4]%)°
Therefore we get Lemma 2.7.
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